
Generic Record Combinators with Static Type Checking

Wolfgang Jeltsch †

Brandenburgische Technische Universität Cottbus
Lehrstuhl Programmiersprachen und Compilerbau

Postfach 10 13 44, 03013 Cottbus, Germany
jeltsch@tu-cottbus.de

Abstract
Common record systems only provide access to individual record
fields. However, it is often useful to have generic record combina-
tors, that is, functions that work with complete records of varying
structure. Traditionally, generic record combinators can only be im-
plemented in dynamically typed languages.

In this paper, we present a record system for Haskell that al-
lows us to define generic record combinators without giving up
static type checks. The system is implemented as a library so that
it works without modifications to the language. We achieve this
mainly by using advanced type system features such as type equal-
ity constraints, type families, and higher-rank polymorphism. A key
contribution of our paper is a technique for emulating subkinds,
including subkind polymorphism. We use this to give the record
system additional expressiveness.

Our system is not only useful in itself. It also shows what
features should be taken into account when designing language
support for records.

Categories and Subject Descriptors E.1 [Data Structures]: Rec-
ords; D.1.1 [Programming Techniques]: Applicative (Functional)
Programming; D.3.2 [Programming Languages]: Language Clas-
sifications—Applicative (functional) languages, Haskell

General Terms Design, Languages

Keywords Type-level programming, Type-level reification, Ge-
neric programming, Induction, Closed classes, Type families, Type
equality, Higher-rank polymorphism

1. Introduction
Traditional record systems of statically typed languages focus on
working with single record fields. As a minimum, they provide op-
erations for field selection and modification. Systems with support
for extensible records also permit the user to add and remove fields.
A typical example of such a system is the one Jones and Peyton
Jones proposed for Haskell [7].

In that system, a record is a mapping from field names to values,
and the type of a record is a mapping from the record’s field

† I dedicate this work to my father Hans-Joachim Jeltsch who passed away
when I was writing this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPDP ’10 July 26–28, 2010, Hagenberg, Austria
Copyright © 2010 ACM 978-1-4503-0132-9/10/07. . . $10.00

names to the types of the corresponding values. For example, the
expression

{surname = "Jeltsch", age = 31, room = "EH/202"}

denotes a record that maps the names surname , age , and room to
the values "Jeltsch", 31, and "EH/202", respectively. The type
of this record is

{surname :: String , age :: Int , room :: String } .

Say we want to modify the above record. The age shall be in-
cremented by two, and the room has to be replaced by "HG/2.39".
It would be nice to specify these modifications also as a record,
namely,

{age = (+2), room = const "HG/2.39"} ,

which has the type

{age :: Int → Int , room :: String → String } .

The field values of this modification record are functions that shall
be applied to field values of the above data record. The modifica-
tion record uses field names from the data record to associate the
functions with their corresponding values.

To actually perform the update, we want to have a function
modify . Applying modify to a modification record and a data
record shall yield the modified data record. The modify function
shall work with data records of arbitrary type. It shall accept all
modification records whose type fits the type of the data record.
There are two things to note:

• The modification function has to iterate through all fields of the
modification record. It is not enough to access a fixed number
of fields using statically known names.

• The modification record must only use field names that occur in
the data record, and a value assigned to such a name must have
type τ → τ if the corresponding value from the data record
has type τ . This should be statically checked and therefore
expressed by the type of the modification function.

Because of these conditions, it is impossible to implement
modify in record systems like the one of Jones and Peyton Jones.
Of course, modify is implementable in dynamically typed lan-
guages. In such languages, we can represent records by, for ex-
ample, ordinary lists whose elements are name-value pairs. We
can then use list induction to implement modify . However, we do
not want to give up static type checking. Therefore, we develop
a record system that allows us to implement modify and similar
functions without resorting to runtime checks. We implement our
system as a Haskell library, using only language extensions that are
already supported by the Glasgow Haskell Compiler (GHC).

We start with a simple implementation of heterogenous lists
of name-value pairs in section 2. Building on this foundation, we
make the following contributions:

• We introduce the concept of record type families in section 3,
along with an implementation. A record type family is an in-
dexed set of related record types that is generated from a so-
called record scheme. We specify a restricted variant of the
modification function and show that record type families make
it possible to give a type to this function.

• In section 4, we define a fold operator that allows us to de-
fine record combinators via induction over record schemes. We
present an implementation of the restricted modification func-
tion based on this fold operator.

• In section 5, we implement record conversion, which allows us
to abstract from irrelevant order of fields, and to ignore fields
we are not interested in. Our implementation uses type equality
constraints to control class instance selection in the presence
of overlapping instances. We show that we can implement the
modification function in full generality using record conversion.
We also demonstrate that record conversion can be used to
support pattern matching for records.

• In section 6, we present a technique for emulating subkinds,
including subkind polymorphism. We use this emulation to
generalize the above-mentioned fold operator. As a result, a
larger class of record combinators can be implemented.

We compare our record system to related work in section 7. Finally,
we give conclusions and an outlook on further work in section 8.

The complete record system is implemented in the Haskell
packages records [4], kinds [3], and type-functions [6]. Our devel-
opments were driven by actual practical demands that showed up
while working on the Grapefruit library [5].

2. A Simple Record Library
We first show a simple implementation of records as lists of name-
value pairs. The types of these lists specify the names of the record
fields along with the types of the corresponding values. We develop
our implementation bottom-up, starting with the representation of
field names.

We have to represent names both on the type level and on the
value level. For each name, we declare a nullary type constructor
with a single nullary data constructor that uses the same identifier
as the type constructor. So we declare the names used in the intro-
ductory example as follows:

data Surname = Surname

data Age = Age

data Room = Room

A record field is a pair of a name and a value. So we could use
ordinary pairs to represent fields. We do not do that since it would
lead to shabby syntax.1 Instead, we declare a special field type:

data name ::: val = name := val

The operator symbol ::: was chosen because it is similar to the
special symbol ::, which stands for “has type”.

We define records as heterogenous lists of fields. We introduce
two constructors, one for the empty record and one for record
extension:

1 The actual implementation in the records package also makes field names
strict, which is another reason for not using the ordinary pair type.

data X = X

data rec :& field = rec :& field

While we could use the unit type () and the pair type (,) instead of
X and (:&), we chose to introduce new types for similar reasons
as we did for record fields. Note that (:&) is a “snoc”, not a “cons”,
that is, new fields are appended, not prepended. In the following,
we assume that :& is left-associative and of higher priority than :::
and :=.

The example record from the introduction can now be written

X :&Surname:="Jeltsch":&Age:=31:&Room :="EH/202" .

The type of this record is

X :& Surname ::: String :& Age ::: Int :& Room ::: String .

Records according to the above definition are not name-to-value
maps. There are the following issues:

• A name may occur multiple times in the same record. Since this
can even be an advantage [9], we retain this property.

• The fields of a record are ordered. Having an order is good for
fields with the same name since it allows us to distinguish such
fields by relative position. However, it introduces redundancy
otherwise. We show how we can overcome the redundancy
problem in section 5.

3. Record Type Families
We now discuss record type families, which allow us to specify cer-
tain relationships between record types. Record type families alone
are not enough for giving the modification function a proper type.
However, we can find a type for a restricted version of modify .
The restriction is that the modification record must contain a field
for each field of the data record, and that those fields must occur
in the same order as their data record counterparts. To modify the
example record as described in the introduction, we have to use the
modification record

X :&Surname :=id :&Age :=(+2):&Room :=const "HG/2.39"

now. In this section and the next, we will only deal with the re-
stricted modify .

3.1 Record Type Family Essentials
The restricted modify function enforces a very strong relationship
between the type of a modification record and a corresponding data
record. The type of the data record uniquely determines the type of
the modification record. We can generate the latter from the former
by replacing every value type τ with τ → τ . Record type families
allow us to perform such transformations on the fly.

A record type family is characterized by a record scheme. A
record scheme is a list of pairs, each consisting of a name and a
so-called sort. A sort is a type, so record schemes have the same
structure as our record types from the previous section. However,
sorts are not used as value types directly. We build a record type
by combining a record scheme with a type-level function, which is
called the style of the record type. The record style is applied to
all sorts of the scheme to generate the value types of the respective
fields. By coupling the same scheme with different styles, we get a
family of related record types.

We want to modify the declarations of X , (:&), and (:::) such
that types of the form

X :& ν1 ::: ς1 :& . . . :& νn ::: ςn

denote record schemes with names ν1 through νn and sorts
ς1 through ςn . Applying such a type to a style shall yield the re-
spective record type. The new declarations are as follows:

data X style = X

data (rec :& field) style = rec style :& field style

data (name ::: sort) style = name := style sort

We define a class Record of all record schemes:

class Record rec

instance Record X

instance (Record rec)⇒ Record (rec :& name ::: sort)

Now, we want to use record type families to give a type to
modify . We generate the type of the modification record and the
type of the data record from the same scheme. This scheme uses
the value types of the data record as its sorts. So the style of
the data record has to be the identity function, and the style of
the modification record has to be the function that maps each
type τ to τ → τ . For now, let us assume that we had type-
level abstractions available such that λα → τ ′ denotes a type-
level function that maps each type τ of kind ∗ to τ ′[τ/α]. The
modification function has the type

(Record rec)⇒ rec (λval → (val → val))→
rec (λval → val) →
rec (λval → val) .

This type allows to modify records of style λval → val only.
However, we can give a more general type to the modify function
such that it accepts data records of arbitrary style. The new type is

(Record rec)⇒ rec (λsort → (style sort → style sort))→
rec style →
rec style .

3.2 Emulation of Type-Level Abstractions
Unfortunately, Haskell does not support type-level abstractions.
However, we can emulate them by using defunctionalization [10] at
the type level. We represent type-level functions by ordinary types
and introduce a type synonym family [11] that describes type-level
function application:

type family App fun arg

Instances of App have to be defined such that for each type-level
function F with representation ϕ and each argument type τ , the
type App ϕ τ equals F τ .

For each type-level abstraction λα → τ ′ with free variables
β1 through βn , we introduce an n-ary type constructor Λ whose
arguments have the same kinds as β1 through βn . In addition, we
add the following instance declaration for App:

type instance App (Λ β1 . . . βn) α = τ ′

Then, the type Λ β1 . . . βn represents the type-level function
λα→ τ ′.

We have to modify the record-related types such that they use
representations of type-level functions instead of the functions
themselves. We can keep the data declarations of X and (:&) but
have to change the data declaration of (:::) to the following:

data (name ::: sort) style = name := App style sort

We will now formulate the type of modify using emulation of
type-level abstractions. We introduce a type ModStyle for repre-
senting the styles of modification records:

data ModStyle style

The App instance declaration for ModStyle mirrors the abstraction
λsort → (App style sort → App style sort):

type instance
App (ModStyle style) sort = App style sort →

App style sort

Now, the type of the modification function is

(Record rec)⇒ rec (ModStyle style)→
rec style →
rec style .

4. Record Scheme Induction
We can implement modify using induction on its record scheme
parameter. Since record schemes are types, not values, we do not
use pattern matching to distinguish between empty and non-empty
record schemes. Instead, we make modify a method of the Record
class and provide a method declaration for each of the two cases
as part of the respective instance declaration. Figure 1 shows the
complete code.

Of course, we also want to use record scheme induction to
implement other combinators than modify . For each of them, we
have three different options of implementing it:

1. We can add a new class that has the same instances as Record
and contains the combinator as its method.

2. We can implement the combinator as a new method of the
Record class or of one of the classes created according to
option 1.

3. We can implement the combinator as an ordinary function.

If we use option 1, we end up with multiple classes that have the
same instances, but the type checker cannot see that their instances
are the same. So if we use multiple record combinators in a single
expression, the type of the expression may contain lots of different
class assertions that all mean the same thing. Therefore, we drop
option 1.

Now, all inductively defined record combinators must be either
methods of Record or ordinary functions. Once a class is declared,
its set of methods is fixed. So we have to decide once and for all
which combinators shall be implemented as methods of Record at
the time we declare Record . Only these combinators can use record
scheme induction directly by having different declarations for the
two instance declarations of Record . All other combinators can use
induction only indirectly by applying the methods of Record .

We declare a single method of Record that captures induction
over record schemes in full generality. That way, every inductively
defined record combinator can be implemented as an ordinary
function that uses that method. Induction principles are represented
by fold operators. So what we want is a fold over record schemes.
We remove the modify method from the Record class and add a
method fold . Figure 2 shows the resulting definition of Record .

We can produce an inductively defined record combinator by
applying fold to an X -alternative and a (:&)-alternative. These
alternatives describe how specializations of the combinator for
specific record schemes are constructed. The X -alternative is the
specialization for the empty record scheme. The (:&)-alternative
produces specializations for non-empty record schemes ρ :& ν ::: ς
from the specializations for the respective schemes ρ.

It is clear from figure 2 that the resulting combinator has the
type (Record rec) ⇒ θ rec where θ is the type that is substituted
for the variable thing . Since we cannot substitute arbitrary type-
level functions for thing , most record combinators cannot be im-
plemented as fold applications. For example, to implement modify
as a result of fold , we would have to replace thing with

λrec → rec (ModStyle style)→ rec style → rec style .

However, this type-level function is not a Haskell type.

class Record rec where

modify :: rec (ModStyle style)→ rec style → rec style

instance Record X where

modify X X = X

instance (Record rec)⇒ Record (rec :& name ::: sort) where

modify (modRec :& name := mod) (rec :& := val) = modify modRec rec :& name := mod val

Figure 1. Definition of class Record with method modify

class Record rec where

fold :: thing X →
(∀rec name sort .(Record rec)⇒ thing rec → thing (rec :& name ::: sort))→
thing rec

instance Record X where

fold nilAlt = nilAlt

instance (Record rec)⇒ Record (rec :& name ::: sort) where

fold nilAlt snocAlt = snocAlt (fold nilAlt snocAlt)

Figure 2. Definition of class Record with method fold

It seems obvious to use emulation of type-level abstractions
again to solve this problem. However, this does not work. In the
type of fold , we would have to replace every type-level application
of thing to some ρ by App thing ρ. As a result, fold ’s type
would contain thing only as an index of the type synonym family
App. Since type synonym families are not necessarily injective,
this would mean that whenever fold is used, the concrete substitute
for thing could not be deduced.

Our solution is to introduce wrapper types that are isomorphic
to the type-level functions we actually want to use. For every
inductively defined combinator χ of a type (Record rec) ⇒ τ ,
we introduce a type constructor Θ as follows:

newtype Θ rec = Θ τ

Then we use fold to generate the wrapped combinator Θ χ. This
is possible since that combinator has the type (Record rec) ⇒
Θ rec, and Θ is a proper substitute for thing . Finally, we extract χ
from Θ χ.

Figure 3 presents an implementation of modify that is based
on fold . Note that the declarations of the functions nilModify and
snocModify are basically the same as the declarations of modify
in the two instance declarations of figure 1. Alas, the wrapping and
unwrapping of combinators makes the new implementation more
verbose. This kind of overhead is our reason to not use wrapper
types for record styles.

5. Record Conversion
Our implementation of records imposes a total order on the fields
of each record. While this is useful for distinguishing fields of
the same name, it is undesirable otherwise. We want to be able to
ignore such superfluous order. Furthermore, it is often beneficial if
we can automatically ignore record fields we are not interested in.
That way, record operations can be made more general since they
can also work with records that contain more than the expected
fields. Therefore, we introduce a conversion operator for records
that is able to reorder and drop fields.

5.1 Equivalence and Convertibility
Let us look at the special case of records that do not contain
multiple fields of the same name. Such records denote mappings
from names to values. We call these mappings the meanings of the

respective records and write JrK for the meaning of a record r. We
say that two records r1 and r2 are equivalent, written r1 ≈ r2,
if and only if they have the same meaning. So two records are
equivalent if they only differ in the order of fields. A record r can
be converted into a record r′, written r . r′, if and only if

dom
q
r
y
⊇ dom

q
r′

y
∧ ∀ν ∈ dom

q
r′

y
:
q
r
y
(ν) =

q
r′

y
(ν) .

So record conversion may reorder and drop fields arbitrarily. Note
that r1 ≈ r2 holds if and only if r1 . r2 ∧ r2 . r1.

Now, we want to also consider records that contain several fields
of the same name. First, we modify the record semantics. The
meaning of a record is now a function that maps each potential
name, that is, each type of kind ∗, to the list of values that the record
assigns to that name. The order of the values in the list matches the
order of their respective fields in the record. Names that do not
occur in the record are mapped to the empty list. Again, r1 ≈ r2
shall hold if and only if Jr1K = Jr2K. So two records are equivalent
if they contain the same fields and fields of the same name occur in
the same order.

Having more values per name means that we cannot identify
a field solely by its name anymore. We choose to identify a field
of a record r by its name ν and the index of its value in JrK(ν).
Thereby, we index the values in JrK(ν) backwards, so that the first
element gets the largest and the last element gets the smallest index.
This will make the implementation of record conversion easier. An
ordinary front-to-back indexing would not play well with the fact
that (:&) appends fields instead of prepending them. We can now
reformulate the criterion for record equivalence. Two records are
equivalent if and only if they contain the same fields and the fields
have the same indices in both records.

We want to ensure that after a record conversion, fields are iden-
tified in the same way as they were identified before. So a field
must keep its index during conversion. We define record convert-
ibility such that r . r′ holds if and only if for each ν of kind ∗,
Jr′K(ν) is a suffix of JrK(ν). Again, we have the fact that r1 ≈ r2
is equivalent to r1 . r2 ∧ r2 . r1.

We can see a record scheme as a kind of record itself by treating
sorts as values and types of the form ν ::: ς as fields with name ν
and value ς . That way, we can extend J·K, ≈, and . to schemes.

modify :: (Record rec)⇒ rec (ModStyle style)→ rec style → rec style
modify = let

ModifyThing modify = fold modifyNilAlt modifySnocAlt

in modify

newtype ModifyThing style rec = ModifyThing (rec (ModStyle style)→ rec style → rec style)

modifyNilAlt :: ModifyThing style X
modifyNilAlt = ModifyThing nilModify where

nilModify X X = X

modifySnocAlt :: (Record rec)⇒ ModifyThing style rec → ModifyThing style (rec :& name ::: sort)
modifySnocAlt (ModifyThing modify) = ModifyThing snocModify where

snocModify (modRec :& name := mod) (rec :& := val) = modify modRec rec :& name := mod val

Figure 3. Implementation of modify based on fold

5.2 Implementation of Record Conversion
Let ρ be a record scheme, σ be a record style and r be a record of
type ρ σ. There is a bijection between the sets {ρ′ | ρ . ρ′} and
{r′ | r . r′} such that for each concrete ρ′ and corresponding r′,
r′ has the type ρ′ σ. The idea is that for each ρ′, we can generate the
corresponding r′ from r by performing the same reorderings and
droppings that we use to transform ρ into ρ′. So while a record r
can usually be converted into different records r′, we can select
the desired conversion result via its scheme. We will use this in the
implementation of record conversion.

We define a class Convertible with two parameters such that
a pair of record schemes ρ and ρ′ is an instance of Convertible
if and only if ρ . ρ′. Convertible contains a method convert of
type

(Convertible rec rec′)⇒ rec style → rec′ style .

This type implies that for each record r of type ρ σ, convert r has
every type ρ′ σ for which ρ . ρ′ holds. For each concrete ρ′, the
type-restricted expression convert r :: ρ′ σ yields the conversion
result r′ that corresponds to ρ′ according to the above-mentioned
bijection.

Figure 4 shows the definition of Convertible . This definition
uses induction on the scheme of the conversion result. It employs
a helper class Separation . A quadruple of two record schemes
ρ and %, a name ν, and a sort ς is an instance of Separation if
and only if the last (:::)-type in ρ that has name ν is ν ::: ς , and
removing this type from ρ yields %. The separate method extracts
the last field of name ν from the given record and yields this field
together with the remaining record.

Separation uses a functional dependency to specify that the
scheme of the source record and the name of the extracted field
uniquely determine the scheme of the remaining record. It seems
more sensible to use a type synonym family to specify this depen-
dency. After all, we already used the feature of type synonym fam-
ilies to implement emulation of type-level abstractions. The prob-
lem is that the instance declarations of Separation overlap, which
would result in overlapping instance declarations for the type syn-
onym family that we would introduce. However, overlapping is for-
bidden for type synonym families.

Now, let us look at the type equality constraint sort ∼ sepSort
in the first instance declaration of Separation . This equality con-
straint ensures that the actual sort of the extracted field equals the
specification of the extracted field’s sort. Normally, we could elim-
inate this equality constraint by using a single type variable instead
of the two different variables sort and sepSort . That is, we could
replace

(sort ∼ sepSort)⇒
Separation (rec :& name ::: sort) rec name sepSort

by

Separation (rec :& name ::: sort) rec name sort .

However, because of our use of overlapping instances, this trans-
formation would change the meaning of the program.

The original instance declaration head matches whenever the
last name of the record scheme equals the name of the extracted
field. If the last sort is not the one that is specified as the sort of the
extracted field, the equality constraint is not fulfilled, and we get a
type error. This is in line with our specification of Separate above.

If we would eliminate the equality constraint, the instance dec-
laration head would not match in case the last name equals the name
of the extracted field but the last sort is different from the required
sort. However, the head of the second instance declaration would
match in this case. Therefore, the separate method would not ex-
tract the last field that has the respective name but the last field
whose name and sort are the required ones. This would be con-
trary to our specification of Separation and would lead to a bogus
implementation of Convertible .

An advantage of the solution with the type equality constraint
is that we only need a name to identify the field that we want to
extract, not a sort. So the sort of the extracted field can be unknown
initially and then determined by the equality constraint. This is
useful, for example, in record pattern matching, which we will
describe in subsection 5.4.

Support for type equality constraints was introduced into GHC
as part of the type family extension since type equality constraints
are often helpful when working with type synonym families. Our
usage of equality constraints shows that they are also useful without
type families. We therefore argue that they should be treated as
a separate extension to the core language, independent of type
families.

5.3 Modification without Limits
We will now discuss the function modify in its general form,
that is, without the restriction we introduced at the beginning of
section 3. We change the definition of modify from the introduction
to accommodate records with multiple occurrences of the same
name. In its original form, modify applies each function from the
modification record to the value from the data record that has the
same name as the function. Now, it shall apply each function from
the modification record to the value of the data record that has the
same name and index.

The Convertible class allows us to give the general modify
function a type. This type is

(Record rec,Record modRec,Convertible rec modRec)⇒
modRec (ModStyle style)→ rec style → rec style .

class Convertible rec rec′ where

convert :: rec style → rec′ style

instance Convertible rec X where

convert = X

instance (Separation rec remain name ′ sort ′,Convertible remain rec′)⇒
Convertible rec (rec′ :& name ′ ::: sort ′) where

convert rec = convert remain :& field ′ where

(remain,field ′) = separate rec

class Separation rec remain sepName sepSort | rec sepName → remain where

separate :: rec style → (remain style, (sepName ::: sepSort) style)

instance (sort ∼ sepSort)⇒
Separation (rec :& name ::: sort) rec name sepSort where

separate (rec :& field) = (rec,field)

instance (Separation rec remain sepName sepSort , (remain :& name ::: sort) ∼ extRemain)⇒
Separation (rec :& name ::: sort) extRemain sepName sepSort where

separate (rec :& field) = (remain :& field , sepField) where

(remain, sepField) = separate rec

Figure 4. Implementation of record conversion

The convert method makes it possible to implement modify . Since
the implementation is rather complicated, we only sketch its idea
here. The complete code can be found in the records package [4].

Say we apply modify to a modification record that has type
µ (ModStyle σ) and a data record of type ρ σ. The class assertion
Convertible ρ µ ensures that all records of scheme ρ can be
converted to corresponding records of scheme µ. So it might be
tempting to apply convert to the data record. However, this would
not be of any help. We would lose all fields that do not have
an associated field in the modification record, whereas we should
actually keep these fields with their original values. So we pursue a
different road.

We first use induction on ρ to generate a record of scheme ρ
whose values are so-called update functions. An update function in
a field with a sort ς has the type

(App σ ς → App σ ς)→ (ρ σ → ρ σ) .

Applying the update function to a function f and a record r yields
a new record that differs from r only in the value of the field that
corresponds to the field of the update function. The new value of
that field is formed by applying f to its old value.

Next, we apply convert to the record of update functions to get
an adjusted record of update functions that has scheme µ. Using
induction on µ, we apply each update function to the corresponding
function from the modification record and form the composition
of the resulting functions. We apply this composition to the data
record, which gives us the modified data record.

5.4 Record Pattern Matching
Since records are values of algebraic data types, we can use pattern
matching to access the values of their fields. However, a pattern
must be of the same type as the record that is matched against it.
So the pattern must contain one subpattern for each record field,
and these subpatterns must occur in the order their corresponding
fields occur in. This is a major drawback in comparison to other
record systems. We want to be able to reorder and drop fields
automatically during pattern matching.

If we replace a record r with the record convert r , the type of
the record is changed from ρ σ to (Convertible ρ rec′)⇒ rec′ σ.
We can specify the concrete scheme of the conversion result by

matching convert r against a pattern of the form

X :& ν1 := π1 :& . . . :& νn := πn ,

where ν1 through νn are concrete names, and π1 through πn are
arbitrary patterns. We do not need to assign sorts to the patterns πi .
The reason is that instance selection for Convertible and Separate
only depends on names, and the πi automatically get the correct
sorts from ρ because of the equality constraint sort ∼ sepSort .

6. First-Class Subkinds
The fold operator from section 4 can only generate combinators
that work for all record schemes. However, there are record combi-
nators that only work on record schemes whose sorts fulfill certain
conditions.

As an example, let us look at a function that works with records
of arrays. Haskell offers a binary type constructor Array . A type
Array ι η, where ι is an instance of the Ix class, covers all arrays
with indices of type ι and elements of type η. There is a function
elems of type

(Ix ix)⇒ Array ix el → [el]

that converts an array into the list of its elements. Say we want to
define a function mapElems that converts a record of arrays into
a record of lists by repeatedly applying elems . It seems obvious
to introduce two new data types ArrayStyle and ElemsStyle and
give mapElems the type

(Record rec)⇒ rec ArrayStyle → rec ElemsStyle .

Each sort in the record scheme used by mapElems has to
specify an index type and an element type. Therefore, such a sort
must be essentially a pair of types instead of a single type. However,
a pair of types ι and η can be represented by a single type Π ι η
where Π is some fixed type constructor of kind ∗ → ∗ → ∗. We
take Array as our Π so that the sorts are the array types. This leads
to the following instance declarations for App:

type instance
App ArrayStyle (Array ix el) = Array ix el

type instance
App ElemsStyle (Array ix el) = [el]

Now, mapElems can only work with record schemes whose
sorts are of the form Array ι η with ι being an instance of
Ix . So the above type for mapElems is too general since it al-
lows arbitrary record schemes. It is also not possible to implement
mapElems via the fold operator as defined in section 4. This fold
operator requires a (:&)-alternative which places no restrictions on
the last sort of the record scheme. To see this, remember that the
type of the second argument of fold is

∀rec name sort .(Record rec)⇒
thing rec → thing (rec :& name ::: sort) .

However, the (:&)-alternative in the definition of mapElems has
to apply elems to the value of the last field so that it has the less
general type

∀rec name ix el .(Record rec, Ix ix)⇒
thing rec → thing (rec :& name ::: Array ix el) .

To solve this problem, we introduce the notion of subkind.
Subkinds are the kind-level analog of subtypes. So a subkind of
a kind ξ denotes a set of types that all have kind ξ. We refine
the Record class such that it supports inductive definitions over all
record schemes whose sorts have a given subkind of kind ∗. In the
case of mapElems , we use the subkind of all proper array types.
For functions that are defined on all record schemes, we use ∗ itself.

6.1 Emulation of Subkinds
We can emulate subkinds of a fixed base kind, whereby the base
kind will be ∗ in our case. We represent subkinds by types. That
way, subkinds are first-class citizens at the type level. In addition,
we can use type polymorphism to emulate subkind polymorphism.

We introduce a two-parameter class Inhabitant with no meth-
ods. Each pair of a subkind representation and a type that has the
respective subkind is an instance of Inhabitant . So we have the
following declarations for the subkind of array types:

data KindArray

instance (Ix ix)⇒ Inhabitant KindArray (Array ix el)

Now, let us give a more complex example. Haskell provides a
type constructor Map. For types κ and υ where κ is an instance of
Ord , Map κ υ is the type of all finite maps from keys of type κ to
values of type υ. However, there is also the type IntMap, which
offers a more efficient implementation of maps whose keys are
of type Int . We want to form the subkind of map types, which
shall cover both of the above variants. So we use two instance
declarations:

data KindMap

instance (Ord key)⇒
Inhabitant KindMap (Map key val)

instance Inhabitant KindMap (IntMap val)

Finally, we show that we are also able to represent kind ∗, which
is, of course, a subkind of itself:

data KindStar

instance Inhabitant KindStar val

Now that we have looked at some examples, let us discuss
the general picture. Imagine we had a new language construct for
declaring subkinds of kind ∗. The declaration

subkind Ξ = Γ1 ⇒ τ1 | . . . | Γn ⇒ τn

introduces a subkind Ξ . Thereby, Γ1 through Γn are contexts,
and τ1 through τn are types. They have to satisfy the following
conditions:

• FV(Γi) ⊆ FV(τi) for all i with 1 6 i 6 n.

• For all i and j with 1 6 i < j 6 n, the types τi and τj cannot
be unified.

The declared subkind Ξ covers all types τ for which there is
an i and a variable assignment σ such that τ = σ(τi) and the
context σ(Γi) holds.

To emulate the above subkind declaration, we first introduce an
empty data type KindΞ :

data KindΞ

Afterwards, we provide an instance declaration of the following
form for every i with 1 6 i 6 n:

instance Γi ⇒ Inhabitant KindΞ τi

Of course, we can use subkind declarations to introduce the
three example subkinds:

subkind Array = (Ix ix)⇒ Array ix el

subkind Map = (Ord key)⇒ Map key val
| IntMap val

subkind Star = val

If we transform these declarations into data type and instance
declarations, we end up with the code from the beginning of this
subsection.

We change the Record class such that we can specify a subkind
that all sorts have to belong to. We add a parameter to Record such
that the class assertion Record κ ρmeans that ρ is a record scheme
that contains only sorts of the subkind represented by κ. The new
definition of Record is shown in figure 5. It differs from the original
one in the following points:

• All references to the Record class contain an additional param-
eter kind .

• The head of the second instance declaration contains an ad-
ditional assertion Inhabitant kind sort , which enforces that
sorts are of the specified subkind.

• The type of fold ’s second argument contains an additional class
assertion Inhabitant kind sort , so that (:&)-alternatives only
have to work with schemes whose last sort has the respective
subkind.

Having the new Record definition, we give mapElems the type

(Record KindArray rec)⇒
rec ArrayStyle → rec ElemsStyle .

A problem with the new definition of Record is that the class
parameter kind does not occur in the type of fold except in class
assertions. So when fold is used in some expression, the actual
kind parameter cannot be determined. This occurs, for example,
in the declaration of fold for the (:&)-case. GHC complains that it
cannot deduce the context (Record kind1 rec) from the context

(Record kind2 (rec :& name ::: sort),
Record kind2 rec,
Inhabitant kind2 sort) .

The variable kind1 denotes the kind parameter of the fold in the
expression snocAlt (fold nilAlt snocAlt), while kind2 denotes
the kind parameter of the fold in the left-hand side. GHC cannot
see why both parameters should be equal.

There is a second, more serious, problem. Since Haskell classes
are open, we cannot prevent subkinds from being extended. For ex-
ample, someone could import our definition of the Array subkind
and add the type Bool to this subkind using the following instance
declaration:

instance Inhabitant KindArray Bool

class Record kind rec where

fold :: thing X →
(∀rec name sort .(Record kind rec, Inhabitant kind sort)⇒ thing rec → thing (rec :& name ::: sort))→
thing rec

instance Record kind X where

fold nilAlt = nilAlt

instance (Record kind rec, Inhabitant kind sort)⇒ Record kind (rec :& name ::: sort) where

fold nilAlt snocAlt = snocAlt (fold nilAlt snocAlt)

Figure 5. Definition of class Record with kinded sorts

So we have no guarantee that (Inhabitant KindArray ς) holds
only for those ς that are of the form Array ι η with (Ix ι).
This makes it impossible to define mapElems using fold . Say θ
is the thing type of the inductive definition of mapElems . Then
the (:&)-alternative of this definition has the most general type

∀rec name ix el .(Record KindArray rec, Ix ix)⇒
θ rec → θ (rec :& name ::: Array ix el) .

This type is less general than the required type

∀rec name sort .(Record KindArray rec,
Inhabitant KindArray sort)⇒

θ rec → θ (rec :& name ::: sort) .

In the next subsection, we will present a technique for closing
subkinds, which we will use to solve this problem. As a side effect,
we will also get rid of the problem that the kind parameter of a
fold application cannot be inferred.

6.2 Closing Subkinds
Before we discuss how to close subkinds in general, we look at
some examples again. To close the Array subkind, we must ensure
that the set of types ς with (Inhabitant KindArray ς) is the
same as the set of types Array ι η with (Ix ι). We can enforce
this by making sure that universal quantification over all ς with
(Inhabitant KindMap ς) is the same as universal quantification
over all array types. That is for any type-level function F , the types

∀sort .(Inhabitant KindArray sort)⇒ F sort

and

∀ix el .(Ix ix)⇒ F (Array ix el)

are isomorphic. If we set F to

λarray → ∀rec name.(Record KindArray rec)⇒
θ rec → θ (rec :& name ::: array) ,

those types correspond to the required and inferred type of the
(:&)-alternative of the mapElems definition. If these are isomor-
phic, the former cannot be more general than the latter anymore.
This allows us to define mapElems using fold .

To close the Map subkind, we have to make sure that universal
quantification over all ς with (Inhabitant KindMap ς) is the
same as universal quantification over all types of subkind Map.
The question is how the latter can be expressed. After all, the types
of subkind Map do not all share a common structure. On the one
hand, we have the ordinary map types of the form Map κ υ
with (Ord κ), on the other hand, we have the types of the form
IntMap υ. However, we can universally quantify over only the
ordinary map types and also over only the IntMap types. We will
now show how we can use this to universally quantify over all types
of subkind Map.

A type ∀α :: ξ.τ ′ is isomorphic to the dependent function type
(α :: ξ)→ τ ′, that is, the type of all functions that map each type τ

of kind ξ to a value of type τ ′[τ/α]. Say we split ξ into two non-
overlapping subkinds ξ1 and ξ2. Then we can split each function
of type (α :: ξ) → τ ′ into two functions of types (α :: ξ1) → τ ′

and (α :: ξ2) → τ ′, respectively. In addition, we can merge two
such functions to get back the corresponding function of type
(α :: ξ)→ τ ′. So a type ∀α :: ξ.τ ′ is isomorphic to the type

(∀α :: ξ1.τ
′, ∀α :: ξ2.τ

′) .

Therefore, we can close the Map subkind by ensuring that there is
an isomorphism between

∀sort .(Inhabitant KindMap sort)⇒ F sort

and
(∀key val .(Ord key)⇒ F (Map key val),
∀val . F (IntMap val))

for every type-level function F .
It is now easy to see how we can close subkinds in general. Say

Ξ is a subkind that is declared as follows:

subkind Ξ = Γ1 ⇒ τ1 | . . . | Γn ⇒ τn

Then we have to make sure that for all type-level functions F ,

∀sort .(Inhabitant KindΞ sort)⇒ F sort

is isomorphic to

(∀A1.Γ1 ⇒ F τ1, . . . , ∀An .Γn ⇒ F τn) ,

where for each i with 1 6 i 6 n , Ai is a whitespace-separated
sequence of the free variables of τi .

It is sufficient to enforce the existence of isomorphisms only for
those type-level functions F that can be represented without using
type-level abstractions, that is, for all types F of kind ∗ → ∗. The
reason is that for any type-level function F , we can introduce a
type Φ that is isomorphic to F as follows:

newtype Φ arg = Φ (F arg)

If f is an isomorphism for Φ, the function Φ−1 ◦ f ◦ Φ is an
isomorphism for F .

We do not allow different isomorphisms for different types F .
Instead, we require a single isomorphism for all types F of kind
∗ → ∗. We do so by demanding the existence of two functions
−→
fΞ :: (∀sort .(Inhabitant KindΞ sort)⇒ item sort)→

(∀A1.Γ1 ⇒ item τ1, . . . , ∀An .Γn ⇒ item τn)

and
←−
fΞ :: (∀A1.Γ1 ⇒ item τ1, . . . , ∀An .Γn ⇒ item τn) →

(∀sort .(Inhabitant KindΞ sort)⇒ item sort)

with
−→
fΞ ◦
←−
fΞ =

←−
fΞ ◦
−→
fΞ = id . Note the use of the type variable item

which can be specialized to each type of kind ∗ → ∗.
We will now show how we can actually enforce the existence

of such functions
−→
fΞ and

←−
fΞ . Let us first look at the functions

−→
fΞ ,

which perform “forward conversions”. We introduce a type class
Kind of all subkind representations. Kind contains a method
closed whose implementations perform the forward conversions
of the respective subkinds. Furthermore, we change the definition
of Record such that the kind parameter must be an instance of
Kind . This ensures that if we use records with sorts of a certain
subkind, there is a forward conversion for that subkind.

Say kind is the type variable used in the head of the class
declaration of Kind . Then the argument type of closed is

∀sort .(Inhabitant kind sort)⇒ item sort .

The structure of the result type depends on the concrete subkind.
So we cannot come up with a single result type that uses kind only
as an ordinary type parameter. Instead, we have to use kind as a
type index for selecting the particular result type. We introduce an
associated data family [1] All for this purpose. For every subkind Ξ
with alternatives Γ1 ⇒ τ1 through Γn ⇒ τn , the type All KindΞ

is isomorphic to

λitem → (∀A1.Γ1 ⇒ item τ1, . . . , ∀An .Γn ⇒ item τn)

where the Ai are defined as above.
The complete class declaration of Kind is shown in figure 6.

For each subkind Ξ with alternatives Γ1 ⇒ τ1 through Γn ⇒ τn ,
we make KindΞ an instance of Kind using an instance declaration
of the following form:

instance Kind KindΞ where

data All KindΞ item = AllΞ (∀A1.Γ1 ⇒ item τ1)
· · ·
(∀An .Γn ⇒ item τn)

closed item = AllΞ item . . . item

The type of the argument of closed is

∀sort .(Inhabitant KindΞ sort)⇒ item sort .

On the right-hand side of the definition of closed , this type is
specialized to the types ∀Ai .Γi ⇒ item τi . These specializations
are possible because we have introduced an instance declaration of
the following form for each i :

instance Γi ⇒ Inhabitant KindΞ τi

The concrete instance declarations of Kind for Array , Map, and ∗
are shown in figure 7.

Now, we will introduce a function that performs “backwards
conversions”. The type of this function is

(Kind kind)⇒
All kind item →
(∀sort .(Inhabitant kind sort)⇒ item sort) .

A type τ → (∀α.Γ ⇒ τ ′) is equivalent to ∀α.Γ ⇒ τ → τ ′ as
long as α does not occur free in τ . So the backwards conversion
function has also the type

(Kind kind , Inhabitant kind sort)⇒
All kind item → item sort .

We add a context (Kind kind) to the class declaration of
Inhabitant and declare the function for backwards conversion as
a method of Inhabitant . The class declaration of Inhabitant now
looks as follows:

class (Kind kind)⇒ Inhabitant kind sort where

specialize :: All kind item → item sort

For a concrete subkind inhabitant ς , specialize converts from types
with universal quantification over all inhabitants to the correspond-
ing types that fix the inhabitant to ς . That is where specialize got
its name from.

For each subkind Ξ with alternatives Γ1 ⇒ τ1 through Γn ⇒
τn and each i with 1 6 i 6 n, we need an instance declaration of
the following form:

instance Γi ⇒ Inhabitant KindΞ τi where

specialize (AllΞ
i−1 item n−i) = item

Hereby, k stands for a whitespace-separated sequence of k wild-
card patterns (). Figure 8 shows the concrete instance declarations
for our three example subkinds.

Of course, the class declarations of Kind and Inhabitant do
not ensure that instance declarations are formed according to the
rules described above. So there is no guarantee that closed ◦
specialize = specialize ◦ closed = id holds in fact. However,
this is a general problem with Haskell’s class system. For example,
sensible instance declarations of Ord have to fulfill the condition
(<) = flip (>) but the compiler cannot check whether they actu-
ally do.

Figure 9 shows the final definition of the Record class. This
definition forces kind parameters to be instances of the Kind
class. In addition, the type of fold ’s second argument now uses
the All data family. Thus, kind occurs in fold ’s type not only in
a context but also as a data family parameter. Therefore, actual
kind parameters can now be inferred. Note that this would not
be possible if All would be a type synonym family since type
synonym families are not guaranteed to be injective. The use of
All makes the definition of a wrapper type Expander necessary.
For all θ, ρ, and ν, the type Expander θ ρ ν is isomorphic to the
type-level function

λsort → (θ ρ→ θ (ρ :& ν ::: sort)) .

7. Related Work
Systems for extensible records appear either as language features
or as libraries. We will discuss the former kind of record systems
in the following subsection. Afterwards, we compare our system to
HList, a library for heterogenous lists that covers a record system.
Finally, we look at the concept of multiple occurrences of names.

7.1 Extensible Records as a Language Feature
There is a wide variety of proposals for language extensions that
implement extensible records. Typically, such extensions do not
allow for combinators that work on complete records. So there is
no equivalent to our record scheme fold or to record conversion.
However, they provide operations for adding record fields as well
as for selecting and removing fields by name. Adding record fields
corresponds to our (:&)-operator, while field selection and removal
is provided by the Separation class.

A typical example of a system for extensible records is the one
by Gaster and Jones [2], which was implemented in part as the Trex
extension of the Haskell interpreter Hugs. Based on that system,
Jones and Peyton Jones proposed a simpler one [7], which was
intended to serve as a standard feature of future Haskell versions.

In both systems, a name may not occur more than once in a
record. As a consequence, some functions require that a record
lacks a certain name. An example of such a function is extension of
a record with a field, where the record must not contain the name
of the field. To enforce the absence of a name, both record systems
use so-called “lacks” predicates, which may occur in contexts.

Furthermore, both systems do not feature an analog to record
type families. However, the system by Gaster and Jones introduces
two hardwired type-level functions to and from . Both take a type
τ0 and a record type2 as arguments and return a record type. The

2 Actually, this is not a record type but a so-called row. However, this detail
is irrelevant here.

class Kind kind where

data All kind :: (∗ → ∗)→ ∗
closed :: (∀sort .(Inhabitant kind sort)⇒ item sort)→ All kind item

Figure 6. Declaration of class Kind

instance Kind KindArray where

data All KindArray item = AllArray (∀ix el .(Ix ix)⇒ item (Array ix el))

closed item = AllArray item

instance Kind KindMap where

data All KindMap item = AllMap (∀key val .(Ord key)⇒ item (Map key val))
(∀val . item (IntMap val))

closed item = AllMap item item

instance Kind KindStar where

data All KindStar item = AllStar (∀val .item val)

closed item = AllStar item

Figure 7. Kind instance declarations for Array , Map, and ∗

instance Ix ix ⇒ Inhabitant KindArray (Array ix el) where

specialize (AllArray item) = item

instance Ord key ⇒ Inhabitant KindMap (Map key val) where

specialize (AllMap item) = item

instance Inhabitant KindMap (IntMap val) where

specialize (AllMap item) = item

instance Inhabitant KindStar val where

specialize (AllStar item) = item

Figure 8. Inhabitant instance declarations for Array , Map, and ∗

class (Kind kind)⇒ Record kind rec where

fold :: thing X →
(∀rec name.(Record kind rec)⇒ All kind (Expander thing rec name))→
thing rec

newtype Expander thing rec name sort = Expander (thing rec → thing (rec :& name ::: sort))

instance (Kind kind)⇒ Record kind X where

fold nilAlt = nilAlt

instance (Record kind rec, Inhabitant kind sort)⇒ Record kind (rec :& name ::: sort) where

fold nilAlt expander = let

Expander snocAlt = specialize expander

in snocAlt (fold nilAlt expander)

Figure 9. Final definition of class Record

to function replaces every field value type τ in the record type with
τ → τ0, while from replaces every τ with τ0 → τ . The from func-
tion can be used, for example, to implement a generic introduction
operator for records. Both to and from can be implemented in our
system using record type families.

7.2 Extensible Records as a Library
HList [8] is a Haskell library for statically-typed heterogenous lists,
that is, lists whose elements may have different types. HList uses
heterogenous lists to represent records, which leads to a record
implementation similar to the simple record library from section 2.

HList does not support record type families, folding of record
schemes, or first-class subkinds. However, all record combinators
that are implementable using these features can also be imple-
mented in HList. A record combinator is implemented as the sole
method of a dedicated type class that relates the different record
types that appear in the type of the combinator. For example, one
would introduce a class for the modify combinator as follows:

class (Record rec,Record modRec)⇒
Modify rec modRec where

modify :: modRec → rec → rec

Here, Record shall be the class of all record types, not schemes.

The downside of this approach is, that one gets many classes
which are often related to each other but these relationships are
usually not known to the type checker. For example, the type
checker knows that each data record used by modify is a record
but it does not know that each record can serve as a data record.
This can result in large contexts that actually contain redundant
information. This is similar to the problem that was mentioned in
section 4 as the consequence of choosing option 1 to implement
new record combinators.

HList also differs from our approach in its handling of field
names. Field names are not represented by arbitrary types but
essentially by type-level naturals. As a result, HList does not need
overlapping instances to implement record conversion. Remember
that we used overlapping instances only to select different instances
depending on whether two names are equal or not. HList contains
an equality check for type-level naturals that turns each pair of
naturals into a corresponding type-level boolean. Such a boolean
can be used to select the appropriate instance. The HList authors
also implemented a general type equality check but they needed
overlapping instances again to do so. Since we would use such an
equality check only in one place, we decided to use overlapping
instances directly in the implementation of record conversion.

Another difference regarding field names is that name types in
HList contain no values apart from ⊥. As a consequence, HList
cannot provide pattern matching for records since there are no
patterns that match individual names.

7.3 Scoped Names
Leijen [9] introduced the concept of records that may contain the
same name multiple times. He points out that this yields a form of
scoping over names. Leijen argues that scoped names are not only
useful to make the life of the record system implementor easier but
that they can lead to new applications of records.

8. Conclusions and Further Work
We have implemented a record system as a Haskell library, based
solely on language features that are available today. Our record
system covers the novel feature of record type families, a fold
operator over record schemes, and a generic conversion operator for
reordering and dropping fields. Together, these allow us to define a
wide variety of generic record combinators that are statically typed.
Furthermore, we have emulated first-class subkinds and subkind
polymorphism in Haskell. This makes our record system even more
powerful and might be also of interest outside record programming.

An open question is whether there are any performance issues
involved in our implementation. After all, the linked-list implemen-
tation makes already simple field selection take linear time. Record
conversion takes quadratic time since it contains two nested induc-
tions. However, when record combinators are finally used in appli-
cation code, their types are usually statically known. So it should
be possible in principle to shift iteration over record schemes to
compile time by using massive inlining. We still have to investigate
whether GHC can do such inlining for us.

Implementing combinators using fold is not straightforward be-
cause values need to be wrapped and unwrapped. However, the task
of writing all the necessary boilerplate code is rather mechanical.
So it is likely that the boilerplate code can be generated by using
Template Haskell [12], for example. Note, however, that using in-
ductively defined combinators is easy.

A similar problem with verbose code occurs when emulating
subkinds. So it might still be a good idea to provide subkind support
as a language extension. Our record system would also profit from
language support for names that would free us from explicitly
declaring name types. However, note that our technique for pattern
matching relies on names being represented by data constructors at
the value level. Language-based name support should take this into
account.

Existing proposals for record language support do not cover
record type families, record scheme induction, and support for
sorts of arbitrary subkinds. Since we have found these features
to be very useful in practice, we argue that language support for
records should not disallow them. It is probably best if the language
provides only some basic support for record systems, and full
record systems are then build on top of this as libraries.

Acknowledgments
I would like to thank the anonymous reviewers for their helpful
comments on an earlier version of this paper.

References
[1] M. M. T. Chakravarty, G. Keller, S. Peyton Jones, and S. Mar-

low. Associated types with class. In Proceedings of the 32nd ACM
SIGPLAN–SIGACT Symposium on Principles of Programming Lan-
guages, page 1–13, New York, NY, 2005. ACM.

[2] B. R. Gaster and M. P. Jones. A polymorphic type system for ex-
tensible records and variants. Technical Report NOTTCS-TR-96-3,
University of Nottingham, 1996.

[3] W. Jeltsch. kinds-0.0.0.0 (Haskell package). http://hackage.
haskell.org/package/kinds-0.0.0.0, Mar. 2010.

[4] W. Jeltsch. records-0.0.0.1 (Haskell package). http://hackage.
haskell.org/package/records-0.0.0.1, May 2010.

[5] W. Jeltsch. The Grapefruit homepage. http://haskell.org/
haskellwiki/Grapefruit.

[6] W. Jeltsch. type-functions-0.0.0.0 (Haskell package). http://
hackage.haskell.org/package/type-functions-0.0.0.0,
Apr. 2010.

[7] M. P. Jones and S. Peyton Jones. Lightweight extensible records
for Haskell. In H. J. M. Meijer, editor, Proceedings of the 1999
Haskell Workshop, number UU-CS-1999-28, Utrecht, 1999. Univer-
siteit Utrecht.

[8] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed heteroge-
neous collections. In Proceedings of the 2004 ACM SIGPLAN Work-
shop on Haskell, page 96–107, New York, NY, 2004. ACM.

[9] D. Leijen. Extensible records with scoped labels. In Draft Proceedings
of the 6th Symposium on Trends in Functional Programming, page
297–312, Tallinn, Estonia, 2005. TTÜ Küberneetika Instituut.

[10] J. C. Reynolds. Definitional interpreters for higher-order programming
languages. In Proceedings of the ACM Annual Conference, volume 2,
page 717–740, New York, NY, 1972. ACM.

[11] T. Schrijvers, S. Peyton Jones, M. M. T. Chakravarty, and M. Sulz-
mann. Type checking with open type functions. In Proceeding of
the 13th ACM SIGPLAN International Conference on Functional Pro-
gramming, page 51–62, New York, NY, 2008. ACM.

[12] T. Sheard and S. Peyton Jones. Template meta-programming for
Haskell. In Proceedings of the 2002 ACM SIGPLAN Workshop on
Haskell, page 1–16, New York, NY, 2002. ACM.

http://hackage.haskell.org/package/kinds-0.0.0.0
http://hackage.haskell.org/package/kinds-0.0.0.0
http://hackage.haskell.org/package/records-0.0.0.1
http://hackage.haskell.org/package/records-0.0.0.1
http://haskell.org/haskellwiki/Grapefruit
http://haskell.org/haskellwiki/Grapefruit
http://hackage.haskell.org/package/type-functions-0.0.0.0
http://hackage.haskell.org/package/type-functions-0.0.0.0

	Introduction
	A Simple Record Library
	Record Type Families
	Record Type Family Essentials
	Emulation of Type-Level Abstractions

	Record Scheme Induction
	Record Conversion
	Equivalence and Convertibility
	Implementation of Record Conversion
	Modification without Limits
	Record Pattern Matching

	First-Class Subkinds
	Emulation of Subkinds
	Closing Subkinds

	Related Work
	Extensible Records as a Language Feature
	Extensible Records as a Library
	Scoped Names

	Conclusions and Further Work

