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27th INTERNATIONAL PHYSICS OLYMPIAD
OSLO, NORWAY

THEORETICAL COMPETITION
JULY 2 1996

Time available: 5 hours

READ  THIS  FIRST :
1.  Use only the pen provided
2.  Use only the marked side of the paper
3.  Each problem should be answered on separate sheets
4.  In your answers please use primarily equations and numbers,
     and as little text as possible
5. Write at the top of every sheet in your report:

• Your candidate number (IPhO identification number)
• The problem number and section identification, e.g. 2/a
• Number each sheet consecutively

6. Write on the front page the total number of sheets in your report

This set of problems consists of 7 pages.
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PROBLEM 1

(The five parts of this problem are unrelated)

a)  Five 1Ω resistances are connected as shown in the figure. The resistance in
the conducting wires (fully drawn lines) is negligible.

Determine the resulting resistance R between A and B. (1 point)
___________________________________________________________________________

b)

A skier starts from rest at point A and slides down the hill, without turning or
braking. The friction coefficient is  µ. When he stops at point B, his horizontal
displacement is s. What is the height difference h between points A and B?
(The velocity of the skier is small so that the additional pressure on the snow
due to the curvature can be neglected. Neglect also the friction of air and the
dependence of µ on the velocity of the skier.) (1.5 points)

___________________________________________________________________________

c)  A thermally insulated piece of metal is heated under atmospheric pressure
by an electric current so that it receives electric energy at a constant power P.
This leads to an increase of the absolute temperature T of the metal with time t
as follows:

[ ]T t T a t t( ) ( ) .= + −0 0
1 41

Here a, t0 and T0 are constants. Determine the heat capacity C Tp ( ) of the metal
(temperature dependent in the temperature range of the experiment).  (2 points)



101

d)  A black plane surface at a constant high temperature Th  is parallel to an-
other black plane surface at a constant lower temperature Tl . Between the
plates is vacuum.

In order to reduce the heat flow due to radiation, a heat shield consisting of two
thin black plates, thermally isolated from each other, is placed between the
warm and the cold surfaces and parallel to these. After some time stationary
conditions are obtained.

By what factor ξ is the stationary heat flow reduced due to the presence of the
heat shield?   Neglect end effects due to the finite size of the surfaces.  (1.5
points)
___________________________________________________________________________

e)  Two straight and very long nonmagnetic conductors C +  and C − , insulated
from each other, carry a current I in the positive and the negative z direction,
respectively. The cross sections of the conductors (hatched in the figure) are
limited by circles of diameter D in the x-y plane, with a distance D/2 between
the centres. Thereby the resulting cross sections each have an area
( )1

12
1
8π + 3 D2.The current in each conductor is uniformly distributed over

the cross section.

Determine the magnetic field B(x,y) in the space between the conductors.
(4 points)
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PROBLEM 2

The space between a pair of coaxial cylindrical conductors is evacuated. The
radius of the inner cylinder is a, and the inner radius of the outer cylinder is b,
as shown in the figure below. The outer cylinder, called the anode, may be
given  a positive potential V relative to the inner cylinder. A static homogene-
ous magnetic field 

r
B  parallel to the cylinder axis, directed out of the plane of

the figure, is also  present. Induced charges in the conductors are neglected.

We study the dynamics of electrons with rest mass m and charge _ e. The elec-
trons  are released at the surface of the inner cylinder.

a)  First the potential V is turned on, but 
r
B  = 0.  An electron is set free with

negligible velocity at the surface of the inner cylinder. Determine its speed v
when it hits the anode. Give the answer both when a non-relativistic treatment
is sufficient, and when it is not. (1 point)

For the remaining parts of this problem a non-relativistic treatment suffices.

b)  Now V = 0, but the homogeneous magnetic field 
r
B  is present. An electron

starts out with an initial velocity 
r
v 0  in the radial direction.  For magnetic fields

larger than a critical value Bc , the electron will not reach the anode. Make a
sketch of the trajectory of the electron when B is slightly more than Bc . Deter-
mine Bc . (2 points)

From now on both the potential V and the homogeneous magnetic field 
r
B  are

present.
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c) The magnetic field will give the electron a non-zero angular momentum  L
with respect to the cylinder axis. Write down an equation for the rate of change
dL/dt of the angular momentum. Show that this equation implies that

L keBr− 2

is constant during the motion, where k is a definite pure number. Here r is the
distance from the cylinder axis. Determine the value of k. (3 points)

d)  Consider an electron, released from the inner cylinder with negligible ve-
locity,  that does not reach the anode, but has a maximal distance from the cyl-
inder axis equal to rm . Determine the speed v  at the point where the radial dis-
tance is maximal, in terms of rm .  (1 point)

e)  We are interested in using the magnetic field to regulate the electron current
to the anode. For B larger than a critical magnetic field Bc , an electron, re-
leased with negligible velocity, will not reach the anode. Determine Bc .
(1 point)

f)  If the electrons are set free by heating the inner cylinder an electron will in
general have an initial nonzero velocity at the surface of the inner cylinder. The
component of the initial velocity parallel to 

r
B  is v B , the components

orthogonal to 
r
B  are vr  (in the radial direction) and vϕ (in the azimuthal direc-

tion, i.e. orthogonal to the radial direction).

Determine for this situation the critical magnetic field Bc  for reaching the an-
ode. (2 points)
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PROBLEM 3

In this problem we consider some gross features of the magnitude of mid-ocean
tides on earth. We simplify the problem by making the  following assumptions:

   (i) The earth and the moon are considered to be an isolated system,
   (ii) the distance between the moon and the earth is assumed to be constant,
   (iii) the earth is assumed to be completely covered by an ocean,
   (iv) the dynamic effects of the rotation of the earth around its axis are

neglected, and
   (v) the gravitational attraction of the earth can be determined as if all mass

were concentrated at the centre of the earth.

The following data are given:
Mass of the earth: M = 5.98 . 1024 kg
Mass of the moon: Mm  = 7.3 . 1022 kg
Radius of the earth: R = 6.37 . 106 m
Distance between centre of the earth and centre of the moon:
L = 3.84 . 108 m
The gravitational constant:  G = 6.67 . 10 -11 m3 kg-1 s-2.

a) The moon and the earth rotate with angular velocity ω about their common
centre of mass, C. How far is C from the centre of the earth? (Denote this dis-
tance by l.)

Determine the numerical value of ω.  (2 points)

We now use a frame of reference that is co-rotating with the moon and the
center of the earth around C. In this frame of reference the shape of the liquid
surface of the earth is static.
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In the plane P through C and orthogonal to the axis of rotation the position of a
point mass on the liquid surface of the earth can be described by polar coordi-
nates r, ϕ as shown in the figure. Here r is the distance from the centre of the
earth.

We will study the shape
r (ϕ) = R + h (ϕ)

of the liquid surface of the earth in the plane P.

b)  Consider a mass point (mass m) on the liquid surface of the earth (in the
plane P). In our frame of reference it is acted upon by a centrifugal force and
by gravitational forces from the moon and the earth. Write down an expression
for the potential energy corresponding to these three forces.

Note: Any force F(r),  radially directed with respect to some origin, is the nega-
tive derivative of a spherically symmetric potential energy V(r):
F r V r( ) ( ).= − ′  (3 points)

c)  Find, in terms of the given quantities M, Mm  , etc, the approximate form h(ϕ) of
the tidal bulge. What is the difference in meters between high tide and low tide in this
model?

You may use the approximate expression

valid for a much less than unity.

In this analysis make simplifying approximations whenever they are reasonable. (5
points)

1
1 2

1 3 1
2

1
2

2 2

+ −
≈ + + −

a a
a a

cos
cos ( cos ),
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Solution Problem 1

a)  The system of resistances can be redrawn as shown in the figure:

The equivalent drawing of the circuit shows that the resistance between point c
and point A is 0.5Ω, and the same between point d and point B. The resistance
between points A and B thus consists of two connections in parallel: the direct
1Ω connection and a connection consisting of two 0.5Ω  resistances in series,
in other words two parallel 1Ω  connections. This yields

R = 0.5 Ω .
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b)  For a sufficiently short horizontal displacement ∆s the path can be con-
sidered straight. If the corresponding length of the path element is ∆L, the
friction force is given by

and the work done by the friction force equals  force times displacement:

Adding up, we find that along the whole path the total work done by friction
forces i   µ   mg s . By energy conservation this must equal the decrease mg h in
potential energy of the skier. Hence

h =  µs.

___________________________________________________________________________

c)  Let the temperature increase in a small time interval dt be dT.  During this time
interval the metal receives an energy  P dt.

The heat capacity is the ratio between the energy supplied and the temperature increase:

The experimental results correspond to

Hence

(Comment: At low, but not extremely low, temperatures heat capacities of met-
als follow such a T 3 law.)

dT
dt

T a a t t T a T
T

= + − = 





−0
0

3 4
0

0
3

4
1

4
[ ( )] ./

C Pdt
dT

P .p = =
dT dt

C P 4P
aT

T .p 4
3= =

dT dt 0

µ mg s
L

∆
∆

µ µmg s
L

L mg s∆
∆

∆ ∆⋅ = .
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d)

Under stationary conditions the net heat flow is the same everywhere:

Adding these three equations we get

where J0  is the heat flow in the absence of the heat shield. Thus  ξ = J/J0 takes the
value

ξ = 1/3.

___________________________________________________________________________

e)  The magnetic field can be determined as the superposition of the fields of
two cylindrical conductors, since the effects of the currents in the area of inter-
section cancel.  Each of the cylindrical conductors must carry a larger current
I′, determined so that the fraction I of it is carried by the actual cross section
(the moon-shaped area). The ratio between the currents I and I′ equals the ratio
between the cross section areas:

Inside one cylindrical conductor carrying a current I′ Ampère’s law yields at a
distance r from the axis an azimuthal field

J T Th= −σ ( )4
1
4

J T T= −σ ( )1
4

2
4

J T Tl= −σ ( )2
4 4

3 4 4
0J T T Jh l= − =σ ( ) ,

I
I

D
D′

=
+

=
+( ) .

π

π

π12
3

8
2

4
2

2 3 3
6π

B
r

I r
D

I r
Dφ π

µ
π

µ
π

=
′π   

=
′0

2

4
2

0
22

2 .
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The cartesian components of this are

For the superposed fields, the currents are      I′ and the corresponding cylinder
axes are located  at x = m D/4.

The two x-components add up to zero, while the y-components yield

i.e., a constant field. The direction is along the positive y-axis.

Solution Problem 2

a)  The potential energy gain eV is converted into kinetic energy. Thus

                                                       (non-relativistically)

                                                (relativistically).

Hence

                                                                                                                         (1)

 b)  When V = 0 the electron moves in a homogeneous static magnetic field. The
magnetic Lorentz force acts orthogonal to the velocity and the electron will move in a
circle.  The initial velocity is tangential to the circle.

The radius R of the orbit (the “cyclotron radius”) is determined by equating the
centripetal force and the Lorentz force:

B B y
r

I y
Dx = − = −

′
φ

µ
π

2 0
2 ; B B x

r
I x

Dy = =
′

φ
µ2 0

2 .
π

B
D

I x D I x D I
D

I
Dy = ′ + − ′ − =

′
=

+
2 4 4 6

2 3 3
0
2

0 0µ
π

[ ( / ) ( / )]
( )

,µ µ
ππ

1
2 m eVv 2 =

mc
1

mc eV
2

2

−
− =

v 2 2c

v =
−

+









2eV m                        

c 1 mc
mc eV

          
2

2
2

(non - relativistically)

( ) (relativistically).

 m
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i.e.

                                                                                                                          (2)

From the figure we see that in the critical case the radius R of the circle satisfies

By squaring we obtain
                                    ,

i.e.
                                                                              .

Insertion of this value for the radius into the expression (2) gives the critical field

c)  The change in angular momentum with time is produced by a torque. Here
the azimuthal component Fφ  of the Lorentz force                            provides a
torque  Fφ r. It is only the radial component vr = dr/dt of the velocity that pro-
vides an azimuthal Lorentz force. Hence

which can be rewritten as

dL
dt

eBr dr
dt

= ,

d
dt

L eBr( ) .− =
2

2
0

R b a / 2b2 2= −( )

B m
eR

2bm
b a ec

0 0
2 2= =

−
v v

( )
.

a R b 2bR R2 2 2 2+ = − +

m
R

0
2v

eBv  =0 ,

m
eR

0v
B = .

a R2 2+ = b - R

F e B
→ →

= − ×( ) r
v
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Hence
                                                                                                                          (3)

is constant during the motion. The dimensionless number k in the problem text is
thus k = 1/2.

d)  We evaluate the constant C, equation (3), at the surface of the inner cylinder
and at the maximal distance  rm :

which gives

                                                                          (4)

Alternative solution: One may first determine the electric potential V(r) as
function of the radial distance. In cylindrical geometry the field falls off inversely
proportional to r, which requires a logarithmic potential, V(s) = c1 ln r + c2.
When the two constants are determined to yield V(a) = 0 and V(b) = V we have

The gain in potential energy,  sV(rm), is converted into kinetic energy:

Thus

                                                                                                                         (5)

(4) and (5) seem to be different answers. This is only apparent since rm is not an in-
dependent parameter, but determined by B and V so that the two answers are
identical.

e)  For the critical magnetic field the maximal distance  rm  equals b, the radius of the
outer cylinder, and the speed at the turning point is then

C L eBr= − 1
2

2

0 1
2

2 1
2

2− = −eBa mvr eBrm m

v
eB r a

mr
m

m

=
−( ) .

2 2

2

V r V r a
b a

( ) ln( / )
ln( / )

.=

1
2

2mv eV
r a
b a
m=

ln( / )
ln( / )

.

v
eV
m

r a
b a
m=

2 ln( / )
ln( / )

.

v
eB b a

mb
=

−( ) .
2 2

2



112

Since the Lorentz force does no work, the corresponding kinetic energy
equals eV (question a):

.

The last two equations are consistent when

The critical magnetic field for current cut-off is therefore

f)  The Lorentz force has no component parallel to the magnetic field, and conse-
quently the velocity component  vB  is constant under the motion. The corresponding
displacement parallel to the cylinder axis has no relevance for the question of reach-
ing the anode.

Let v  denote the final azimuthal speed of an electron that barely reaches the anode.
Conservation of energy implies that

giving
                                                                                                                        (6)

Evaluating the constant C  in (3) at both cylinder surfaces for the critical situation we
have

Insertion of the value (6) for the velocity  v   yields the critical field

v v v eV mr= + +2 2 2 / .φ

1
2

2 2 1
2

2m v v v m v vr( ) ( ),B
2

B
2eV =+ + + +φ

mv a eB a mvb eB bc c− = −1
2

2 1
2

2.φ

[ ]B
m vb v a
e b a

mb
e b a

v v eV m v a bc r=
−

−
=

−
+ + −

2 2 22 2 2 2
2 2( )

( ) ( )
/ /   .φ

φ φ

1
2

2mv

B b
b a

mV
ec =

−
2 2

2 2 .

eB b a
mb

e V m( ) .
2 2

2
2−

=

v eV m= 2
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Solution Problem 3

a)  With the centre of the earth as origin, let the centre of mass C be located
at     . The distance l is determined by

M l = Mm (L - l),
which gives

                                                                                                                        (1)

less than R, and thus inside the earth.

The centrifugal force must balance the gravitational attraction between the moon
and the earth:

which gives

                                                                                                                        (2)

 (This corresponds to a period  2π/ω = 27.2 days.) We have used (1) to elimi-
nate l.

b)  The potential energy of the mass point m consists of three contributions:

(1) Potential energy because of rotation (in the rotating frame of reference, see
the problem text),

where      is the distance from C. This corresponds to the centrifugal force
mω 2r1, directed outwards from C.

 (2) Gravitational attraction to the earth,

(3) Gravitational attraction to the moon,

l
→

rr1

−G mM
r

.

l M
M M

Lm

m

=
+

= ⋅4 63 106. ,m

M l G MM
L

mω2
2= ,

ω = =
+

= ⋅ − −GM
L l

G M M
L

m m
2 3

6 12 67 10( ) . .s

−
1
2

2
1
2m rω ,
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where       is the distance from the moon.

Describing the position of m by polar coordinates r, φ  in the plane orthogonal to the
axis of rotation (see figure), we have

Adding the three potential energy contributions, we obtain

                                                                                                                          (3)

Here l is given by (1) and

c)  Since the ratio r/L = a is very small, we may use the expansion

Insertion into the expression (3) for the potential energy gives

                                                                                                                          (4)

apart from a constant. We have used that

when the value of  ω2 , equation (2), is inserted.

− G mM
r

m

m
r ,

rrm

r r r
r (r l ) r 2rl l2 2 2
1

2 = − = − +cosφ .

V( r) m (r 2rl l ) G mM
r

G mM
r

.2 2 2 m

m

r
r= − − + − −

1
2

cosω φ

r r r rrr (L r) L 2Lr r L 1 ( r L ) 2( r L ) .m
2 2 2 2= − = − + = + − cosφ

1
1 2

1 3 1
2

2 1
2

2

+ −
= + + −

a a
a a

cos
cos ( cos ).

φ
φ φ

V r m r GM
r

GM r
L
m( , ) ( cos ),φ ω φ= − − − −1

2
2 2

2

3
2

2
3 1

m rl GmM r
Lmω φ φ2

2 0cos cos ,− =
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The form of the liquid surface is such that a mass point has the same energy V every-
where on the surface. (This is equivalent to requiring no net force tangential to the
surface.) Putting

r = R + h,

where the tide h is much smaller than R, we have approximately

as well as

Inserting this, and the value (2) of ω into (4), we have

                                                                                                                         (5)

again apart from a constant.

The magnitude of the first term on the right-hand side of (5) is a factor

smaller than the second term, thus negligible. If the remaining two terms in equation
(5) compensate each other, i.e.,

then the mass point m has the same energy everywhere on the surface. Here   r2  can
safely be approximated by  R2 , giving the tidal bulge

The largest value                                 occurs for φ = 0 or π, in the direction of
the moon or in the opposite direction, while the smallest value

1 1 1 1
1

1 1 1
2r R h R h R R

h
R R

h
R

=
+

= ⋅
+

≅ − = −
( )

( ) ,

r R Rh h R Rh2 2 2 22 2= + + ≅ + .

V r m G M M R
L

h GM
R

h GM r
L

m m( , ) ( ) ( cos ),φ φ= −
+

+ − −3 2

2

3
2

2
3 1

( )M M
M

R
L

m+ 





≅ −
3

510

h M r R
ML

m= −
2 2

3
2

2
3 1( cos ),φ

h M R
ML
m= −

4

3
2

2
3 1( cos ).φ

h M R MLmmax = 4 3
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corresponds to  φ = π/2 or 3π/2.

The difference between high tide and low tide is therefore

(The values for high and low tide are determined up to an additive constant, but the
difference is of course independent of this.)

Here we see the Exam Officer, Michael Peachey (in the middle), with his helper
Rod Jory (at the left), both from Australia, as well as the Chief examiner, Per

Chr. Hemmer. The picture was taken in a silent moment during the theory
examination. Michael and Rod had a lot of experience from the 1995 IPhO in

Canberra, so their help was very effective and highly appreciated!
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