
Chapter 22

Signals, Not Generators!
Wolfgang Jeltsch1

Category: Research

Abstract: Functional Reactive Programming (FRP) uses signals to describe tem-
poral behavior. Push-based FRP implementations avoid recomputation of signal
values in certain cases by taking data dependencies into account. However, they
typically do not provide signals directly. Instead, signals are produced by signal
generators. Using the same generator multiple times leads to repeated computa-
tion and dependence on generation time. This reduces scalability and complicates
semantics. This paper presents a push-based implementation approach which
does not have these problems. Its keys to success are lazy evaluation, rank-2 poly-
morphism, and impredicative polymorphism. Our work results in a scalable FRP
system which gives the user direct access to the key concept of FRP: the signal.

22.1 INTRODUCTION

22.1.1 The Problem

Functional Reactive Programming (FRP) is based on discrete and continuous sig-
nals. A discrete signal is a sequence of occurrences, each consisting of a time and
an associated value. A continuous signal is a time-varying value. Dealing with
continuous signals in full generality is out of the scope of this paper. We restrict
our discussion to continuous signals whose values only change at discrete times.
We call them segmented signals.

As an example, let us use signals to describe network traffic. We can see
network traffic as a sequence of packets, each being sent or received at a specific
time. So we have an example of a discrete signal. We can use this signal to
calculate for each time the amount of data transmitted so far. This mapping from
times to data volumes can be described by a segmented signal.

1Brandenburgische Technische Universität Cottbus, Lehrstuhl Programmiersprachen
und Compilerbau, Konrad-Wachsmann-Allee 1, 03046 Cottbus, Germany;
jeltsch@informatik.tu-cottbus.de

1

2 CHAPTER 22. SIGNALS, NOT GENERATORS!

Now, say we want to create a GUI label that always shows the current amount
of transmitted data. We use the segmented signal of data volumes to specify the
label texts over time. The label should only be updated when a packet is sent
or received. Push-based implementations of FRP provide such demand-driven
behavior.

In a typical push-based implementation, the label stores the current data vol-
ume internally. It initializes it with zero when it starts to process the signal of
data volumes. Each time a packet is sent or received, the label is notified. It re-
acts by updating its stored data volume and its visual appearance. All widgets
that visualize time-varying values work in this way. This causes the following
problems:

• If several components consume the same signal, each of them calculates the
values of this signal itself. So the same calculations are done multiple times.

• If a component switches between different signals, computation of signal val-
ues starts afresh at every switch. Particularly, accumulating computations start
(again) with their initial value. Say we want to visualize only incoming or
outgoing traffic depending on some user selection. Each time the selection
changes, the signal value is reset to zero, and accumulation starts anew.

The second point is especially problematic since it means that the values of a
signal may depend on the time the signal started to be used. This means that the
same signal can have different values at the same time.

For both of the above problems there is a single explanation: What we called
signals so far are actually signal generators. Components consume signal genera-
tors, and signals switch to signal generators. Whenever a generator is consumed
or switched to, it generates a new signal. The same generator might produce
different signals at different times.

22.1.2 Contents of This Paper

In this paper, we show how a push-based FRP implementation can provide first-
class signals instead of signal generators. In Sect. 22.2, we introduce a simple
push-based implementation and show why it suffers from the abovementioned
problems. Afterwards, we make the following contributions:

• In Sect. 22.3, we introduce the concept of a vista. A vista is a tree that con-
tains potential future signal values. The actual future values correspond to a
path through the vista. We use lazyness to restrict evaluation to such paths.
We implement signals based on vistas, which gives us memoization of signal
values for free. This eliminates the problem of duplicated computation. We
compare the performance of the vista-based solution with the performance of
a conventional implementation.

• In Sect. 22.4, we show how to encode signal lifetimes as phantom type pa-
rameters. We use this to tie signals to specific start times. Thus, we avoid the

22.2. A TRADITIONAL PUSH-BASED IMPLEMENTATION 3

problem of start time dependence. Our approach is similar to the technique
that makes Haskell’s ST monad safe.

• In Sect. 22.5, we introduce a switching combinator that works with signal
functions. This combinator trims argument signals so that their start times
match switching times.2 We use impredicative polymorphism to ensure that
only properly trimmed signals can be used for forming a signal that is switched
to.

Finally we discuss related work, give a conclusion, and suggest topics for further
work.

All code in this paper is written in Haskell. Our ideas have been implemented
in the Grapefruit library [4].

22.2 A TRADITIONAL PUSH-BASED IMPLEMENTATION

22.2.1 The Implementation

Let us look at a traditional way to implement FRP in a push-based fashion. The
approach we present here was used by Grapefruit in its early stages. It has also
much in common with other push-based FRP implementations like, for example,
FranTk [9].

A consumer of a discrete signal registers a handler, which gets called at every
occurrence. The handler receives the occurring value as an argument. We want a
function consume that takes a discrete signal and returns a corresponding handler
registration action:

consume :: DSignal val→ Registration val

A value of type Registration val takes a handler and turns it into an I/O action
that registers this handler. Since we want to be able to unregister the handler later,
the registration action returns another I/O action that undoes the registration. So
we end up with the following definition:

type Registration val = (val→ IO ())→ IO (IO ())

We simply represent each discrete signal by its corresponding registration ac-
tion, so that the implementation of consume becomes trivial:

newtype DSignal val = DSignal (Registration val)
consume (DSignal reg) = reg

A segmented signal is represented by an initial value and a discrete signal
called the update signal. An occurrence in the update signal means that at the
time of this occurrence, the segmented signal changes its value to the value of this
occurrence. The type declaration is straightforward:

2This trimming is often called aging.

4 CHAPTER 22. SIGNALS, NOT GENERATORS!

scan :: accu→ (accu→ val→ accu)→ DSignal val→ SSignal accu
scan init next (DSignal reg) = SSignal init (DSignal reg′) where

reg′ hdlr = do
accuRef ← newIORef init
reg (λval→ do

accu← readIORef accuRef
let

accu′ = next accu val
writeIORef accuRef accu′

hdlr accu′)

FIGURE 22.1. Traditional implementation of scan

data SSignal val = SSignal val (DSignal val)

Based on these type declarations, a wide variety of signal functions can be im-
plemented.3 As an example, Fig. 22.1 shows the implementation of the function
scan. A segmented signal scan init next sig starts with value init. Every time a
value val occurs in sig, the segmented signal changes from its current value accu
to the value next accu val.

We can use scan to compute the segmented signal of data volumes that we
mentioned in Subsect. 22.1.1. If packets denotes the sequence of network packets
and size is a function which maps packets to their sizes, the signal of data volumes
is scan 0 (λvol packet→ vol + size packet) packets.

22.2.2 Generators Instead of Signals

To make use of the volume signal, we have to consume its update signal. This
involves creating a mutable variable that always holds the current signal value,
and registering a handler which uses this variable. The calculation of new signal
values is entirely done inside this handler. So every consumer calculates the signal
values itself using its own mutable variable.

Switching from one signal to another can easily be implemented by unregis-
tering any handlers of the old signal and consuming the new signal afterwards.
So if we switch to a signal which is constructed by scan, we create a new muta-
ble variable and initialize it with the initial value that is passed as an argument to
scan. Therefore, the calculation of signal values starts anew with this initial value
at the time when the switch occurs.

3However, it is impossible to implement discrete signal union as described in
Subsect. 22.3.2. The reason is that the above implementation of DSignal makes it
impossible to detect whether two occurrences in different signals happen at the same time.
There is an alternative implementation [5] that solves this problem while still providing
signal generators instead of signals. However, we stick to the above implementation for
simplicity.

22.3. SIGNAL MEMOIZATION 5

22.3 SIGNAL MEMOIZATION

22.3.1 Utilizing Native Memoization

Virtually every Haskell implementation performs memoization for expressions
that are bound to a variable, although this is not required by the standard [8]. It
would be natural if binding signal expressions to variables would lead to signal
value memoization. Thus, duplicate computation of signal values could be pre-
vented the same way duplicate computation of, say, list elements can be avoided.

Signal values are only memoized if they are part of the internal data structure
that represents the signal. This is not the case for the traditional implementation
sketched in Subsect. 22.2.1, except for initial values of segmented signals. The
problem is that registration actions only provide a way to receive signal values
but do not contain the signal values themselves. We will keep the definition of
SSignal but introduce a completely different implementation of discrete signals.

The data structure behind a discrete signal has to contain all future signal val-
ues. However, a data structure is normally determined when it is created, although
lazyness can defer its evaluation. To make a data structure dependent on future
information, we have to resort to Haskell’s “unsafe I/O” functions [6, 7]. The least
unsafe of these functions is unsafeInterleaveIO of type IO val→ IO val. For any
I/O action io, unsafeInterleaveIO io does nothing but return a thunk. Evaluation
of this thunk triggers the execution of io. The output of io is evaluated, and the
result is taken as the result of the thunk evaluation.

We do not use unsafeInterleaveIO directly. Instead, we use lazy channel
reading, which is implemented using unsafeInterleaveIO. Haskell’s channels [7]
are FIFO queues that were introduced for communication between concurrent
threads.4 The function getChanContents can be used to get a lazy list of all ele-
ments in the channel, including those that have not yet been put into it. Values are
taken out of the channel as the evaluation of this list progresses.

22.3.2 Using Occurrence Lists

We will now look at a straightforward approach for memoizing signal values.
In this approach, each discrete signal contains its list of occurrences as part of
its internal representation. For each signal that directly mirrors a sequence of
external events, we create a channel of occurrences. Whenever a respective event
occurs, its time and associated data are combined to form an occurrence. This
occurrence is then put into the channel. The list of occurrences is produced by
lazily reading from the channel.

Sadly, the use of occurrence lists makes it difficult to calculate discrete signal
unions. The union of two signals sig1 and sig2 generally contains all occurrences
of sig1 and sig2. However, if sig1 and sig2 both have an occurrence at the same

4Note that our signal implementation does not rely on concurrency. We just need an
implementation of FIFO queues that supports lazy reading.

6 CHAPTER 22. SIGNALS, NOT GENERATORS!

time, only the one from sig1 is included in the union.5 A function union that
computes signal unions has to merge the occurrence lists of its argument signals.
In order to do so, it may have to analyze times that have not yet been reached.

Say we want to merge two non-empty occurrence lists occ1 : occs1 and occ2 :
occs2. The first occurrence of the resulting list is either occ2 or occ1, depending
on whether occ2 happens before occ1 or not. The problem is that we have to
know the first occurrence of the result when it actually occurs. Say occ1 and occ2
happen at different times. Then we have to successfully compare the times of occ1
and occ2 when the earlier one of them happens. At this point, the time of the later
occurrence is not yet known.

Elliott [3] proposes a solution to this problem that uses unsafePerformIO and
concurrency in clever but tricky ways. Implementing his idea correctly has turned
out to be hard. At the time of writing, his implementation still contains bugs
which seem to be difficult to fix. In the next subsection, we show a much sim-
pler way to make signal unions work. Elliott’s approach is further discussed in
Subsect. 22.6.2.

22.3.3 Using Vistas

So the key problem with occurrence lists is that union cannot easily determine the
order of occurrences. Instead of solving this problem, we simply work around
it. We do not force union to yield an exact sequence of occurrences. A result
of union may denote a whole collection of possible such sequences instead. It is
the responsibility of signal consumers to decide which of these sequences is the
correct one. To make implementation of this idea possible, the representation of
discrete signals must be able to express such uncertainty introduced by union.

We base our implementation of discrete signals on discrete sources [5]. A
discrete source provides a class of external events. Examples of discrete sources
are the source of all key press events and the source of all incoming network
packets. We make the following restrictions regarding discrete sources and events:

• For each discrete source, there is a mechanism to get notified about events
provided by this source. Usually, this mechanism is registration of event han-
dlers.

• Each event is provided by exactly one discrete source.

• Different events cannot happen at the same time. The order of event handler
calls determines the order of events.

Now, say we have two discrete sources inPacketSrc and outPacketSrc of in-
coming and outgoing network packets. We want to form two discrete signals
inPackets and outPackets that mirror the event sequences of these sources. We

5Another solution would be to combine the values of both occurrences using some
user-specified function. The implementation presented in Subsect. 22.3.3 also allows for
such an approach.

22.3. SIGNAL MEMOIZATION 7

can use channels again to get lazy lists of incoming and outgoing packets, respec-
tively.

These lists are not enough to describe the inPackets and outPackets signals
since they do not tell us anything about occurrence times. However, we do not
need to include times in our signal data structure. It is sufficient to know what
discrete sources the signals stem from. A consumer of inPackets or outPackets
can then be notified about events of the respective source. On each event, it can
fetch the next packet from the list and react accordingly. So the occurrence times
are given implicitly as the times when the discrete source notifies the consumer.

Since the occurrences of inPackets and outPackets are induced by different
sources, they happen at different times. Therefore, no occurrences are dropped
when forming the union of both signals. The occurrence sequence of the union
is an interleaving of the occurrence sequences of inPackets and outPackets. The
choice of the correct interleaving depends solely on the order in which inPacketSrc
and outPacketSrc fire events. Since we do not know this order in advance, the
representation of the union must cover all possible such orders.

Either inPacketSrc or outPacketSrc will fire first. For both cases, the repre-
sentation of the union gives the first occurrence value and the remainder of the
signal. The representation of a remainder is structured like the representation of
the complete signal. So it distinguishes two cases according to the source that will
fire second. It provides an occurrence value and a remainder for each case. And
so on.

We call such a data structure a vista and represent discrete signals by vistas:

newtype DSignal val = DSignal (Vista val)
type Vista val = Map DSource (Variant val)
data Variant val = Variant val (Vista val)

Note that we can also represent the primitive signals inPackets and outPackets
using these definitions. We just have to use vistas with only one source.

A vista corresponds to a kind of Mealy machine whose underlying graph is
a tree. Figure 22.2 shows the machine of the signal union inPackets outPackets.
Thereby, a label src

val means that the respective transition is used if src fires next,
and that there is an occurrence of val in this case. Compared to a true Mealy
machine, our “vista machines” differ in the following ways:

• The number of states is potentially infinite (albeit the number of outgoing
edges per state is finite).

• There is not necessarily a transition for each pair of a state and a discrete
source. If a source fires an event, and there is no transition for this source
from the current state, the machine simply does nothing.

The above definition of vistas does not allow for filtering of discrete signals.
Filtering removes all occurrences from a discrete signal whose values do not have
a given property. This is very much like the standard filter function dropping ele-
ments from a list. We cannot drop occurrences by removing transitions from the

8 CHAPTER 22. SIGNALS, NOT GENERATORS!

inPacketSrc
inPacket2

outPacketSrc
outPacket1

inPacketSrc
inPacket1

inPacketSrc
inPacket1

outPacketSrc
outPacket2

outPacketSrc
outPacket1

. . .

. . .

. . .

. . .

FIGURE 22.2. Vista of union inPackets outPackets

underlying machine. While this would prevent values from being output, it would
also inhibit necessary state changes. Therefore, we change the vista concept so
that outputs become optional. We only have to modify the definition of Variant:

data Variant val = Variant (Maybe val) (Vista val)

The definitions of DSignal and Vista are left unchanged.

22.3.4 Implementation of Signal Combinators

To filter a signal, we just recurse into the vista and replace terms of the form
Just val by Nothing if val does not fulfill the given predicate. The scan func-
tion works in a similar way. We accumulate values during recursion and replace
occurrence values accordingly. Note that all these transformations are done lazily.

For implementing the union function, we have to consider that its arguments
may already contain uncertainty introduced by other applications of union. The
vista of the union of two signals must be a machine that simulates the machines of
the argument signals in parallel. So calculating the union essentially means calcu-
lating a kind of product automaton, which is easy because of the tree structure of
vistas. Note that such a calculation combines simultaneous transitions. Thereby,
values of simultaneous occurrences can be composed in arbitrary ways. Dropping
the value from the second signal is just a special case.

22.3.5 Signal Consumption

The actual occurrence sequence of a signal corresponds to a path through its vista.
This path is determined by the consumers of the signal. Each consumer only
evaluates those parts of the vista that correspond to this path. All variants that
describe possibilities that do not actually happen are garbage-collected without
having been evaluated.

A consumer of a discrete signal registers an event handler for every source
that can trigger a first occurrence. If one of these sources fires an event, the corre-

22.4. STATIC ERA CHECKS 9

sponding handler fetches the variant that corresponds to this source. If the variant
contains an occurrence value, the handler triggers the corresponding reaction of
the consumer. Afterwards, the handler unregisters itself and all other handlers of
the consumer. Finally, the whole procedure starts again, this time using the vista
that describes the remainder of the signal.

22.3.6 Performance Comparison

We compare the performance of the current version of Grapefruit (which uses
vistas) with the performance of the version that directly preceded the introduction
of vistas6. Performance is especially crucial when events occur very frequently.
An example of such a situation is real-time sound synthesis. Here, we generate
a signal that represents a sequence of timer ticks. From this signal, we calculate
audio signals. Each audio signal assigns a block of multiple consecutive samples
to each tick.

For our performance measurements, we use FM synthesis to generate a sound
that is faded out afterwards by multiplying it with an exponential function. The
resulting signal is processed by a number of consumers. Each consumer iterates
through all samples and evaluates those that are still unevaluated. We variegate
the number of consumers between 1 and 10.

To ease measurements, we do not produce actual timer ticks. Instead, we
generate a tick at the beginning of the simulation and every time the reaction to a
previous tick has been finished. That way, the program never becomes idle. Since
a sampling rate of 96 kHz and a tick frequency of about 1 kHz are typical for
audio processing, we fix the block size to 100 samples. In each simulation run,
we process 10 000 blocks.

We perform our measurements on an Intel Pentium M processor with a clock
frequency of 600 MHz. We compile the code using version 6.10.4 of the Glasgow
Haskell Compiler with optimizations turned on. For each of the two Grapefruit
versions and each number of consumers, we run the simulation five times and
form the mean of the total CPU times.

The results of our measurements are shown in Fig. 22.3. We can see that the
new implementation already pays off in the case of only two consumers. Note
that it is not unusual for a signal to be used more than two times. For example, a
sound synthesizer might compose a signal with a variation of itself to achieve a
phaser effect and feed the resulting signal into four different audio channels. This
would result in the original signal being used eight times.

22.4 STATIC ERA CHECKS

We want to ensure that the production time of a signal equals all consumption
times of this signal and of all signals derived from it. We employ the type system

6The implementation ideas of this pre-vista version have already been described
elsewhere [5].

10 CHAPTER 22. SIGNALS, NOT GENERATORS!

of consumers

time in seconds

2 4 6 8 10

2

4

6

8

10
pre-vista

current

FIGURE 22.3. Performance comparison between current and pre-vista Grapefruit

to make this property statically checkable. Our solution is heavily inspired by the
technique that makes Haskell’s ST monad [6] safe.

We introduce a phantom type parameter era for DSignal and SSignal. This
parameter denotes the time interval during which the respective signal is alive.
The beginning of this interval is what we are actually interested in since this is
the time when the signal is consumed or switched to. Signal functions like scan
enforce through their types that argument and result signals have the same era.
The type of scan, for example, becomes

accu→ (accu→ val→ accu)→ DSignal era val→ SSignal era accu .

Instead of using the IO monad for producing and consuming signals, we use a
wrapper around IO which has an era parameter:

newtype Reactive era val = Reactive (IO val)

Signals that are produced or consumed are forced to have the same era as the
producing or consuming action. This is done by using types that use the same
type variable for the era of a signal and of an associated reactive action. For
example, the consume function now has the type

DSignal era val→ (val→ IO ())→ Reactive era (IO ()) .

To actually run a reactive action, we have to turn it into an I/O action:

toIO :: (∀era.Reactive era val)→ IO val
toIO (Reactive io) = io

The universal quantification of the era prevents signals from being shared between
different Reactive actions. This is necessary because different actions may be
executed at different times. If a reactive action would consume a signal that is
derived from a signal produced by a different reactive action, both actions would
be forced to have the same era. However, this would contradict the universal
quantification which states that both eras must be independent.

22.5. SWITCHING 11

22.5 SWITCHING

22.5.1 Safety through Impredicativity

We introduce a combinator switch that constructs signals whose behavior switches
between the behavior of other signals. If we would not use eras, switch would have
the type

(Signal sig)⇒ SSignal (sig val)→ sig val .

Here, we assume the existence of a class Signal which DSignal and SSignal are
instances of. A signal constructed by switch would first behave like the initial
value of the argument signal. Every time the argument signal is updated, the
result signal would start to behave like the signal the argument is updated to. We
call the values of the argument signal inner signals.

It is clear that the argument and result of switch have the same era. However,
the eras of the inner signals are generally proper subintervals of, and therefore not
equal to, this era. Worse, they are not even mutually equal. This conflicts with the
fact that all inner signals have to have the same type and therefore have to share a
single era parameter.

We can solve this problem by using universal quantification again. If the in-
ner signals are compatible with any era, they are compatible with the era that is
actually used. We give switch the type

(Signal sig)⇒ SSignal era (∀era′.sig era′ val)→ sig era val .

The use of universal quantification plays a similar role as in the type of toIO
from Sect. 22.4. However, we do not use rank-2 polymorphism here since the
universally quantified type is not the domain of a function type but a parameter of
a non-function type. What we use here, is impredicative polymorphism [11].

22.5.2 Safe, but Useless

A switch function of the above type is safe but essentially useless. The only
discrete signal with arbitrary era is the empty signal, a signal without occurrences.
The only segmented signals with no era constraints are constant signals.

The reason is that signal combinators do not “invent” occurrences. They only
aggregate and drop occurrences and transform occurrence values. So every non-
empty discrete signal has to be derived from a signal that mirrors external events.
Such a signal is produced by a reactive action. The non-empty signal inherits the
era of the reactive action. Therefore, its era is constrained. Segmented signals in-
herit the era of their update signals. So a segmented signal is only era-independent
if its update signal is empty.

22.5.3 Signal Functions to the Rescue

Our solution is to switch between signal functions instead of signals. Thereby, a
signal function must use a single era for all its arguments and its result. Because

12 CHAPTER 22. SIGNALS, NOT GENERATORS!

signal functions can have different arities, there is no most general signal function
type. Therefore, we cannot directly come up with a type for switch. We will show
a solution to this problem in Subsect. 22.5.4. For now, we pretend that switch has
every type of the following structure:

(Signal sig1, . . . ,Signal sign,Signal sig′)⇒
SSignal era (∀era′.sig1 era′ val1→ . . .→ sign era′ valn→ sig′ era′ val′)→
(sig1 era val1→ . . .→ sign era valn→ sig′ era val′)

To form the result of an expression switch ctrl sig1 . . . sign, we split sig1 to sign
at the update times of ctrl. The eras of the resulting slices correspond to intervals
during which ctrl remains constant. For each of these eras, we compose all n
slices of this era by applying the corresponding value of ctrl, which is a signal
function. We glue the resulting pieces together to get the final result.

So the result of the above switch application can depend on the argument sig-
nals sig1 to sign. This is in contrast to the useless approach of Subsect. 22.5.1. On
the other hand, impredicative polymorphism still forbids the use of other signals
in forming the result. The signal functions of ctrl can only access sig1 to sign, and
they even cannot access them directly but only the correct slices of them. So era
consistency is still guaranteed.

We can now implement the switching example from the introduction correctly.
Remember that the goal was to display the amount of either incoming or outgoing
network traffic. We construct a signal ctrl that changes between curry fst and
curry snd7 according to selection changes triggered by the user. We define a
helper function volumes as follows:

volumes = scan 0 (λvol packet→ vol + size packet)

The signal switch ctrl (volumes inPackets) (volumes outPackets) has the amount of
either incoming or outgoing traffic as its value.

Note that we are not restricted to putting the value of either argument signal
into the result signal. For example, we could also offer to display the total amount
of network traffic. In the ctrl signal, we would use a lifting of the (+) function,
that is, a signal function that forms the pointwise sum of two signals.

The traditional implementation resets traffic volumes at every switch. Note
that we could also get this effect with our new implementation if we wanted to.
The trick is to split inPackets and outPackets and perform accumulation on the
resulting slices. This is done by the expression switch ctrl′ inPackets outPackets
where the signal functions in ctrl′ first apply volumes to their arguments before
actually composing them. In contrast, the correct solution accumulates first and
then splits the resulting signals.

So we can choose at which “stage” we want to split. In contrast, the tradi-
tional implementation always splits the signals that are directly produced by a
reactive action. These signals might not even be mentioned directly in the switch
application but buried deep into the definition of complex signals.

7Since fst and snd select the first and second component from a pair, their curried
versions return their first and second argument, respectively.

22.5. SWITCHING 13

22.5.4 A Generic Signal Function Type

So far, we have assumed that switch can work with signal functions of arbitrary
arity. This is not directly possible with Haskell’s type system. We overcome this
problem by defining a Generalized Algebraic Data Type (GADT) that covers all
signal functions, independently of arity:

data SignalFun era shape where
OSF :: (Signal sig)⇒ sig era val→ SignalFun era (sig ‘Of ‘ val)
SSF :: (Signal sig)⇒

(sig era val→ SignalFun era shape′) →
SignalFun era (sig ‘Of ‘ val 7→ shape′)

data shape 7→ shape′

data (sig ::∗ → ∗→ ∗) ‘Of ‘ (val ::∗)

The shape parameter of SignalFun is a phantom parameter. It should have the
form sig1 ‘Of ‘ val1 7→ . . . 7→ sign ‘Of ‘ valn 7→ sig′ ‘Of ‘ val′. In contrast to ordinary
signal function types, shape types leave era parameters out. SignalFun adds its
era parameter consistently to all signal types of the shape. The constructors OSF
and SSF construct nullary and non-nullary functions, respectively.8

Using SignalFun, the type of switch becomes

SSignal era (∀era′.SignalFun era′ shape)→ SignalFun era shape .

Compared to the non-solution of Subsect. 22.5.1, we have just replaced the signal
type sig by SignalFun (and removed its type class constraint).

22.5.5 Implementation

The implementation of switch has to deal with different signal types (DSignal
and SSignal), different arities of signal functions, and technical challenges arising
from the use of universal quantification. Therefore, we do not show the complete
implementation here. Instead, we only present the key idea for implementing
signal splitting. The full implementation of switching is part of the source code
of Grapefruit [4].

To cut a slice out of a signal, we have to remove the part of the signal that
lies before the start of the slice, and the part that lies after the end of the slice.
Removing the latter one is easy. When the end time of the slice is reached, we
just drop the remainder of the signal. Removing the part before the slice is more
difficult. This removal is called aging.

The good thing about our switching combinator is that it knows from the be-
ginning which signals it has to age, namely, the arguments of the resulting signal
function. So switch can age these signals successively as time passes. This is in
contrast to implementations like the one by Elliott [3], where the need for aging
might be realized only later so that aging has to catch up.

8O and S stand for “zero” and “successor”. SF means “signal function”.

14 CHAPTER 22. SIGNALS, NOT GENERATORS!

remains :: DSignal era val→ SSignal era (Vista val)
remains (DSignal vista) = SSignal vista (DSignal (vistaRemains vista))
vistaRemains :: Vista val→ Vista (Vista val)
vistaRemains = fmap variantConv where

variantConv (Variant vista) = Variant (Just vista) (vistaRemains vista)

FIGURE 22.4. Implementation of remains

For every time, we track what the current aged signals are. To do this, we
use a helper function remains, whose implementation is shown in Fig. 22.4. For
a discrete signal sig, the expression remains sig is a segmented signal. For each
time, this signal gives the vista that represents the part of the discrete signal that
lies after this time.

22.6 RELATED WORK

22.6.1 Implementations in Impure Languages

In the traditional implementation shown in Subsect. 22.2.1, building a signal gen-
erator involves building an I/O action. Running this I/O action means generating
a signal. However, execution of this action has to be deferred until the genera-
tor is consumed. The reason is that side effects cannot happen during expression
evaluation since Haskell is a pure language. So signal generation can only happen
during consumption.

The situation is different for impure languages. FRP implementations like
FrTime [1] (Scheme) and Frappé [2] (Java) are similar to the traditional imple-
mentation. However, they execute the necessary I/O actions immediately. So
signal generation happens during expression evaluation, and the result of the ex-
pression is already a signal, not a generator.

However, this causes a different problem. As we have seen, the same signal
generator can create different signals at different times. In the case of the tradi-
tional implementation, this makes signals dependent on consumption time. In the
case of FrTime, Frappé, and similar libraries, it makes signals dependent on eval-
uation time. So the same expression may evaluate to different signals. Therefore,
these libraries are not referentially transparent.

22.6.2 Implementations Based on Occurrence Lists

Sage [10] presents an implementation of discrete signals which is based on oc-
currence lists. He uses imperative programming to overcome the problem with
calculating signal unions. His implementation creates a new discrete source for
each union. This source raises an event for each occurrence in either union ar-
gument. Since creating a source involves I/O, the union operator has to use
unsafePerformIO. The problem with Sage’s solution is that simultaneity of oc-

22.7. CONCLUSIONS AND FURTHER WORK 15

currences cannot be detected. Two simultaneous occurrences result in two occur-
rences in the union signal, and the order of these occurrences is undefined.

Elliott [3] uses a representation of discrete signals which is equivalent to a list
of occurrences. His implementation of times permits successful comparison of
two times at both of these times. When two future times time1 and time2 need to
be compared, two threads are run concurrently. One thread waits for time1 and
compares both times then, the other one does the same for time2. The thread that
finishes earlier yields the result, and the other thread is killed. So the result of the
comparison is available at the earlier one of both times. This solves the problem
with union calculation. Unfortunately, Elliott’s idea has not been implemented
correctly until now. In addition, it is not yet known whether the massive creation
of short-lived threads causes unacceptable performance decrease [3, section 14].

In both Sage’s and Elliott’s approach, it is safe to switch to a signal after it
has started. However, it is generally not possible to know in advance that such a
switch will occur. If the signal has not been used before the switch, evaluation
has to catch up. The only way to avoid this is to age the signal explicitly by using
some aging operator. This problem should be solvable with our ideas for static era
handling from Sect. 22.4 and Sect. 22.5. Signals that are switched to later would
be known in advance so that they could be aged right from the start.

22.7 CONCLUSIONS AND FURTHER WORK

22.7.1 Conclusions

We have shown how a push-based FRP implementation can provide first-class
signals instead of signal generators. We have represented signals using a data
structure that describes possible future behavior. This enables memoization of
signal values. In addition, we have encoded signal lifetimes as phantom type
parameters. We have used rank-2 and impredicative polymorphism to ensure that
signal consumption cannot be deferred. This makes signal values unambiguous.

22.7.2 Further Work

In this paper, we have not shown how to support arbitrary continuous signals.
However, we have already developed a basic solution, which we want to expand
further. Its key idea is to represent continuous signals by segmented signals of I/O
actions that yield the current signal value when called.

An open problem is how to deal with continuous signals that are specified
by systems of recursive equations. So far, we do not support such specifications
appearing directly in the source code. However, the solutions of such equation
systems can often be expressed as convolutions. We want to explore how support
for signal convolution can be implemented and whether such a feature can make
recursive signal definitions obsolete.

Our performance measurements only provide a first estimation of the useful-
ness of the vista approach. More measurements, especially in real-world situa-

16 CHAPTER 22. SIGNALS, NOT GENERATORS!

tions, are necessary to gain more precise information. Another important goal are
performance comparisons between Grapefruit and other FRP libraries.

Acknowledgments

I wish to thank Roman Cheplyaka, Petra Hofstedt, Janis Voigtländer, and the
anonymous reviewers for their helpful remarks on earlier versions of this paper.

REFERENCES

[1] G. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a call-by-value
language. In Programming Languages and Systems, volume 3924 of Lecture Notes
in Computer Science, page 294–308. Springer, Berlin/Heidelberg, 2006.

[2] A. Courtney. Frappé: Functional reactive programming in Java. In Practical Aspects
of Declarative Languages, volume 1990 of Lecture Notes in Computer Science, page
29–44. Springer, Berlin/Heidelberg, 2001.

[3] C. M. Elliott. Push-pull functional reactive programming. In Proceedings of the 2nd
ACM SIGPLAN Symposium on Haskell (Haskell ’09), page 25–36, New York, NY,
2009. ACM.

[4] W. Jeltsch. The Grapefruit homepage. http://haskell.org/haskellwiki/
Grapefruit.

[5] W. Jeltsch. Improving push-based FRP. In P. Achten, P. Koopman, and M. Morazán,
editors, Draft Proceedings of the 9th Symposium on Trends in Functional Program-
ming (TFP ’08), number ICIS-R08007, Nijmegen, 2008. Radboud Universiteit Nij-
megen.

[6] J. Launchbury and S. Peyton Jones. State in Haskell. Lisp and Symbolic Computation,
8(4):293–341, Dec. 1995.

[7] S. Peyton Jones. Tackling the awkward squad: Monadic input/output, concur-
rency, exceptions, and foreign-language calls in Haskell. In T. Hoare, M. Broy, and
R. Steinbrüggen, editors, Engineering Theories of Software Construction, number
180 in NATO Science Series: Computer and Systems Sciences, page 47–96. IOS
Press, Amsterdam, 2001.

[8] S. Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, Cambridge, UK, May 2003.

[9] M. Sage. FranTk – a declarative GUI language for Haskell. ACM SIGPLAN Notices,
35(9):106–117, Sept. 2000.

[10] M. Sage. Declarative Support for Prototyping Interactive Systems. PhD thesis, De-
partment of Computing Science, University of Glasgow, Mar. 2001.

[11] D. Vytiniotis, S. Weirich, and S. Peyton Jones. Boxy types: Inference for higher-rank
types and impredicativity. ACM SIGPLAN Notices, 41(9):251–262, Sept. 2006.

http://haskell.org/haskellwiki/Grapefruit
http://haskell.org/haskellwiki/Grapefruit

	Signals, Not Generators!
	Introduction
	The Problem
	Contents of This Paper

	A Traditional Push-Based Implementation
	The Implementation
	Generators Instead of Signals

	Signal Memoization
	Utilizing Native Memoization
	Using Occurrence Lists
	Using Vistas
	Implementation of Signal Combinators
	Signal Consumption
	Performance Comparison

	Static Era Checks
	Switching
	Safety through Impredicativity
	Safe, but Useless
	Signal Functions to the Rescue
	A Generic Signal Function Type
	Implementation

	Related Work
	Implementations in Impure Languages
	Implementations Based on Occurrence Lists

	Conclusions and Further Work
	Conclusions
	Further Work

	References

