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1 Why relativity?

Relativity is often seen as an intric
ate theory that is necessary only
when dealing with really high
speeds or ultraprecise measure
ments. However, there are some
quite oftenencountered topics that
are paradoxical if treated non
relativistically. These are also some
of the main sources of Olympiad
problems on relativity.

Think for a moment about two
charged initially stationary
particles. They “feel” only the elec
trostatic force from each another.
But in another, moving reference
frame there is also the magnetic
force, in general, in a different dir
ection! How could force depend on
the choice of inertial reference
frame? What principles forbid the
particles from colliding in one

frame and departing in another?
Electromagnetism needs relativity
for an explanation.

Photons (thus, much of optics) are
always relativistic and other
particles often are. Anything where
the speed of light matters – for ex
ample, the GPS measuring the time
for a radio signal to travel from
satellites – uses relativity.

Particle physics needs relativity in
several aspects. Particles cannot be
controlled in a modern accelerator
without taking into account their
relativistic dynamics. The only suc
cessful quantum theory predicting
the outcomes of particle collisions,
quantum field theory, is relativistic.
Muons in cosmic rays would decay
long before reaching the ground,
but we still detect them thanks to
relativistic time dilation.
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Relativistic theory of gravity – gen
eral relativity – allows to formulate
the physics independently of
whether the reference frame is iner
tial or not, thus unifying time and
space even more tightly. It is neces
sary for astrophysics (precession of
planets' orbits, gravitational lens
ing, black holes), and cosmology
(history and future of largescale
structures).

* * *

In the following, we shall derive the
most important results of the spe
cial theory of relativity, starting
from the fundamental postulates.
Most steps of the derivation are giv
en as problems, which are also
good examples of what one can ask
in relativity and exercise the
reader's ability to use the theory.

The most important general tech
nique for problemsolving is rota
tion of Minkowski spacetime in
complex coordinates, this is de
scribed in section 4. Section 3 shows
the way from postulates to the use
ful techniques, its problems may be
skipped if concentrating purely on
Olympiad preparation. Section 4 is
mostly on kinematics, the following
ones develop dynamics, optics and
(briefly) electromagnetism from it.
Finally, some problems for prac
tising are given.

2 Postulates of special 
relativity

1. The laws of all physics are
the same in every inertial ref
erence frame.

A reference frame is inertial if and
only if objects onto which no force
acts move in a straight line with
constant velocity.

2. The speed of light in vacu
um (c) is the same in every
inertial reference frame.

In SI, after defining the second,* the
metre is defined through fixing (ex
actly!) c = 299,792,458 m/s.

3 Basic thought 
experiments

3.1 Time dilation

Problem 1. Consider a “light
clock” that works as follows. A
photon is emitted towards a
mirror at a known distance l
and reflected back. It is detec
ted (almost) at the emitter
again. The time from the emis
sion to the detection (a “tick”)
is measured to be t. Now we

* One second is the duration of

9,192,631,770 periods of the

radiation corresponding to the

transition between the two 

hyperfine levels of the ground state

of the caesium-133 atom at rest at a

temperature of 0 K.
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look at the clock from a refer
ence frame where the whole
apparatus is moving with velo
city v perpendicularly to the light
beam. Assume that the lengths
perpendicular to the motion do
not change. How long is the
tick for us? (Hint: the light
beam follows a zigzag path.)

The answer is given by the follow
ing fact.

Fact 1. If the time interval
between to events happening
at a stationary point is t, then
in a reference frame where the
speed of the point is v the
time interval is γ t , where
the Lorentz factor

γ=
1

√1−
v

2

c
2

.

Another useful quantity in relativ
istic calculations is β=v /c . As
γ>1 , we see everything in a mov

ing vehicle take longer than in a sta
tionary one – time is dilated
(stretched) in a moving reference
frame.

3.2 Length contraction

Problem 2. Now consider the
same “light clock” as in Prob
lem 1., but moving in parallel to
the light beam, with velocity v.
What is the distance to the mir

ror in our reference frame, if
the distance in the stationary
frame is l?

The answer is in the following fact.

Fact 2. If the length of a station
ary rod is l, then its length in a
reference frame moving in
parallel to the rod with speed
v is l / γ .

Lengths are contracted (compressed)
in the direction of motion.

3.3 Proper time

Problem 3. A spaceship flies
freely from (t1 ,x1 , y1 , z1)
(event 1) to (t2 , x2 , y2 , z2)
(event 2). What is the proper
time τ – time measured by a
passenger on the spaceship –
between these events? [Answer:
c

2 τ2=c
2(t2−t1)

2−(x2−x1)
2

−( y2− y1)
2−( z2−z1)

2
]

4 Lorentz transformations

4.1 Spacetime interval

In ordinary, Galilean relativity,
lengths and time intervals are abso
lute. As we have now seen, the pos
tulates of Einsteinian relativity im
ply that neither is so, once speeds
become comparable to c. However,
proper time – time in a comoving
frame – must clearly be independ
ent of our reference frame. There
fore we can define a new invariant
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quantity with the dimension of
length.

Fact 3. The spacetime interval
s=√c2(Δ t)2−(Δ x)2−(Δ y)2−(Δ z )2

is independent of the choice
of reference frame.

If s is a real number, the interval is
called timelike; if s is imaginary, the
interval is spacelike. If s is zero, the
interval is lightlike.

Fact 4. The interval between two
events on the same lightray
(in vacuum) is zero – thus,
lightlike.

4.2 Minkowski spacetime,
Poincaré transformations

We can say that spacetime points
are represented by position fourvec
tors* x

μ=(ct , x , y , z) and the in
terval calculates the length of the
displacement fourvector Δ x

μ .
However, this law of calculating the
length has important minus signs in
it, so these fourvectors form a
Minkowski spacetime, not the usual
Euclidean space, where lengths
would be calculated using the usual
Pythagoras' law.

We can reuse our familiar laws of
geometry if we introduce complex

* Four-vectors are customarily

labelled by Greek indices written

as superscripts; subscripts have a

meaning in more advanced theory.

numbers. Namely, the invariant
quantity

is=√( i cΔ t)2+(Δ x)2+(Δ y )2+(Δ z)2

is now expressed just like Py
thagorean theorem. So, the Euc
lidean distance between two events
in the spacetime of (ict, x, y, z) is in
dependent of reference frame.

What transformations of Euclidean
space leave lengths invariant? Rota
tions and translations and combina
tions thereof!

Fact 5. Changes of inertial refer
ence frames correspond to ro
tations and shifts in the space
time coordinates ict, x, y and z.

In general, such transformations are
called the Poincaré transformations*

and, if we only rotate and do not
shift the coordinates, the Lorentz
transformations.

4.3 Rapidity

By what angle should we rotate the
axes? Clearly, as one axis has ima
ginary numbers on it, the angle
must also be complex.

Luckily this poses no problems in
drawing the angle, as long as we
consider only onedimensional mo
tion: it turns out to be a purely ima
ginary angle, so its cosine

* The Poincaré transformations are

also known as the inhomogeneous

Lorentz transformations.
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cos α=
e

iα+e
−iα

2
(a projection of the

unit direction vector) is real (can be
drawn on the real xaxis) and its

sine sin α=
e

iα−e
−iα

2 i
is purely ima

ginary (can be drawn on the ima
ginary ictaxis).

Problem 4. Take two coordinate
systems, O and O', with the
spatial axes parallel and the
(spatial) origin* of O'moving in
the xdirection with velocity v.
Calculate the angle α between
the x and x'axis. (Hint: make
a diagram with ict on one axis
and x on another. Add the ict'
and x'axes. Calculate the x
and ictcoordinate of one arbit
rary point the spatial origin of
O' passes through. The ratio of
these coordinates is tanα .)

Such a Lorentz transformation in
volving only time and one spatial
coordinate is called the Lorentz boost
in the xdirection. The answer to the
problem is the following useful fact.

Fact 6. A Lorentz boost in the x
direction from standstill to ve
locity v corresponds to rota
tion of x and ictaxis by an
angle of

α=arctan
v

ic
=arctan

β
i

.

* In the spatial origin, x = y = z = 0,

but ict changes.

Problem 5. Calculate cos α and
sin α .

Fact 7. cos α=γ ,  sin α=β γ/i .
The quantity ϕ=α/i is a real di
mensionless number and is called
the rapidity.

4.4 Hyperbolic trigonometry

Some imaginary units i and some
minuses can be eliminated by using
hyperbolic trigonometry. Employ

ing the formulae sinh α= e
α−e

−α

2
,

cosh α= e
α+e

−α

2
, tanhα= sinhα

coshα
and cosh

2α−sinh
2α=1 you can

prove the following.

Problem 6. Prove for the rapidity
ϕ that tanhϕ=β , cosh ϕ=γ

and sinh ϕ=βγ .
Consequently, using the inverse
function of hyperbolic tangent,
α=iϕ=i artanhβ .

4.5 Length contraction, time
dilation and velocity addition

Problem 7. Prove again the length
contraction formula of Fact 2.
Here use rotation of Minkowski
spacetime.

Problem 8. Prove similarly the
time dilation formula of Fact 1.

Fact 8. If an object moves with re
spect to reference frame O'
with velocity u and O' moves
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with respect to frame O with
velocity v in the same direc
tion, then the velocity of the
object in O is

w= u+v

1+
uv

c
2

.

Problem 9. Prove the velocity ad
dition formula in the last fact.

(Hint: tan(α+β)=
tanα+ tanβ

1−tanα tanβ
and

tanh(α+β)=
tanhα+tanhβ

1+ tanhα tanhβ
.)

Problem 10. Show that the velocity
addition formula implies the
postulate that the speed of light
is universal. (Hint:  u=±c .)

Problem 11. Prove that if u and v in
the velocity addition formula
are both between −c and c ,
then so is w. (Hint: show that
dw

du
>0 – hence w is monoton

ous – and use the result of the
last problem that u=±c cor
responds to w=±c .)

Fact 9. If there exists a reference
frame where an object moves
slower than light, then it does
so in every reference frame.

4.6 Lightcones, simultaneity and
causality

The trajectory of a particle in the
spacetime is called its worldline.

The worldline of a photon cuts a
very special wedge from the dia
gram: the inside of the wedge can
be influenced event at the tip of the
cone; the outside cannot. The region
where an event can have influence
in is called the lightcone of the
event.

Fact 10. If the spacetime diagram
is scaled so that i metres (on
the ictaxis) is at the same dis
tance from the origin as 1
metre (on the xaxis), then the
worldline of a photon is at
45º from either axis.

Fact 11. Simultaneity is relative.

Problem 12. In reference frame O,
two events take place at the
same time t = 0, but with spa
tial separation Δ x . What is the
time Δt ' between them in ref
erence frame O', which is mov
ing in the xdirection with velo
city v? [Answer:
Δt '=−γ vΔ x/ c

2 ]

Fact 12. The order of two events
with timelike or lightlike
separation is absolute. For
spacelike separation, the or
der depends on the reference
frame.

This means that only timelike or
lightlike separation allows one
event to be the cause of another. De
manding that the causality should
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hold and, thus, no information may
be sent to the past, we get the fol
lowing fact.

Fact 13. Information cannot
propagate faster than light in
vacuum.

This means, among many other im
plications, that everything must be
somewhat deformable: if we push
one end of a long rod, then the push
will propagate to the other end
slower than c (probably much
slower).

4.7 Lorentz transformations
algebraically

Fact 14. When going to a reference
frame moving in the xdirec
tion with velocity v, the time
and space coordinates of an
event transform under Lorentz
transformations as follows.

t '=γ( t−vx

c
2
)

x '=γ(x−vt )
y '= y

z '=z

Problem 13. Prove the last fact.

Problem 14. Show algebraically
that if boosting in both x and
ydirections, the order of boosts
matters.

Intuitively, as boosts are rotations,
their order should matter just like
the order of ordinary spatial rota
tions matters: try turning a book

over around two different axes, re
member the result and then repeat,
switching the axes. The result of
two successive boosts in different
directions is actually not just a boost
in a third direction, but adds some
rotation that depends on the order
of the boosts.

5 Dynamics

5.1 Fourvelocity and
fouracceleration

Generalising from the position four
vector x

μ=(ct , x , y ,z ) intro
duced in section 4.2, we now in gen
erality define a fourvector as a col
lection of four numbers
q

μ=(q
t
,q

x
,q

y
,q

z) that trans
forms under Lorentz transforma
tions. The spatial components
(q

x
,q

y
, q

z)≡q⃗ rotate just like a
usual vector. The time and space
components are mixed by Lorentz
boosts that act as rotations in the
fourspace of ( iq

t
, q⃗) . A boost in

the xdirection is given just as in
Fact 14.

q
t
'=γ(q

t−βq
x)

q
x
'=γ(q

x−β q
t )

The Lorentzinvariant length of the
fourvector is

∣qμ∣=√(qt)2−(q x)2−(q y )2−(qz)2 .

We already know that periods of
proper time d τ are Lorentz
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invariant. Thus, the following deriv
atives can be formed.

Fact 15. Fourvelocity v
μ=

d x
μ

d τ
and fouracceleration

a
μ=

d v
μ

d τ
of a particle are

fourvectors.

Problem 15. Show that the four
velocity of a particle moving
with speed v in the xdirection
is (γ c , γv , 0,0) .

Problem 16. What Lorentzinvari
ant quantity is the length of the
fourvelocity from the last
problem? [Answer: c]

As the xdirection was arbitrary, we
can generalize the answer as fol
lows.

Fact 16. The length of any four
velocity is c.

Problem 17. Show that the four
acceleration of a particle mov
ing and accelerating in the x
direction with a threeaccelera
tion of magnitude a=dv/ dt is
(β γ4

a , γ4
a ,0,0) with in

variant length a.

5.2 Mass, momentum and energy

Some texts about relativity distin
guish the rest mass or invariant mass
m from the relativistic mass γm ,

but this would be misleading for

discussing motion in several dimen
sions. Therefore, in this studying
material, we refer to m as just the
mass. This mass is an intrinsic prop
erty of any object and does not de
pend on the reference frame.

Fact 17. The fourmomentum of a
particle with mass m is the
fourvector  p

μ=m v
μ .

Fact 18. p
μ=( E /c , p⃗) where the

total energy E=γm c
2 and

the relativistic momentum
p⃗=γm v⃗ .

Note that here v⃗ is the usual three
velocity and not the spatial part of
the fourvelocity that has an addi
tional γ  in it.

Fact 19. The length of the four
momentum is mc, whatever
the velocity is. Therefore,
E

2=( p c)2+(mc
2)2 .

For massless particles (such as
photons),  E=pc .

Fact 20. In interactions, four
momentum is conserved.

This encompasses both the conser
vation of energy and the conserva
tion of momentum.

Fact 21. The total energy can be
separated into the rest energy
E rest=mc2 and the kinetic

energy Ek=(γ−1)m c
2 .
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Problem 18. Show that for low

speeds, Ek≈
m v

2

2
.

Note that if an object has any intern
al structure and, thus, internal en
ergy, then it must be taken into ac
count in its rest energy and, thus, its
(rest) mass.

On the other hand, for any ul
trarelativistic object moving almost
with a speed of c, the rest energy
and the rest mass can be neglected;
thus, E≈pc .

Since the speed of light, c, corres
ponds to γ=∞ , we can deduce the
following.

Fact 22. It takes infinite energy to
accelerate a massive object
to c. Massless particles move
only with a speed of c.

5.3 Force

Fact 23. F⃗=
d p⃗

d t
=

d (γm v )
d t

.

Fact 24. Fourforce

F
μ=m a

μ=
d p

μ

d τ
.

Problem 19. Show that if all the
motion is in xdirection, then
F

μ=(β γ F ,γ F ,0,0) .

In general, F
μ=(γ v⃗⋅F⃗ /c , γ F⃗)

where  v⃗⋅F⃗=dE/dt  is the power.

6 Optical effects

Problem 20. What is the apparent
length of a rod with rest length
l moving with velocity v in par
allel to the rod, if you take into
account the finite travel times
of photons from its ends to our
eyes?

Fact 25. Doppler shift of the fre

quency of light:  ν '=ν0 √ c−v

c+v
.

Problem 21. Prove the formula,
considering the worldlines of
two wavecrests.

Problem 22. Reprove the for
mula using E=hν .

At least two important relativistic
optical effects have been left out of
this studying material, but are still
worthwhile to think about:

• Measuring the Astronomic
al Unit through aberration

• Compton scattering

7 Electromagnetism

The Lorentz force acting on a particle
with charge q moving in an electro
magnetic field is F⃗=q E⃗+q v⃗×B⃗ . If
we separate the fields into compon
ents parallel and perpendicular to
v⃗ , it can be shown that the electric

and magnetic fields transform into
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each other upon Lorentz transform
ations:

Fact 26. E⃗∥ '=E⃗∥ ,  B⃗∥'=B⃗∥ ,

E⃗⊥ '=γ(E⃗⊥+ v⃗×B⃗⊥ ) ,

B⃗⊥ '=γ(B⃗⊥−v⃗×E⃗⊥ /c2) .

8 Additional problems

The following problems have been
translated from an Estonian book.*

Problem 23. A rod with rest length
l0 is moving translationally
with speed v in such a way that
the line connecting its end
points at an instant forms an
angle ϕ with the direction of
motion. Find its length. [An

swer:
l0

γ √1−β2
sin

2ϕ
] (PK200)

Problem 24. A body is moving uni
formly in a circle, an orbit takes
t = 3 h. A clock inside the body
sees it to take τ=30min . Find
the radius R of the orbit. [An
swer: c√t

2−τ2/(2 π) ] (PK201)

* Paul Kard, “Elektrodünaamika ja

spetsiaalse relatiivsusteooria

ülesannete kogu” (“A collection of

problems on electrodynamics and 

special relativity”), 

Tartu State University 1961. Here

we cite it as “PK”, followed by the

problem number.

Problem 25. The characteristic life
time of a muon at rest is
τ=2.2⋅10

−6 s. How long a path
s can it travel since its creation,
if its speed is v = 0.999c? [An
swer: γ v τ=14.7 km] (PK202)

Problem 26. A pion at rest decays
into a muon and a neutrino.
Find the total energy E and the
kinetic energy T of the muon, if
the rest masses of the pion and
the muon are, respectively, mπ

and mμ ; the rest mass of the
neutrino is zero. [Answers:

E=
(mπ

2+mμ
2)c

2

2mπ

,

T=
(mπ−mμ)

2
c

2

2 mπ

] (PK234)

Problem 27. A muon at rest decays
into an electron and two neutri
nos. The rest mass of the muon
is μ , the mass of the electron
is m, the mass of the neutrino is
zero. Find the maximum pos
sible energy Emax of the elec

tron. [Answer: mc
2 1+(μ/m)2

2(μ/m)
]

(PK235)

Problem 28. At least how big must
be the energy E of a pion, if its
collision with a nucleon at rest
produces a nucleonantinucle
on pair and the pion is ab
sorbed? The rest masses of the
nucleon and the pion are, re

10



spectively, M and m. [Answer:
(8 M

2−m
2)c

2/(2M ) ] (PK244)

Problem 29. At least how big
should be the energy E of a nuc
leon, if its collision with a nucle
on at rest produces a nuc
leonantinucleon pair and the
original nucleons are both
intact? The rest mass of the nuc
leon isM. [Answer:  7 M c

2 ] (PK245)

Problem 30. An atom with
rest mass m, at rest, radiates a
photon with frequency ν . What
is the rest mass m0 of the atom
after the process? [Answer:
m√1−2 hν/(mc2) ] (PK248)

Problem 31. The difference
between an excited energy level
and the ground level of an atom
is ΔE . What should the speed v
of the excited atom be, if we
want a photon, that is radiated
in the direction of motion, have a
frequency of ΔE /h ? The rest
mass of the atom in its ground
state is m. [Answer:

c(γ+3 γ2 /4)(2+3 γ+5 γ2/ 4)−1 ]
(Part of PK249)

9 Olympiad problems

See the following pages for the ori
ginal texts of the problems.

• Cuba 1991 (Relativistic
Square)

• Iceland 1998 (Faster than
Light?)

• Taiwan 2003 (Neutrino De
cay)

• China 1994 (Relativistic
Particle)

• Australia 1995 (Gravitation
al Redshift)

• Physics Cup 2012 (Electron
Positron annihilation)

10 Further reading

• TaPei Cheng, “Relativity,
gravitation, and cosmology:
a basic introduction”, Ox
ford University Press, 2005,
2006
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T H E O R E T I C A L P R O B L E M S

Problem 1 
The figure 1.1 shows a solid, homogeneous ball radius R. Before falling to the floor its center of mass is
at rest, but the ball is spinning with angular velocity ω0 about a horizontal axis through its center. The
lowest point of the ball is at a height h above the floor.

When released, the ball falls under gravity, and rebounds to a new height such that its lowest point is now
ah above the floor. The deformation of the ball and the floor on impact may be considered negligible.
Ignore the presence of the air. The impact time, although, is finite.

The mass of the ball is m, the acceleration due the gravity is g, the dynamic coefficient of friction between
the ball and the floor is µk, and the moment of inertia of the ball about the given axis is:

I =
5

2 2mR

You are required to consider two situations, in the first, the ball slips during the entire impact time, and in 
the second the slipping stops before the end of the impact time.

Situation I: slipping throughout the impact.
Find:
a) tan θ , where θ is the rebound angle indicated in the diagram;
b)the horizontal distance traveled in flight between the first and second impacts;
c) the minimum value of ω0 for this situations.

Situation II: slipping for part of the impacts.
Find, again:
a) tan θ;
b)the horizontal distance traveled in flight between the first and second impacts.
Taking both of the above situations into account, sketch the variation of tan θ with ω0.

Problem 2 
In a square loop with a side length L, a large number of balls of negligible radius and each with a charge q 
are moving at a speed u with a constant separation a between them, as seen from a frame of reference that
is fixed with respect to the loop. The balls are arranged on the loop like the beads on a necklace, L being 
much greater than a, as indicated in the figure 2.1. The no conducting wire forming
the loop has a homogeneous charge density per unit length in the in the frame of the loop. Its total charge
is equal and opposite to the total charge of the balls in that frame.



Consider the situation in which the loop moves with velocity v parallel to its side AB (fig. 2.1) through a
homogeneous electric field of strength E which is perpendicular to the loop velocity and makes an angle θ
with the plane of the loop.

Taking into account relativistic effects, calculate the following magnitudes in the frame of reference of an
observer who sees the loop moving with velocity v:
a)The spacing between the balls on each of the side of the loop, aAB , aBC , aCD , y aDA.
b)The value of the net charge of the loop plus balls on each of the side of the loop: QAB , QBC , QCD y, QDA

c)The modulus M of the electrically produced torque tending to rotate the system of the loop and the
balls.

d)The energy W due to the interaction of the system, consisting of the loop and the balls with the electric
field.

All the answers should be given in terms of quantities specified in the problem.
Note. The electric charge of an isolated object is independent of the frame of reference in which the
measurements takes place. Any electromagnetic radiation effects should be ignored.

Some formulae of special relativity

Consider a reference frame S’ moving with velocity V with reference to another reference frame S. The
axes of the frames are parallel, and their origins coincide a t = 0. V is directed along the positive direction 
of the x axis.

Relativistic sum of velocities

If a particle is moving with velocity u’ in the x’ direction , as measured in S’, the velocity of the particle
measured in S is given by:

2c
Vu

1

Vu
u ′

+

+′
=

Relativistic Contraction

If an object at rest in frame S has length L0 in the x-direction, an observer in frame S’ (moving at velocity
V in the x-direction} will measure its length to be:

L = 2

2

0 1
c
v

L −
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Theoretical Question 3

Part A
Neutrino Mass and Neutron Decay

A free neutron of mass mn decays at rest in the laboratory frame of reference into

three non-interacting particles: a proton, an electron, and an anti-neutrino. The rest

mass of the proton is mp, while the rest mass of the anti-neutrino mv is assumed to be

nonzero and much smaller than the rest mass of the electron me. Denote the speed of

light in vacuum by c. The measured values of mass are as follows:

mn＝939.56563 MeV/c2, mp＝ 938.27231 MeV/c2, me＝0.5109907 MeV/c2

In the following, all energies and velocities are referred to the laboratory frame. Let E

be the total energy of the electron coming out of the decay.

(a) Find the maximum possible value Emax of E and the speed vm of the anti-neutrino 

when E = Emax. Both answers must be expressed in terms of the rest masses of the

particles and the speed of light. Given that mv < 7.3 eV/c2, compute Emax and the

ratio vm /c to 3 significant digits.                               [4.0 points]



Theoretical Problem 1

RELATIVISTIC PARTICLE

In the theory of special relativity the relation between energy E and momentum P

or a free particle with rest mass m0 is

242

0

22 mccmcpE 

When such a particle is subject to a conservative force, the total energy of the

particle, which is the sum of 42

0

22 cmcp  and the potential energy, is conserved. If

the energy of the particle is very high, the rest energy of the particle can be ignored

(such a particle is called an ultra relativistic particle).

1) consider the one dimensional motion of a very high energy particle (in which

rest energy can be neglected) subject to an attractive central force of constant

magnitude f. Suppose the particle is located at the centre of force with initial

momentum p0 at time t=0. Describe the motion of the particle by separately

plotting, for at least one period of the motion: x against time t, and momentum

p against space coordinate x. Specify the coordinates of the “turning points” in

terms of given parameters p0 and f. Indicate, with arrows, the direction of the

progress of the mothon in the (p, x) diagram. There may be short intervals of

time during which the particle is not ultrarelativistic. However, these should be

neglected.

Use Answer Sheet 1.

2) A meson is a particle made up of two quarks. The rest mass M of the meson is

equal to the total energy of the two-quark system divided by c2.

Consider a one--dimensional model for a meson at rest, in which the two

quarks are assumed to move along the x-axis and attract each other with a force

of constant magnitude f It is assumed they can pass through each other freely.

For analysis of the high energy motion of the quarks the rest mass of the quarks

can be neglected. At time t=0 the two quarks are both at x=0. Show separately

the motion of the two quarks graphically by a (x, t) diagram and a (p, x)

diagram, specify the coordinates of the “turning points” in terms of M and f,

indicate the direction of the process in your (p, x) diagram, and determine the

maximum distance between the two quarks.

Use Answer Sheet 2.

3) The reference frame used in part 2 will be referred to as frame S, the Lab frame,

referred to as S, moves in the negative x-direction with a constant velocity

v=0.6c. the coordinates in the two reference frames are so chosen that the point

2



x=0 in S coincides with the point 0x in S  at time 0tt . Plot the

motion of the two quarks graphically in a ( x , t  ) diagram. Specify the

coordinates of the turning points in terms of M, f and c, and determine the

maximum distance between the two quarks observed in Lab frame S  .

Use Answer Sheet 3.

The coordinates of particle observed in reference frames S and S  are related

by the Lorentz transformation













)(

)(

c

x
tt

ctxx





where cv / , 21/1   and v is the velocity of frame S moving relative

to the frame S  .

4) For a meson with rest energy Mc2=140 MeV and velocity 0.60c relative to the

Lab frame S  , determine its energy E  in the Lab Frame S  .

ANSWER SHEET 1 ANSWER SHEET 2

1) 2)

3

O

t

x

O

x

p

t

x
1
, x

2

O

x
1

p
1

O

x
2

p
2

Quark1 Quark2

The maximum distance between 

the two quarks is d=



Theoretical Question 1

Gravitational Red Shift and the Measurement of Stellar Mass

(a) (3 marks)
A photon of frequency f possesses an effective inertial mass m determined by its energy. Assume
that it has a gravitational mass equal to this inertial mass. Accordingly, a photon emitted at the
surface of a star will lose energy when it escapes from the star’s gravitational field. Show that the
frequency shift Δf of the photon when it escapes from the surface of the star to infinity is given by

Δf

f
� −

GM

Rc2

for Δf � f where:

• G = gravitational constant

• R = radius of the star

• c = velocity of light

• M = mass of the star.

Thus, the red-shift of a known spectral line measured a long way from the star can be used to
measure the ratio M/R. Knowledge of R will allow the mass of the star to be determined.

(b) (12 marks)
An unmanned spacecraft is launched in an experiment to measure both the mass M and radius
R of a star in our galaxy. Photons are emitted from He+ ions on the surface of the star. These
photons can be monitored through resonant absorption by He+ ions contained in a test chamber
in the spacecraft. Resonant absorption accors only if the He+ ions are given a velocity towards the
star to allow exactly for the red shifts.

As the spacecraft approaches the star radially, the velocity relative to the star (v = βc) of the He+

ions in the test chamber at absorption resonance is measured as a function of the distance d from
the (nearest) surface of the star. The experimental data are displayed in the accompanying table.

Fully utilize the data to determine graphically the mass M and radius R of the star. There is no
need to estimate the uncertainties in your answer.

Data for Resonance Condition

Velocity parameter β = v/c (×10−5) 3.352 3.279 3.195 3.077 2.955
Distance from surface of star d (×108m) 38.90 19.98 13.32 8.99 6.67

(c) (5 marks)
In order to determine R and M in such an experiment, it is usual to consider the frequency
correction due to the recoil of the emitting atom. [Thermal motion causes emission lines to be
broadened without displacing emission maxima, and we may therefore assume that all thermal
effects have been taken into account.]

(i) (4 marks)
Assume that the atom decays at rest, producing a photon and a recoiling atom. Obtain the
relativistic expression for the energy hf of a photon emitted in terms of ΔE (the difference in
rest energy between the two atomic levels) and the initial rest mass m0 of the atom.

(ii) (1 mark)

Hence make a numerical estimate of the relativistic frequency shift

�

Δf

f

�

recoil

for the case of

He+ ions.

Your answer should turn out to be much smaller than the gravitational red shift obtained in
part (b).

Data:



Velocity of light c = 3.0× 108ms−1

Rest energy of He m0c
2 = 4× 938(MeV)

Bohr energy En = −
13.6Z2

n2
(eV)

Gravitational constant G = 6.7× 10−11Nm2kg−2
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Problem No 9

Electron, initially at rest, is accelerated with a voltage , where  is the electron's rest mass, 

– the elementary charge,  – the speed of light, and   – a dimensionless number. The electron hits a

motionless positron and annihilates creating two photons. The direction of one emitted photon defines the

direction of the other one. Find the smallest possible value  of the angle  between the directions of the

two emitted photons (express it in terms of  and provide a numrical value for ).

Problem No 9 | IPhO Estonia 2012 http://www.ipho2012.ee/physicscup/problem-no-9/

1 of 2 01/24/2013 10:53 PM


