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1 Circuits with resistors, batteries, ammeters
and voltmeters

The fundamental physics of circuits of resistors, batteries,
ammeters and voltmeters is really simple, and is essentially
covered with just four laws: the two Kirchoff’s laws, Ohm’s
law and Joule’s law - formulated here as “facts”. First, the
Kirchoff’s laws:

fact 1: The sum of electrical currents flowing into a node1

of a circuit is zero.

Mathematically, ∑
wires connected to the i-th node

Iν = 0,

where Iiν stands for the current in the ν-th wire. This assumes
that Iν is taken with a ‘+’ sign if it flows into the i-th node
and with a ‘−’ sign otherwise. We can also say that the sum of
in-flowing currents equals to the sum of out-flowing currents.

Since the electrical current is defined as the charge flowing
through a wire’s cross-section per unit time, this law is essen-
tially the continuity law for electrical charges, combined with
the fact that typically, the capacitance of any wire and any cir-
cuit node is negligible 2 (hence, the charges residing on the
nodes and wires can be neglected).

For those who are not yet developed good intuition with
electrical currents, the analogy with water flow in branching
rivers or water pipes might be useful: the sum of the water
fluxes (measured in cubic meters of water per second) equals
to the water flux in the main stream. Note that the continuity
law plays an important role for many physical processes (with
gas- fluid or granular flows, but also e.g. for traffic fluxes).

fact 2: Along a closed loop of an electrical circuit, the sum
of voltage drops on the circuit elements (resistors, diodes, ca-
pacitors, etc) equals to the sum of the electromotive forces (of
batteries and inductors).

Mathematically, ∑
wires forming a closed loop

Vν = 0,

where the voltage drop on ν-th wire is taken with ‘+’ sign if
the voltage of the destination node is lower than that of the
departure node, unless the wire includes an electromotive force
(emf.): the voltage drop caused by an emf. is taken with the
opposite sign.

This law simply states that electrostatic field is a potential
field; using a mountain-hiking-analogy, if you walk so that you
end at the same point from where you started, you ascended
exactly as many meters as you descended. The electromotive
force of a battery performs work on charge carriers by using
chemical energy (in the case of magnetohydrodynamic generat-
ors and inductors/inductor based dynamos, the nature of emf.
is somewhat different but for the time being, the details are not

important: practical application of the Kirchoff’s laws remains
the same). With the mountain-hiking-analogy, an electromot-
ive force can be considered as a ski-elevator which lifts you
upwards and performs a certain work on you each time you use
it.

While the mountain-hiking-analogy works only for the
Kirhoff’s voltage law, the channel-network-analogy can be ex-
tended to all the direct current phenomena. More specifically,
we consider a closed system of water channels; in a channel, the
water flows only downhill, but there are also pumps which raise
the water uphill. Then, there are the following matching pairs:
(a) electrical charge Q — mass of water m; (b) electrical current
I in a wire, defined as the charge flow rate Q/t, where Q is the
charge flowing through a cross-section of a wire during a time
interval t — mass flow rate of water µ in a channel, defined as
m/t, where m is the water mass flowing through a cross-section
of a channel during a time interval t; (c) a battery of electromot-
ive force E which performs work EQ on charge Q (which passes
through the battery) — a pump which pumps water uphill, to
an height h, and performs work hm on a pumped water mass
m. Then, obviously, for a closed loop of channels and pumps,
the total pumping height (i.e. the sum of the contributions of
all the pumps) equals to the total downhill descending height
in channels (i.e. to the sum of downhill displacements of all the
channels).

Next, the Ohm’s law:

fact 3: Typically, the voltage V between the input- and out-
put leads3 of a piece of electrically conducting material can be
considered to be proportional to the current I through it; the
coefficient of proportionality

R = V/I

is referred to as its resistance, and the circuit elements of a
non-negligible resistance are called resistors.

Let us try to interpret this using the pipe-flow analogy. Con-
sider a straight pipe connecting two water reservoirs at different
height. Let us assume that the drag force F between a unit
volume of the flowing water and the pipe’s walls is proportional
to the speed v of the flow4: F = kv. Then, the water speed
is established by the balance between the drag F = kv and
pressure ρwgh, where h is the height difference, ρw — the wa-
ter density, and g — the free fall acceleration. Therefore, v
will be proportional to h, which, according to the analogy, cor-
responds to the voltage. Now, let us recall that the current
I corresponds to the water flux, which equals to the product
of the water speed v and pipe’s cross-sectional area S, and is
therefore also proportional to h (the counterpart of the voltage
V ). Such a proportionality is exactly what is stated by the
Ohm’s law.

For water flow in a narrow pipe, the drag force is propor-
tional to the flow speed and to the pipe length l, i.e. k = κl.
For ordinary pipes, the drag force (and hence, the coefficient
κ) depends also on the diameter of the pipe. However, let us
assume that κ is constant (this would correspond to the case

1node (=vertex in graph theory) — a point where different wires meet
2In the case of very fast or high-frequency processes, this approximation is not valid; then, an equivalent circuit can be used, with ideal wiring and

equivalent capacitors and inductors representing the capacitances and inductances of the real wires.
3(input- and output) leads — points where the current enters and exits; can be just the endpoints of a wire
4This is valid for sufficiently thin pipes for which viscous drag dominates over the turbulent one
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when we fill the pipe with a granular material, e.g. coarse sand).
Pursuing the analogy, the resistance R = V/I corresponds to
the ratio of the height difference h, and water flux. According
to the discussions above, this is proportional to the pipe length
l, and inversely proportional to the cross-sectional area S of
the pipe (because for a fixed v, the flux is proportional to S).
Hence, we arrive at the following fact.

fact 4: The electrical resistance of a wire (of a length l and
cross-sectional area S)

R = ρl/S,

where ρ is called the electrical resistivity of the wire material
(σ = 1/ρ is called the conductivity).

The proportionality law between V and I fails actually quite
often: for instance, in the case of light bulbs, the dependence
between the voltage and current is nonlinear. Even then, the
ratio V/I is referred to as the resistance. In the case of a
non-linear V − I dependence, the resistance just depends on
the voltage; the derivative dV

dt is referred to as the differential
resistance. If a circuit element is referred to as a resistor, its
resistance is assumed to be constant.

Finally, the Joule’s law:

fact 5: The power dissipated on a circuit element
P = IV,

where V is the voltage on its leads, and I — the current through
it. Alternatively, bearing in mind that

I = Q/t,

where Q is a charge flowing through the element and t is a time
interval, we can say that the current performs work

A = QV.

Using the analogy of the rivers (channels), the power of a water-
fall’s power plant is given by the gravitational potential energy
released per unit time, which is proportional to the product of
the waterfall’s height and the water flow rate.

Using mathematical induction, it is not too difficult to show
the following fact.

fact 6: If all the resistors and battery voltages (the electro-
motive forces) are known, and currents of the wires are con-
sidered as unknown variables then the Kirchoff’s laws and the
Ohm’s law form a closed set of linear equations which can be
solved to find all the currents and voltages in the circuit (i.e.
the solution is unique).

This fact itself can be sometimes useful: if you are able to
“guess” the solution, it will suffice to show that all the Kirchoff’s
equations are satisfied (there is no need to derive the answer
systematically).

Typically, the number of unknown variables in the
Kirchoff’s equations (and hence, the number of equations) is
large, and solving can be tedious. In order to make calcula-
tions easier, several tricks and techniques can be applied.

idea 1: If a circuit can be presented as a combination of
series- and parallel connections (see below for an algorithm),
the system of Kirchoff’s equations becomes decoupled, and
there is no need to write the full system of equations. Instead,
the following rules can be applied. (A) For parallel connections,

the net conductance (inverse resistance) is the sum of conduct-
ances and the net current splits in proportions proportional to
the conductances:

1
Rpar

=
∑

i

1
Ri

; Ii = RparI

Ri
.

(B) For series connections, the net resistance is the sum of res-
istances and the voltage is distributed proportionally to the
resistances:

Rser =
∑

i

Ri; Vi = RiV

Rser
.

Algorithmically, the procedure of applying the idea 1 can
be formulated as follows. If two or more resistors are connected
between the same pair of nodes A and B, substitute these with
an equivalent resistance according to the formula for Rpar; if
two or more resistors form a branch-less chain connecting nodes
A and B, substitute this chain with an equivalent resistance ac-
cording to the formula for Rser; remove all the “dangling ends”
(parts of the circuit which are connected to the rest of the cir-
cuit only via a single wire); repeat the process iteratively. The
process will stop if (A) only one equivalent resistance remains,
or (B) if a bridge is formed (i.e. for a set of four nodes, five or
more pairs are connected via resistors).

These rules and formulae can be easily derived using the
Kirchoff’s laws. Indeed, all the resistors connected in paral-
lel between A and B have the same lead voltage VAB ; hence,
the currents Ii = VAB/Ri are proportional to the conduct-
ances. This gives rise to total current between A and B

I =
∑

i Ii =
∑

i VAB/Ri = VAB

∑
i 1/Ri, which leads us

to the above given formula for Rpar ≡ VAB/I. All the res-
istors connected in series between A and B have the same
current IAB passing through, so that the voltage on each of
them Vi = IABRi, i.e. the voltage is proportional to the res-
istance. The total voltage is V =

∑
i Vi = IAB

∑
i Ri, hence

Rser ≡ VAB/I =
∑

i Ri. Finally, regarding the removal of the
“dangling ends”: due to the Kirchoff’s laws, the sum of currents
entering a subset of a circuit needs to be zero; if there is only
one wire connecting a circuit’s subset to the rest of the circuit,
its current needs to be zero, hence it does not affect the current
distribution and its presence can be ignored.

The following problem illustrates the idea 1 in its simplest
form (for a series connection), together with the fact 4.

pr 1. A uniform wire of cross-sectional area A0 = 1 mm2 had
a millimetre scale marked on it: an array of streaks with inter-
streak distance a0 = 1 mm covered the entire length of the wire.
The wire was stretched in a non-uniform way, so that the inter-
streak distance a is now a function of the distance l from one
end of the wire (as measured after the stretching), see figure.
The new length of the wire is L = 4 m. Using the graph, determ-
ine the electrical resistance R of the stretched wire assuming
that the resistivity of the wire material is ρ = 1.0 × 10−6 Ω · m.
During the stretching, the density of the wire material remains
constant.
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However, for this problem we need one more idea, which is
very universal, not limited to electricity.

idea 2: Many physical quantities can be expressed as integrals
of other quantities — these can be found as surface areas under
graphs. In order to figure out, which surface area is needed, the
following technique can be used. Divide the parameter range
(for the problem above, the parameter l) into small intervals; if
each interval makes an additive contribution to the given phys-
ical quantity (here, the resistance R), express this contribution
in terms of the interval width and other relevant parameters;
design such graph axes that this contribution is proportional
to the surface area of a thin rectangular region in the graph.
Then, once we sum up the contributions of all the intervals and
tend the interval widths to zero, the physical quantity of our
interest will be expressed in terms of a graph area.

For the problem above, each wire segment of length ∆l will
contribute a resistance ∆R = ρ∆l/A to the overall resistance
R; these wire pieces are connected in series, so the resistances
can be just added up. The wire volume remains constant,
Aa = A0a0, hence A = A0a0/a so that

∆R = ρ

A0a0
a · ∆l.

Note that ρ
A0a0

is a constant (does no depend on l), and a · ∆l
is the surface area of the blue rectangle in the a− l, see fig. be-
low. The sum of all these rectangles (the grey and blue region
in figure) approximates the surface area of the region between
the a(l)-curve and the l-axis, and at the limit ∆l → 0 becomes
equal to that area. Such infinitesimally small increments are
called differentials and are denoted by the prefix d (substitutes
the prefix ∆ which we used for finite increments); the sum over
all the infinitesimally small intervals is denoted by the integral
sign

∫
. So, we can say that R ≈ ρ

A0a0

∑
a · ∆l (where the sign∑

denotes summing over all the intervals), and at the limit of
infinitesimal increments dl we obtain equality

R = ρ

A0a0

∫ 4 m

0
a · dl,

where
∫ 4 m

0 a · dl is the surface area under the a(l) graph.

The next problem serves as another simple example of the
idea 1.

pr 2. In the figure, R1/R2 = 4. If we add a lamp as shown
if figure, current through R1 will increase by ∆I = 0.1 A. Find
the current through the lamp.

It can be solved in a long way, and in a short way. For the
long solution, another very generic idea is used.

idea 3: If it seems that there are too few data provided in
the problem text, just assume the “missing” data to be known
(here, for instance, the lead voltage U and the resistance R1);
if everything goes well, the “missing” data will cancel out from
the answer.

For the short solution, a useful modification of the Kirchoff’s
laws can be applied.

idea 4: Kirchoff’s laws are not valid only for the currents and
voltages, but also for voltage increments ∆Vi = Vi(after) −
Vi(before) and current increments ∆Ii = Ii(after) − Ii(before).

Sometimes the circuit is drawn so that it is not very easy
to understand, does it break down into parallel- and series con-
nections or not. In that case, the following idea is to be used.

idea 5: Redraw a circuit so that its structure becomes as
clear and simple as possible: contract plain wires (which con-
nect a pair of leads) into a single point and if possible, em-
phasize the structure of parallel- and series connections. Bear
in mind that if several leads are all connected together with a
plain wire, the wiring can be arbitrarily rearranged (as long as
the relevant leads remain connected), for instance as shown in
figure below. Indeed, one can say that the effect of a wire is
equalling the voltages on two leads, and in the case of several
leads, it doesn’t matter in which order the lead voltages are
made equal.

This idea can be illustrated with a task from the 27th IPhO,
see below.

pr 3. Determine the resistance between the leads of the cir-
cuit in figure.

[IPhO-1996] For complex circuits, it is easy to make mistakes
while simplifying the circuit; typically, this happens when the
remote nodes are connected with wires. To avoid mistakes,
the following technique can be applied. Label all the resist-
ors, e.g. with letters; if there is more than one battery, label
the batteries, as well. Label also all the nodes, so that all the
nodes connected with a plain wire bear the same label, and
those which have no direct wire connection have different la-
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bel. Then, start redrawing the circuit by marking (on a sheet
of paper) one node and drawing all those resistors which are
connected to it. Next, select another lead of one of the drawn
resistors or batteries, mark the respective nodes and draw the
resistors which are attached to that node; repeat the process
until the entire circuit is redrawn.

As an example, let us consider the last problem. We mark
the nodes and resistors as shown in figure. Note that due to
the wire connections, the node symbols appear in two different
places.

We start with drawing the node ‘A’,
see the figure. Since the node ‘A’ is
directly connected to the resistors ‘1’,
‘2’ and ‘3’, we draw these resistors at-
tached to the node ‘A’ as shown in figure. The other ends of
the resistors ‘1’ and ‘2’ are fixed to the node ‘C’, hence we can
connect the respective wires and designate the connection point
by ‘C’. Further, the other end of the resistor ‘3’ is connected to
the node ‘B’, so we draw a wire and mark its end with ‘B’. Now,
by noticing that the resistors ‘4’ and ‘5’ connect the nodes ‘B’
and ‘C’, it is easy to complete the circuit.

idea 6: If a bridge connection involves only an ideal ammeter
(of zero resistance) or an ideal voltmeter (of infinite resistance),
the bridge connection is only seemingly there, and can be es-
sentially removed (for voltmeter) or short-circuited (for am-
meter). Similarly, it can be removed if there is no current in
the bridge connection due to symmetry. Once the simplified
circuit is solved, it may be necessary to return to the original
(non-simplified) circuit: in the case of an ammeter in a bridge
connection, its current can be found from the first Kirchoff’s
law (written for the currents entering the node to which the
ammeter is attached to); in the case of a voltmeter, its voltage
can be found as the voltage difference between the nodes to
which it is attached using the second Kirchoff’s law and the
voltages of the relevant resistors.

In order to illustrate this idea, let us consider the following
problems.

pr 4. Determine the resistance between the leads of the cir-
cuit in figure.

pr 5. Determine the reading of the ammeter in figure.

idea 7: If there are non-ideal ammeters, voltmeters, batter-
ies or current sources included into a circuit then the following
rules can be applied: (a) non-ideal battery of inner resistance
r can be represented as a series connection of an ideal battery
(of zero internal resistance) and a resistance r; (b) non-ideal
current source of inner resistance r can be represented as a par-
allel connection of an ideal current source (of infinite internal
resistance) and a resistance r; (c) non-ideal voltmeter can be
represented as a parallel connection of an ideal voltmeter (of
infinite resistance) and a resistance R; (d) non-ideal ammeter
can be represented as a series connection of an ideal ammeter
(of zero resistance) and a resistance R. NB! A non-ideal am-
meter is not a faulty ammeter: it still shows the true current
through itself; similarly, a non-ideal voltmeter shows the true
voltage on its leads.

Regarding the typical values of the internal resistances of real
ammeters and voltmeters, the following guideline can be used.
The most common digital voltmeters have internal resist-
ance of 10 MΩ, but cheaper ones can have also R = 1 MΩ, and
the expensive ones can reach a gigaohm range; typically, the
internal resistance is independent of the measuring range. For
analogue voltmeters, the resistance does depend on the selec-
ted measuring range Vmax, and can be determined by knowing
the so called full-scale deflection current (FSDC). Essentially,
an analogue voltmeter is a galvanometer (device which has a
needle which deflects proportionally to the current through it),
connected in series with such a resistance that with the max-
imal voltage Vmax applied, the current will be equal to the
FSDC. So, if IFSDC = 100µA, and the 10-volt range is selected
then the resistance r = 10 V/100µA = 100 kΩ. Typical values
of the FSDC are in the range from 25µA to 1 mA.

Digital ammeters measure internally voltage on a small
resistor (shunt) and translate the result into corresponding
amperage; depending on the selected range of currents, dif-
ferent shunt is used; the voltage drop on the shunt is called
the burden voltage, and the maximal burden voltage (MBV)
VMBV can be used to determine the resistance; for instance,
for the 20-mA range and VMBV = 300 mV, the resistance is
300 mV/20 mA = 15 Ω. Typical values for VMBV range from
100 mV to 1 V. An analogue ammeter is essentially a galvano-
meter connected in parallel with a small resistor (shunt); the
shunt controls which fraction of the net current goes through
the galvanometer and ensures that the voltage on the galvano-
meter does not exceed the full-scale deflection voltage (FSDV).
The shunt resistance can be determined in the same way as in
the case of a digital ammeter: here, FSDV plays the role of the
MBV.

In the case of theoretical Olympiad problems, voltmeters
and ammeters are usually assumed to be ideal, unless other-
wise noted. However, there is an exception to this rule: if the
problem conditions contradict the assumption of ideality, you
need to abandon it. Please note that in the case of theoret-
ical problems, it is not wise to make assumptions regarding the
values of the internal resistances of non-ideal ammeters and
voltmeters: quite often, the authors of the problems do not
check how real the numerical values of the resistances are.
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pr 6. Two identical voltmeters and two ammeters are con-
nected to a battery as shown in figure. The readings of the
devices is as follows: ammeter A1 — I1 = 200µA, voltmeter
V1 = 100 V, and voltmeter V2 = 2 V. What is the reading of
ammeter A2? Estimate, how realistic are those internal res-
istances which can be determined from these data; if there is
something strange, is it possible to “fix” the problem by chan-
ging the circuit so that the solution would remain intact?

idea 8: Sometimes it is convenient to consider the Kirchoff’s
current law for a whole region and not just for a single circuit
node: the sum of currents entering the region equals to the
sum of outgoing currents.

This idea can be illustrated with the following problem.

pr 7. [EstPhO-2003] 15 identical voltmeters and 15 non-
identical ammeters are connected to a battery as shown in fig-
ure. The reading of the first voltmeter is V = 9 V, the readings
of the first two ammeters are I1 = 2.9 mA and I2 = 2.6 mA.
What is the sum of the readings of all the other voltmeters?

In some cases, the bridge connection is real and cannot be
removed. In the case of Olympiad problems, this is happens
very seldom, because in that case, the difficulties are actually
only mathematical: it is needed to solve the linear system of
Kirchoff equations. There are several methods which simplify
this mathematical task which are presented in what follows.

idea 9: Any circuit which consists only of resistors and has
three output leads is equivalent to a ∆- or a Y -connection
of three appropriately chosen resistors5 In particular, a Y -
connection can be substituted by a ∆-connection and vice
versa.

Note that ∆-connection is also called “triangular”, and Y -
connection — a “star”. So, the idea is to substitute either a
triangular connection with a star connection or vice versa so
that the resulting circuit is simpler to analyse than the ori-
ginal one. While doing so, all the three lead potentials need
to remain unchanged. Let us consider the simplest case when

all the three resistors are equal: for a ∆-connection R, and
for a Y -connection — R. Then, the inter-lead resistance of
the Y -connection is 2R (two resistors in series), and for the
∆-connection — 2

3r (2r in parallel with r). Therefore, there is
matching between these circuits if 2R = 2

3r, hence r = 3R: the
∆-connection needs to have thrice as large resistances as in the
case of a Y -connection. This rule — if forgotten — can easily
derived whenever needed.

In the generic case of non-equal resistances, the Y − ∆-
substitution formulae are derived by solving the system of three
equations stating pair-wise equality of the inter-lead resistances
rAB , rBC , and rCA; the result is as follows: for a ∆-to-Y -
substitution

RA = RABRAC

RAB +RAC +RBC
, (1)

and analogously for RB and RC (the indices are to be substi-
tuted cyclically); for a Y -to-∆-substitution,

1
RBC

=
1

RB
· 1

RC

1
RA

+ 1
RB

+ 1
RC

, (2)

and analogously for RBC and RCA.
It would consume quite a lot of time to derive these for-

mulae during an Olympiad, so it is better to remember them.
Remembering is actually not that difficult: a Y -connection-
resistance attached to a certain lead equals to the product of
these ∆-connection-resistances which are attached to the same
lead, divided by the sum of all the ∆-connection-resistances.
The conductance of a resistor between a pair of ∆-connection-
leads equals to the product of the Y -connection-conductances
of the resistors attached to the same pair of leads, divided by
the sum of all the conductances. Please note that usually, the
∆-to-Y -substitution is the easier way to go: the substitution
formulae are simpler (typically, resistances and not conduct-
ances are given!), and the simplified circuit will have more
series connections and less parallel connections as compared
to the reverse substitution (however, there are exceptions to
this rule).

Note that the idea 9 cannot be generalized to n-lead circuits
of resistors with n > 3.6 However, if all the pair resistances
are equal to R, the circuit is equivalent to a star connection of
n resistors, each of resistance R/2 (but it is still not equival-
ent to a polygon connection of equal resistances, because for a
polygon, close node pairs have smaller resistance than remote
node pairs).

As an illustration, let us consider the following problem.

pr 8. Determine the current through the battery.

idea 10: Any circuit which consists only of resistors and
batteries and has two input-output leads A and B is equival-
ent to a series connection of a battery and a resistance (the

5The proof is provided in Appendix 1 on pg. 13.
6Indeed, there are 1

2 n(n − 1) different lead pairs, which can all have different resistances; for a generic case, the respective 1
2 n(n − 1) equivalence

equations cannot be solved with respect to the n resistances of a star (or a polygon) connection as long as 1
2 n(n − 1) > n, i.e. n > 3.
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Thvenin’s theorem)7. The electromotive force E of the battery
can be found as the voltage difference between the leads A and
B when there is no load connected externally between these
leads (this is because the original and the substitution circuits
must behave identically when there is no load).

The resistance r (the inner resistance of the battery) can be
found as E/I0, where I0 is the current which would flow in a
wire short-circuiting the two leads (this is because the original
and the substitution circuits must behave identically when the
leads are connected by a wire). Alternatively, r can be found
as the resistance between the leads A and B when there is no
external load, and all the ideal internal electromotive forces are
substituted by wires (this is because the original and the substi-
tution circuits must have identical increase of the lead voltage
when there is a certain increase of the lead current, and an
ideal battery and a piece of wire have identically a zero voltage
response to an increase of the current).

As an illustration, let us consider the following problems.

pr 9. Determine the current through the batteries.

In order to make the application of the idea 10 more trans-
parent, let us solve the first part of the last problem, and find
the current through the 3-V-battery. In figure below, the black
and blue part of the circuit will be substituted by a battery
of electromotive force E and inner resistance r (see figure, sec-
tion on right). To begin with, we assume that there is no
load, i.e. the part drawn in red is missing. Then, the blue bat-
tery creates currents 4 V/2 Ω = 2 A and 4 V/4 Ω = 1 A in the
left and right loops, respectively. Consequently, the voltage
drops on the resistances at the bottom of the figure (1 Ω and
1 Ω) are equal to 2 A · 1 Ω = 2 V and 1 A · 2 Ω = 2 V, respect-
ively. Hence, the lead voltage is 2 V − 2 V = 0 V, i.e. E = 0.
Next, we calculate the inner resistance r of the equivalent bat-
tery. To this end, we substitute the blue battery with the
orange wire (see figure) and calculate the resistance between
the leads: the parallel connections of 1-ohm resistors and the
parallel connections of 2-ohm resistors are connected in series,
so that r = ( 1

2 +1)Ω = 1.5 Ω. Finally, we return the red part of
the circuit to its place for the equivalent circuit at right (keep-
ing in mind that E = 0 and r = 1.5 Ω): the current through
the 3-V-battery is I = 3 V/1.5 Ω = 2 A.

The following fact can be quite easily derived, but knowing
it will can save some time during an Olympiad.

fact 7: For drawing the maximal power from a battery, the
load’s resistance needs to be equal to that of the internal res-
istance of the battery.

Indeed, the load current I = E/(R + r), where R is the resist-
ance of the load. Hence, the power dissipation at the load
can be found as P = RI2 = E2R/(R + r)2. Let us no-
tice that instead of P , it would be easier to analyse 1/P , be-
cause then the expression will break down into three additive
terms: 1

P = E−2r( R
r + r

R + 2). If P is maximal then 1
P is

minimal; we need to minimize this expression over the values
of R. Upon taking derivative with respect to R we obtain

d
dR

1
P = E−2(1 − r/R2) = 0, hence R = r. (Alternatively, it

would have been possible to apply the fact that the sum of a
number x and its reciprocal 1

x has minimum for x = 1, hence
R
r = 1.) So, Pmax = E2/4r.

pr 10. Determine the maximal power which can be dissip-
ated on a load connected to the leads of the circuit in figure
(the power depends on the resistance of the load, you need to
find the maximum of this dependence).

idea 11: Sometimes it is convenient to deal with constant
current sources — instead of batteries (and sometimes, a cur-
rent source is already present). A battery with electromotive
force E and inner resistance r is equivalent to a constant cur-
rent source with I = E/r which is connected parallel to the
shunt resistance r.

Constant current source is a device which generates a constant
current I regardless of which load is connected to the output
leads — as long as the load resistance is non-infinite. The valid-
ity of this theorem can be easily verified: it suffices to check that
for the same lead voltages, the lead currents are also equal. Sup-
pose that a battery (of electromotive force E and internal resist-
ance r) has lead voltage V ; then, the voltage on its inner resist-
ance is E−V and hence, the lead current Ibattery = (E−V )/r. If
the same voltage is applied to a constant current source (of con-
stant current I = E/r), the shunt current will be V/r, i.e. the
total current will be Ic-source = I−V/r = E/r−V/r = (E−V )/r.

7For a proof, note that the behaviour of a two-lead circuit is defined by the relationship between the lead voltage V and lead current I; owing to
the linearity of Kirchoff’s and Ohm’s laws, this relationship is always linear, V = a − Ib. This can be always matched with a battery of electromotive
E and inner resistance r, for which V = E − Ir.
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Indeed, Ibattery = Ic-source for any lead voltage V , hence this
battery and this current source behave identically.

The next problem illustrates the idea 11 (although it can
be also solved using the idea 10).

pr 11. n batteries with electromotive forces Ei and inner
resistances ri (with i = 1, 2, . . . , n) are connected in parallel.
What is the effective electromotive force and the inner resist-
ance of such a system of batteries?

idea 12: The Kirchoff’s equations and the Ohm’s law are
linear (each term includes only a first power of a current or a
voltage), hence the superposition principle is valid. More spe-
cifically, suppose we have a circuit which includes only resistors,
n ideal batteries and m ideal current sources. Then the current
in the j-th wire can be found as

Ij =
n+m∑
k=1

Ij(k),

where Ij(k) is the current in that wire when only the k-th bat-
tery (or current source) is included into the circuit (all the other
batteries are short-circuited and all the other current sources
are removed by cutting off a connection wire).

pr 12. [EstPhO-2012] In the figure below, the batteries are
ideal, R1 = R2 = R3 = R4 = R and E1 = E2 = E . Find the
currents in the resistors (i.e. I1, I2, I3 and I4, expressed via R
and E).

(Note that this problem can be also solved using the idea 17.)

idea 13: The number of unknowns and the number of lin-
ear equations can be reduced by using the method of loop
currents, in which case the first set of Kirchoff’s equations is
automatically satisfied. The first step is selecting a full set of
linearly independent loops l1, l2 . . . ln (the concept of linear de-
pendences is explained below); the second step is assigning to
the loops respective currents I1, I2, . . . In, and expressing the
currents in resistors via these loop currents. The final steps
is expressing the second set of Kirchoff’s equations in terms of
resistors’ currents using the Ohm’s law, and solving this set of
equations with respect to the loop currents.

Let us illustrate the method and the concept of linearly inde-
pendent loops using the following problem.

pr 13. Determine the resistance between the output leads
of the circuit using the method of loop currents.

This problem can be solved using the idea 9 — and this is
possibly the simplest solution. However, here we provide its
solution using the idea 13. To begin with, we need one more
idea.

idea 14: If the task is to find the resistance of a circuit
between two leads, it is often useful to assume that either
a voltage V is applied to the leads, or a current I is driven
through these leads. Then we need to find the missing quant-
ity (I or V , respectively), and calculate R = V/I.

And so, we assume that a current I is driven through the cir-
cuit. Let us have a look on possible shapes of loop currents on
the figure below.

Let the blue loop be denoted by i1, red — by i2, green —
by i3, and violet — by i4. If we take the red and blue loop
currents with equal amplitude, they cancel out in the segment
passing through the 4-ohm resistance, hence their sum will be
equivalent to the green loop current. Therefore the green loop
current is linearly dependent on red and blue loop currents: out
of the three loop currents, only two can be kept as unknowns
(if we were keeping all the three loop currents, the number of
unknowns would be larger than the number of equations). It
doesn’t matter which pair of loop currents will be selected; let
us opt for i1 and i2. However, with just the red and blue loops,
we cannot obtain any current through the input leads, which
means that the system of loop current is not yet closed: we
need a loop passing through the input leads. Any shape of
such a loop would do; let us use the one depicted by the violet
curve (it can be thought to be closed via the external battery).
Let us note that i4 needs to be equal to I — to the current
driven through the circuit.

Now we have a full set of loop currents, i1, i2, and i4 = I,
and we need to write down the Kirchoff’s laws for the voltages.
The current through the 3 Ω-resistor is i1 + I, so its voltage is
V3 = 3 Ω(i1 + I); similarly V4 = 4 Ω(i1 − i2) (the minus corres-
ponds to the fact that the currents i1 and i2 are antiparallel
in this resistor), and V1 = 1 Ωi1. Please note that the signs
of these voltages have been taken corresponding to the blue
loop current: positive voltage value means that when moving
along the blue loop, the voltage decreases. According to the
Kirchoff’s laws, upon performing a full loop, the voltage drop
needs to be zero:
0 = V3 +V4 +V1 ⇒ 3(i1 +I)+4(i1 −i2)+i1 = 8i1 −4i2 +3I = 0.
We can write down analogous equation for the red loop’s
voltage drop:

i2(2 + 4 + 5) − 4i1 + 2I = 0.
From the first Eq., 4i1 = 2i2 − 3

2I, substituting it into the
second Eq. leads us to 9i2 + 7

2I = 0, hence i2 = − 7
18I and

i1 = − 1
4 ( 7

9 + 3
2 )I = − 41

72I. Thus, V3 = (1 − 41
72 )I · 3 Ω =

93
72 Ω · I, and V2 = 22

18 Ω · I; the total voltage on the circuit is
V = V2 + V3 = 181

72 Ω · I, which means that the resistance
R = V/I = 181

72 Ω.
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This has been quite a lot of algebraic work, and we would
like to be sure that we didn’t do any mistakes. The ab-
sence of mistakes can be easily checked by calculating V =
V1 + V5: we need to get the same result! Let us note that
V1 = −i1 · 1 Ω = 41

72 Ω · I and V5 = −i2 · 5 Ω = 35
18 Ω · I; therefore,

R = ( 41
72 + 35

18 )Ω = 181
72 Ω.

idea 15: The number of unknowns and the number of linear
equations can be reduced by using the method of poten-
tials, in which case the second set of Kirchoff’s equations is
automatically satisfied. The first step is assigning to each node
(connection point of wires) a potential φn (where the index n

refers to the n-th node). The second step is expressing the first
set of Kirchoff’s equations in terms of the potentials using the
Ohm’s law, and solving the obtained system of equations.

pr 14. Solve the previous problem using the method of
potentials.

Similarly to what we did before, we assume that the circuit
leads are attached to a battery. The reference level for po-
tential can be chosen arbitrarily, and thus it is convenient to
equate the potential of one output lead to zero (let it be the
left one); then the second lead’s potential equals to the battery
voltage V . There are two more nodes on the circuit, let the
respective potentials be φ1 (the upper one), and φ2. The cur-
rent to the upper node from the right wire I3 = (V − φ1)/3Ω;
the current from the upper node to the left wire I2 = φ1/2Ω;
the current from the upper node downwards I4 = (φ1 −φ2)/4Ω.
According to the Kirchoff’s law for currents, I3 = I2 +I4, hence

(V − φ1)/3Ω = φ1/2Ω + (φ1 − φ2)/4Ω ⇒

13φ1 − 3φ2 = 4V.
Similarly, for the lower node, I4 + I1 = I5, where I1 =
(V − φ2)/1Ω and I5 = φ2/5Ω. This leads us to

(φ1 − φ2)/4Ω + (V − φ2)/1Ω = φ2/5Ω ⇒

−5φ1 + 29φ2 = 20V.
Solving this linear system of equations results in φ1 = 88

181V and
φ1 = 140

181V ; total current can be calculated using the Kirchoff’s
law for the leftmost node, I = I2 + I5 = 44+28

181 V/Ω, hence
R = V/I = 181

72 Ω. The control of this result can be done by
calculating the total current on the basis of the rightmost node.

This example shows that the difficulty level of the both
methods (c.f. ideas 13 and 15) is approximately the same, so
the choice is typically based on personal preferences.

idea 16: Infinite periodic chains of electronic components
(resistors, capacitors etc) can be studied by making use of the
self-similarity of the chain: removal of the first period does not
change its properties.

pr 15. [IPhO-19678] Determine the resistance of the infinite
periodic circuit

According to the idea 16, we “cut off” the first period of the
infinite chain (painted in orange in the figure below); the re-
maining part (blue) is equivalent to the original circuit of (yet
unknown) resistance R. Because of that, we can write equality

R = R1 + RR2

R+R2
,

which can be solved with respect to R.

This idea can be combined with other ideas — for the next
problem, together with the idea 10.

pr 16. Determine the electromotive force and inner resist-
ance of the following system of batteries.

idea 17: As soon as you detect a symmetry in a problem,
try exploit it.

The next problem can be solved exploiting its symmetry, in
conjunction with the idea 14.

pr 17. Determine the resistance between opposing corners
of a cube, the edges of which are made of wire, see figure; the
resistance of one edge is 1 Ω

Sometimes it is convenient to use this idea in conjunction
with specific algorithms how to reduce a circuit to a combina-
tion of parallel and series connections.

idea 18: Node-merging method: if two nodes have equal
potential (e.g. due to symmetry), they can be short-circuited.

idea 19: Edge-splitting method: a resistor between nodes
A and B can be represented as a parallel connection of two
resistors, and the node A can be split into two nodes, if the
potentials of the new nodes A′ and A′′ will be equal.

These ideas are illustrated with the following problem.

pr 18. An hexagon ABCDEF with six “spokes” (connect-
ing its centre O with the vertices) is made of 12 pieces of
wire, each having a electrical resistance R. Find the resistance
between the vertices A and O using methods 18 and 19.

idea 20: Non-symmetric problems can be sometimes conver-
ted into symmetric ones using superposition principle.

8At the IPhO-1967, all resistors were equal to r
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pr 19. Determine the resistance between two neighbouring
vertices A and B of an infinite square lattice assuming that the
edges of the lattice are made of wire, and the resistance of each
edge is R.

This problem does not possess enough symmetry to be solved
immediately: if we drive a current I into the vertex A and draw
it out from the vertex B, the geometry of the problem would
possesses only a mirror symmetry, which is not sufficient for
concluding how the current I is distributed between the four
wires connected to the input vertex. However, it is possible to
construct a rotationally symmetric problem: suppose that the
current I is driven into a vertex A and taken out symmetric-
ally at infinitely remote edges of the mesh. Then it is clear that
the current I is distributed equally between the four outgoing
wires: the current in each of them is I/4. Similarly, we can
drive the current in a rotationally symmetric way at infinity,
and draw it out from the vertex B. The superposition of these
two symmetric configurations provides exactly what we need:
the current is driven into A and drawn out from B; at the
infinitely remote edges, the current cancels out. In the wire
connecting A and B, the both superposition components have
the same direction and are equal to I/4, hence the net current
is I/2, which corresponds to the voltage V = RI/2. Therefore,
the resistance r = V/I = R/2.

It appears that such a symmetrization technique can be also
applied to finite lattices, see the next problem.

pr 20. Determine the resistance between two neighbouring
vertices of a dodecahedron (see figure), the edges of which are
made of wire; the resistance of each edge is R.

idea 21: Sometimes the problem symmetrization can be
achieved by introducing fictitious negative resistances: there
is no problem with applying Kirchoff’s laws to negative resist-
ances.9 In particular, R and −R in parallel correspond to an
infinite resistance, and in series — to a zero resistance.

pr 21. Determine the resistance between two neighbouring
vertices A and B of a dodecahedron, the edges of which are
made of wire; the resistance of each edge is R, except for the
edge connecting the vertices A and B, which is cut off.

idea 22: If there are nonlinear resistors included into a cir-
cuit which are characterized with a nonlinear current-voltage
dependence I(V ) then the current through the nonlinear ele-
ment can be found graphically: I–V -dependence can be also
expressed using the Kirchoff’s laws, in simpler cases this will
be a linear law V = U0 − Ir. Then, the solution will be the
intersection point of the two curves, U0 − Ir and I(V ). If
there are more than one intersection points, the solutions in
the negative differential resistance range (where dV/dI < 0)
are usually unstable and thus will not realize. If there are two

stable solutions then the question of which one is actually real-
ized is solved based on the history of the circuit (e.g. if the
voltage applied to the circuit has been increased or decreased).

Let us illustrate this idea on the basis of a tunnel diode connec-
ted via a resistor to a battery of variable electromotive force E .

If E is small, there is only one intersection point (the leftmost
blue dot in figure); if E is increased, the intersection point
moves up, and even though at a certain moment, there are
more than one intersection points, the real current and voltage
correspond to the leftmost intersection point as a continuous
evolution of the original solution. When E is further increased,
at a certain moment, this solution disappears and the solu-
tion is forced to jump rightwards as shown in figure by blue
almost horizontal arrow. Now, if E starts decreasing, the inter-
section point depicting the solution moves continuously down
and during the period when there are three intersection points,
the rightmost one will correspond to the real solution. If E is
further decreased, that intersection point disappears, and the
solution jumps back to the only remaining intersection point.

The phenomenon when the system state depends on its his-
tory is called hysteresis. Hysteresis will typically appear if the
system can have more than one internal states; a simple ex-
ample is provided by the following problem.

pr 22. [EstOPhC-2009] Element X in the circuit below has
a resistance RX which depends on the voltage VX on it: for
VX ≤ 1 V, RX = 1 Ω, and for VX > 1 V, RX = 2 Ω. Three such
elements are connected with an ideal ammeter as shown below;
the voltage on the leads of the circuit varies in time as shown
in the graph. Plot the reading of the ammeter as a function of
time.

This problem is otherwise quite simple, but for certain
voltages, the state of circuit’s components will depend on the
history. Here a typical mistake is solving the problem cor-
rectly for the first 10 seconds, and then assuming a mirror-
symmetrical graph for the current. How to avoid such mis-
takes? The first and the best way is to always avoid rushed
extrapolations (in the given case — mirror-extrapolation of the
first 10 seconds to the next 10 seconds). Another way to figure
out that things are not as simple as they seem is formulated as
an idea.

9Care should be taken only with oscillatory circuits which include also inductors and capacitors: positive resistance corresponds to a dissipation
(decay of oscillations), negative resistance can cause instability (growth of oscillations).
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idea 23: Try to think, what was the reasoning of the author
of the problem. In particular, if an Olympiad problem has
seemingly similar questions, there is typically some essential
difference. (As an exception, this is not a physical idea.)

In the given case, would it have been interesting to ask about
the next 10 seconds if you can obtain the result by a simple
mirror-extrapolation?

Returning to the idea 22, a simple illustration is provided
by the next problem.

pr 23. Find the current in the circuit given below; the I(V )
dependence of the diode is shown in graph.

idea 24: In the case of small variations of the voltage and
current of a nonlinear element which take place around certain
mean values V0 and I0, it is convenient to linearize the V − I

curve as V = V0 +Rdiff(I−I0), where Rdiff = dV/dI is referred
to as the differential resistance. This means that the nonlin-
ear element can be substituted with a series connection of an
electromotive force V0 − I0Rdiff and a resistor Rdiff.

The usefulness of this idea is demonstrated by the following
problem.

pr 24. [EstFin-200310] In the figure below, the circuit of a
simple tunnel-diode-based amplifier is given. Find the ampli-
fication factor for small-amplitude input signals using the fol-
lowing values: R = 10 Ω, E = 0.25 V.

idea 25: It is possible to obtain upper and lower limits for
the resistance of a circuit using the following theorems.

(I) For an arbitrary circuit which consists of resistors and has
two leads, A and B, if a current I is driven into the lead A

and out from the lead B, the current distributes between the
resistors of the circuit so as to minimize the overall power dis-
sipation. In other words, the power dissipation of the actual
current distribution is always smaller as compared to any ficti-
tious current distribution satisfying only the Kirchoff’s law of
currents. 11

(II) For the same circuit, if there is a voltage drop V between
the leads A and B, the voltage distributes between the nodes of
the circuit so as to minimize the overall power dissipation. In
other words, the power dissipation of the actual voltage distri-
bution is always smaller as compared to any fictitious voltage
distribution violating the Kirchoff’s law of currents. 12

Particular conclusions of these theorems are: cutting off a wire
will increase the resistance, and short-circuiting a wire will de-
crease the resistance. Indeed, if we cut a wire, we disable the
respective current and this leads to what can be considered as
a fictitious current distribution, which has an increased overall
power dissipation I2R, and hence, an increased net resistance
R. Similarly, short-circuiting makes it possible for the current
to jump between the nodes — something which was impossible
originally and violates the Kirchoff’s laws of currents for the
original circuit. Hence, the power dissipation in the modified
circuit V 2/R is increased, and consequently, the resistance R
is decreased.

pr 25. There is an octagon all diagonals of which are res-
istors of equal resistance R; the sides of the octagon are made
of an insulating material. Find lower and upper bounds for the
resistance between two neighbouring nodes of such an octagon.

The solution here is as follows. First, we cut off several resist-
ances, and leave only those which are shown in the left figure
below. The resistance of the left circuit is 2R

4 = R
2 . Further, we

short-circuit six nodes as shown in the right figure; the resist-
ance is 2 R

5 = 0.4R. So, we can conclude that 0.4R ≤ r ≤ 0.5R.
Since the wires we cut off did have current, and the nodes which
we connected with wires did have a voltage difference, the new
current- and voltage distributions are sub-optimal and we can
exclude equality signs: 0.4R < R < 0.5R

pr 26. Improve the upper bound r < 0.5R for the previ-
ous problem (do not “cut off” as many wires as we did before),
as well as the lower bound (short-circuit a lesser number of
nodes).

Finally, let us consider circuits including ideal diodes.

idea 26: If there are ideal diodes included into the circuit
(which have zero resistance for forward current, and infinite
resistance for reverse current), you need to consider separately
two cases: (a) assume that there is a forward current and the
diode is open, hence it can be substituted by a wire; (b) assume
that there is a reverse current, and hence, it can be “cut off”.
Depending on the problem, it may be apparent, which option
is to be used, or you may need to use the calculation results to

10Only a part of the full problem
11Proof is provided in the appendix 3, page 13.
12Proof is also provided in the appendix 3.
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verify, which assumption was valid 13.

pr 27. How many times will change the power dissipation
in the resistor A when the polarity of the battery is reversed?
All the resistors have equal resistance. Diodes are ideal.

idea 27: Non-ideal diodes which are approximated with
an idealized V-I curve with a non-zero opening voltage Vc (there
is no current for V < Vc, and for any forward current, V = Vc)
ca be also handled according to the idea 26; the only difference
is that for forward currents, diode needs to be replaced by a
battery with emf. E = Vc. Additionally, the power dissipation
on the diode is calculated in the same way as the work done
by a battery: dissipation power is VcI, and the dissipated heat

— Vc∆Q, where ∆Q is the charge passing through the diode.

pr 28. [EstOPhC-2012] Find the power dissipation on each
of the diodes in the figure below. These diodes open at the
forward voltage V0 = 1.0 V. It can be assumed that the diode
voltage remains equal to V0 for any forward current, and that
for voltages less than V0, there is no current through the diode.
The values of the resistances and of the electromotive force are
given in the figure.

Problems involving ideas 1–26
pr 29. Determine the maximal power which can be dissip-

ated on a load connected to the leads of the circuit.

pr 30. Find the current through the diode in the circuit
given below; for the diode, use the I(V ) dependence from the
problem 23.

pr 31. For an overcurrent protection, there are two fuses
connected in parallel: fuse A has resistance RA = 1 Ω and
maximal current (by which it melts) IAmax = 1 A; fuse B

has resistance RB = 2 Ω and maximal current (by which it
melts) IBmax = 1.2 A. What is the maximal total current for
such a system of fuses? What is the total current when the
fuse B is substituted with a fuse C which has RC = 2 Ω and
ICmax = 1.7 A?

pr 32. The two voltmeters in the circuit below are identical;
their readings are V1 = 30 V and V2 = 20 V. The reading of
the ammeter is I = 750µA. All the five resistors have equal
resistance R; find the numerical value of R.

pr 33. Assuming that the resistance of a light bulb’s wire is
proportional to its temperature T and its heat radiation power
is proportional to T 4, find the power law exponent of its V –I
dependence. Neglect the heat conductivity and assume that T
is much higher than the room temperature.

pr 34. [EstPhO-1999] All the resistors have equal resist-
ance R = 1 Ω Ammeters and the battery are ideal, E = 1 V.
Determine the readings of all the ammeters.

pr 35. In the figure, all three voltmeters are identical,
and all three resistors are identical. The first voltmeter shows
V1 = 10 V, the third — V3 = 8 V. What does show the second?

pr 36. Determine the potential of the lead A. (Note that
the ground potential is always assumed to be 0.)

pr 37. In the circuit below, the “device” takes the read-
ing of the ammeter and adjusts the resistance of the rheo-
stat so that the ammeter reading becomes zero. Find the
voltage on the resistance R3. It is known that V = 5 V,

13This is similar to the problems with dry friction between solid bodies when you consider separately the cases when (a) the bodies splip and there
is a friction force defined by the kinetic coefficient of friction, and (b) the bodies don’t slip.
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R1 = 10 Ω,R2 = 1 kΩ, R3 = 100 kΩ, R4 = 4.99 kΩ.

pr 38. Eight identical lamps of nominal voltage V = 4 V
and nominal current I = 0.25 A are connected to a battery via
a resistor as shown in figure. The resistor is such that the lamps
will operate at the nominal regime (with nominal voltage and
current). One of the lamp burns out (the lamp is essentially re-
moved). How many times does change the overall power which
is dissipated by the lamps? (The power dissipation on the res-
istor is NOT included.) Neglect the dependence of the lamp
resistances on the temperature.

pr 39. The figure below depicts a cube, the edges of which
(blue lines) are made of a resistive wire, so that the resistance
of each edge is R = 1 kΩ. The ammeters are connected with
copper wires of negligible resistance to the vertices of the cube.
The battery voltage is E = 9 V; the wires make electrical con-
tact only at the vertices of the cube. Find the readings of the
ammeters.

pr 40. Four ammeters with identical inner resistances r
and a resistor of resistance R are connected to a current source
as shown in figure. It is known that the reading of the ammeter
A1 is I1 = 3 A and the reading of the ammeter A2 is I2 = 5 A.
Determine the ratio of the resistances R/r.

pr 41. How many times does change the current through
the battery if the polarity of the battery is reversed? All the
resistors are identical, diodes are ideal and inner resistance of
the battery is negligible.

pr 42. Determine the resistance between two neighbouring
nodes A and B of an infinite cubic lattice assuming that the

edges of the lattice are made of wire, and the resistance of each
edge is R.

pr 43. There is an infinite honeycomb lattice; the edges of
the lattice are made of wire, and the resistance of each edge is
R. Let us denote two neighbouring vertices of a vertex B by A
and C. Determine the resistance between A and C.

pr 44. There is an infinite triangular lattice; the edges of
the lattice are made of wire, and the resistance of each edge is
R. Let us denote the corners of a triangular lattice face by A,
B, and C. The wire connecting B and C is cut off. Determine
the resistance between A and B.

pr 45. There is a n-gon all sides and all diagonals of which
are resistors of equal resistance R. What is the resistance
between two neighbouring nodes of the n-gon?

pr 46. There is a decagon all diagonals of which are resistors
of equal resistance R; let A and C denote the two neighbours
of a vertex B, and let D be a vertex which is not neighbouring
any of the three mentioned vertices. The wires corresponding
to the sides AB and BC are cut off. Determine the resistance
between A and D.

pr 47. There is an octagon all diagonals of which are res-
istors of equal resistance R; the sides of the octagon are made
of an insulating material. Find lower and upper bounds for
the resistance between two opposing nodes of such an octagon
without exactly calculating its value. Verify the result by cal-
culating this resistance also exactly.

pr 48. Find the resistance between the terminals A and B
for the infinite chain shown below. The resistances are as shown
and increase by a factor of two for each consecutive link.

pr 49. Which unequalities must be valid for the resist-
ance between two neighbouring vertices A and B of an infinite
square lattice, if the edges of the lattice were made of wire so
that the resistance of each edge was R, but some parts of the
lattice have been damaged: some wires have been broken and
some of the broken wires have been replaced by copper wires of
negligible resistance. However, within the distance of two edge
lengths from the wire AB, the lattice is completely intact (this
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includes 13 wires parallel to AB, and 12 wires perpendicular
to it).

appendix 1: Proof of the Y − ∆ circuit theorem
Two circuits, one with output leads A,B,C, and the other

with leads a, b, c are equivalent if their response to external

forcing is identical. This means that if we drive a current I

into the lead A (or into a) and drive it out from B (or from

b), the lead voltages must be pair-wise equal: VAB = Vab, and

VAC = Vac. Due to the linear nature of the Kircho�'s and

Ohm's laws, we know that all these voltages are proportional

to the current: VAB = IRAB , Vab = IRab, VAC = IRACB , and

Vac = IRacb, where RAB is the resistance between A and B,

RAC is the A− C resistance. Proportionality coe�cients Rijk

(i, j, k ∈ {A,B,C, a, b, c}) relate the i − k-voltage to the i − j

current. Equivalence of the circuits means that

RAB = Rab, RAC = Rac, RBC = Rbc, (3)
RACB = Rabc, RABC = Rabc, RBCA = Rbca, etc. (4)

These 9 equations represent necessary and su�cient condi-

tions for the equivalence between an arbitrary 3-lead circuit

(with leads A,B,C) and a Y -connection (or a ∆-connection)

of three resistors. Nine equations seems to be too many for

determining the values of the three resistances. Luckily, it

appears that if the �rst three equations (3) are satis�ed, all

the rest are satis�ed automatically. It is (relatively) easy to

verify via direct arithmetical calculations that for any triplet

of resistances RAB , RAC , and RBC , these three equations

can always be solved with respect to the three resistances

of the Y - or ∆-connection, and as long as the triangle in-

equalities of the form RAB ≤ RAC + RBC are satis�ed, the

three resistances (of Y or ∆-connection) are non-negative. In-

deed, for Y -connection, Rab = ra + rb, Rac = ra + rc, and

Rbc = rb + rc; if we put these expressions into Eqns. (3), we

obtain ra = 1
2 (RAB +RAC −RBC), and analogous expressions

for rb and rc. The calculations for ∆-connection are analogous

[alternatively, Eq. (2) can be used to �nd the ∆-connection-

resistances from ra, rb and rc]. It appears that the triangle

inequalities are, indeed, satis�ed for any three-lead circuit, see

appendix 4 below.

What is left to do is to show that the equations (4) dealing

with the three-lead-resistances follow from the equations (3).

First, from the Kircho�'s voltage law we can conclude that

RACB +RCAB = RAC (and similar expressions for RCBA and

RBAC). Indeed, if a current I is driven into A and taken

out from C, we can express the voltages as VAC = IRAC ,

VAB = IRACB , and VBC = IRCAB ; due to the Kircho�'s

voltage law, VAC = VAB + VBC , hence RAC = RACB +RCAB .

Second, the equality RACB = RABC (and similar expressions

for RCBA and RBAC) follows directly from the reciprocity the-

orem; however, this theorem is more tricky to prove, see ap-

pendix 2.

appendix 2: Proof of the reciprocity theorem
The theorem states that if we have a four-lead system of resist-

ors, the leads being denoted by A, B,C,and D, and we consider

two cases, (i) current I is driven into A and out from B, and (ii)

the same current I is driven into C and out from D, then the

voltage VCD induced between C and D in the �rst case equals

to the voltage UAB between A and B in the second case (the

equality required for the proof of the Y − ∆ circuit theorem

corresponds to the particular case when D coincides with A).

Let us denote the potential of the j-th node of the circuit in

the �rst case by φj (j = 1, . . . n), and in the second case by

ψj ; the �rst four nodes (j = 1, 2, 3, 4) are the four input leads

A,B,C, and D. Due to Ohm's law, for any pair of nodes (i, j)

directly connected by a wire (over a resistor), there is equality

(φj − φi)/Iji = (ψj − ψi)/Jji,

where Iji and Jji are the wire's currents in the �rst and the

second case, respectively. This can be rewritten as

(φj − φi)Jji = (ψj − ψi)Iji;
Summing this equality over all the node pairs we obtain∑

j

φj

∑
i

Jji −
∑

i

φi

∑
j

Jji =
∑

j

ψj

∑
i

Iji −
∑

i

ψi

∑
j

Iji.

Note that due to the Kircho�'s current law, for any j ̸= 3, 4,∑
i Jji = 0; similarly, for j ̸= 1, 2,

∑
i Iji = 0; for i ̸= 3, 4,∑

j Jji = 0; for i ̸= 1, 2
∑

j Iji = 0. Further,
∑

i J4i =
−
∑

i J3i =
∑

i I2i = −
∑

i I1i = −
∑

j Jj4 =
∑

j Jj4 =
−
∑

j Ij2 =
∑

j I1i = I. Therefore, the above equality sim-

pli�es into

2(φ4 − φ3)I = 2(ψ2 − ψ1)I.
Finally, as φ4 −φ3 = V and ψ2 −ψ1 = U , we arrive at V = U ,

QED.

There is one quite difficult problem which can be solved in
a somewhat similar manner to how we proved the reciprocity
theorem. We might also try to formulate a respective hint.

idea 28: Sometimes it is possible to combine the equations
of a long system of equations so that almost everything cancels
out, leaving only few non-zero terms.

pr 50. n identical resistors of resitance R are connected
in an arbitrary way; though, none of the resistors is short-
circuited (there is no direct wire connection between the two
leads of a resistor), and all the resistors are connected together
(the resistance between any pair of nodes is finite). For each
resistor, the resistance between the leads is determined, and
the results are added up. Show that this sum of n resistances
equals always to (n− 1)R.

appendix 3: Proof of the dissipation minimum the-
orem
In order to prove the �rst part (when the Kircho�'s voltage

law remains satis�ed), consider the power dissipation

P =
∑

ij

(φi − φj)2/Rij ,

where φi is the potential of the i-th node (for a �ctitious po-

tential distribution), and the sum is taken over all such pairs of

nodes (i, j) which are directly connected via a resistor Rij . If

the potential of the i-th node is changed by a small increment

∆φi (while keeping the other potentials intact), the total power

dissipation is changed by

∆P =
∑

j

[2∆φi(φi − φj) + ∆φ2
i ]/Rij .

The last term here can be neglected for very small potential

increments, and we can denote (φi − φj)/Rij ≡ Iij : this is
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2. CIRCUITS INCLUDING CAPACITORS AND INDUCTANCES

the current �owing from i-th to j-th node. So, at the limit of

in�nitesimally small increments (∆φi → dφi), we obtain

dP = 2dφi

∑
j

Iij .

If
∑

j Iij > 0 then the power dissipation can be decreased by

increasing the potential φi (dφi < 0 leads to dP > 0); simil-

arly, if
∑

j Iij < 0, we can take dφi > 0. So, the dissipation

minimum can take place only for
∑

j Iij = 0, i.e. when the

Kircho�'s current law is satis�ed. Further, if
∑

j Iij = 0 then

∆P =
∑

j ∆φ2
i /Rij > 0, i.e. we have, indeed, a minimum.

The second half of the theorem is proved in the same way as

the �rst half: we assume that there is a �ctitious current distri-

bution which satis�es the Kircho�'s current law and hence, can

be represented as a sum of loop currents Iµ =
∑

ν Iνµ, where ν

enumerates the loops and Iνµ represents the current in a µ-th

wire contributed by the ν-th loop. Note that Iνµ = 0 if the µ-th

wire does not belong to the ν-th loop; otherwise Iνµ = ±iν �

the loop current has the same magnitude everywhere, and the

sign of the contribution depends on which current direction is

assumed to be positive for the given wire. Let us assume that

all the contributions of the ν-th loop current are positive (if not,

we can re-de�ne the positive directions of the relevant wires).

Then

P =
∑

µ

Rµ

(∑
ν

Iνµ

)2

,

and for an increment diν of the ν-th loop current,

dP = diν · 2
∑

µ

IµRµ;

for a minimum, we need to have
∑

µ IµRµ = 0, which is the

Kircho�'s voltage law for the ν-th loop.

appendix 4: Proof of the triangle inequality
For a three-lead circuit, let us ground the lead A. (i) First, let

us connect the lead C to a voltage source providing a potential

V0 > 0 while keeping the lead B disconnected externally; this

gives rise to a certain current I0 which �ows from C through

the circuit and through the lead A into the grounding wire; this

will also induce a certain potential V1 on the lead B; apparently

0 ≤ V1 ≤ V0.

(ii) Second, let us disconnect C from the voltage source and

connect B to a voltage source providing the same potential V1
what it had previously; this gives rise to a current I1 via A

and B, and an induced potential V2 on the lead C. Now, let

us apply the minimal power dissipation theorem. For case (ii),

we construct a �ctitious potential distribution based on the po-

tential distribution of case (i): all these internal circuit points

which have potential φ less than V1 will have the same poten-

tial which they had previously, and all those internal circuit

points which have φ ≥ V1 will have potential V1 (if a certain

resistor extends over the threshold potential V1, we imagine

the resistor as if being made of a resistive wire and �cut� this

wire into two segments at the point where φ = V1). Such a

�ctitious potential distribution would be the real potential dis-

tribution of a mod�ed circuit for which all the circuit points

with potential φ = V1 are connected via a wire to the lead B.

Indeed, there is no change in the region φ ≤ V1 as compared

to the case (i), which means that the Kircho�'s current law is

satis�ed there; in the region which had originally φ > V1, the

potential is now constant, hence there is no current, hence the

Kircho�'s current law is also satis�ed. All the threshold points

φ = V1 are connected by a wire which directs all the total

current I0 into the lead B so that the Kircho�'s current law

remains still satis�ed. For such a modi�ed circuit, the power

dissipation is V1I0; due to the power dissipation theorem, this

is larger or equal to the actual dissipation V1I1, hence I1 ≤ I0.

Finally, let us introduce case (iii): we disconnect A from the

ground, and connect B and C to the voltage sources which

provide potentials V1 and V2, respectively. Analogously to

what we did before, we can show that the emerging current

I2 ≤ I0 (through B and C). Now we can write inequalities for

the resistances:

RAB = V1

I1
≥ V1

I0
, RBC = V0 − V1

I1
≥ V0 − V1

I0
;

if we sum up these inequalities we obtain

RAB +RBC ≥ V1

I0
+ V0 − V1

I0
= V0

I1
= RAC ,

QED.

Note that owing to the triangle inequalities, the resistance can

be used to de�ne the distance between two circuit points (or

between two points of a continuous conducting medium); then,

instead of meters, the distance will be characterized in ohms.

2 Circuits including capacitors and inductances
In order to be able to solve circuits involving capacitors and
inductances, the knowledge of several facts is needed. Some
facts will be provided here without proof; more insight will be
given in the section “Electromagnetism’.

Let us begin with capacitors. A capacitor can be thought
of as consisting of two parallel conducting sheets (plates) which
are very close to each other, and separated by a thin dielectric
(insulating) layer 14. We mentioned in the introduction of Sec-
tion 1 that typically, we can neglect charges on the wires; this
is because any non-negligible charge on wires would give rise
to a huge electric field, and hence, to a huge voltage. How-
ever, situation is different if we have two parallel conducting
plates: if these two plates have equal and opposite charges,
so that the system as a whole is electrically neutral, the huge
electric field is constrained into the narrow layer between the
plates, hence the voltage (the product of the layer thickness
and field strength) can remain moderate. Typically 15, the
voltage between the plates is proportional to the charge sitting
on one of the plates. Since a capacitor is electrically neutral as
a whole, the Kirchoff’s current law remains valid for capacitors,
as well: current flowing along a wire to one plate (increasing
the charge there) equals to the current flowing from the other
plate (decreasing the charge there) along another wire.

fact 8: Capacitance is defined as
C = q/V,

where q is the charge on the plates of the capacitor (one plate
has +q, the other one −q) and V is the potential difference

14There are different types of capacitors with different shapes, but such details are not important for the time being.
15if the inter-plate distance and the dielectric permeability of the insulator remain constant
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2. CIRCUITS INCLUDING CAPACITORS AND INDUCTANCES

between the plates of the capacitor. Unless otherwise men-
tioned, C is independent of the applied voltage V .

fact 9: The energy of a charged capacitor is
W = CV 2/2.

Indeed, consider a charging of a capacitor. If a charge dq crosses
a potential difference V , electrical work dA = V I · dt = V · dq
needs to be done. So, the total work done A =

∫ V

0 V · dq =∫ V

0 V · d(CV ) = C
∫ V

0 V dV = CV 2/2.

fact 10: The voltage on a capacitor cannot change moment-
arily, because a momentary change of the charge would require
an infinite current; the characteristic time of the voltage change
(with which the voltage will relax towards its equilibrium value)
is

τ = CR,

where R is the net resistance of the circuit connected to the
capacitor’s leads.

Indeed, consider a capacitor with voltage V , the leads of which
are attached to a resistance R. According to Kirchoff’s laws,
R dq

dt + q
C = 0, hence

dq

q
= − dt

CR
⇒ ln q − ln q0 = − t

CR
⇒ q = q0e

−t/RC .

Here, − ln q0 serves as an integration constant.

fact 11: In a simple R − C-circuit, charge (and voltage)
on the capacitor, as well as the current decay exponentially,
∝ e−t/τ .

Now, let us consider inductors. In the section “Electro-
magnetism’ we’ll learn that similarly to how electrical charges
give rise to an electric field, currents (moving charges) give rise
to a magnetic field, which is characterized by magnetic induc-
tion B (also referred to as the magnetic B-field). We’ll need
also the concept of magnetic flux Φ, which can be interpreted
intuitively (and loosely) as the number of magnetic field lines
passing through a closed (possibly fictitious) loop; in the case
of an homogeneous magnetic field perpendicular to the loop,
Φ = BS, where S is the surface area of the loop. The import-
ance of the concept of magnetic flux lies in the fact that if it
changes in time, an emf. is created in the loop (circuit), see
below.

So, any current in a circuit gives rise to a magnetic field,
which, in its turn, will cause a magnetic flux passing through
that electric circuit. Typically, however, that flux is relatively
small so that the emf. caused by it can be neglected. In order
to create a larger flux, coils (inductors) are used. Increasing the
number N of overlapping wire loops has two-fold effect: first,
the current in the circuit will pass N times parallel to itself,
giving rise to a N -fold increase of the magnetic field; second,
the magnetic field lines pass now the circuit N times, giving
rise to another factor N for the magnetic flux.

fact 12: Self-inductance of an inductor (often called just
“inductance”) is defined as

L = Φ/I,

where I is the current flowing through the inductor, and Φ is
the magnetic flux created by that current passing through the
inductor itself 16. Unless otherwise noted, the inductance may
be assumed to be independent of current 17.

fact 13: Electromotive force created in a circuit due to
changing magnetic field

E = −dΦ/dt,
where Φ is the magnetic flux through the circuit. If Φ is created
by the self-inductance effect in an inductor, we obtain

E = −LdI/dt.
The minus sign refers to the fact that this electromotive force
tries to oppose the current change.

fact 14: The energy stored in an inductor
W = LI2/2.

Indeed, consider the electrical work needed to create a current
in an inductance: A =

∫
E · dq =

∫
E · Idt =

∫
LdI

dt · Idt =
L
∫
IdI = LI2/2.

fact 15: The current through an inductance cannot change
momentarily, because this would cause an infinite electromot-
ive force; the characteristic time of the current change (with
which the current will relax towards its equilibrium value) is

τ = L/R,

where R is the net resistance of the circuit connected to the
inductance leads.

Indeed, consider an inductance with current I, the leads of
which are attached to a resistance R. According to Kirchoff’s
laws, RI + LdI

dt = 0, hence
dI

I
= −Rdt

L
⇒ ln I − ln I0 = −Rt

L
⇒ I = I0e

−Rt/L.

Here, − ln I0 serves as an integration constant.

fact 16: In a simple L − R-circuit, inductor current (and
voltage) decays exponentially, ∝ e−t/τ .

idea 29: Energy conservation law can be used to calculate
heat dissipation. In addition to capacitors’ and inductances’
energies (c.f. facts 9 and 14), the work done by electromotive
force needs to be taken into account: A =

∫
EI · dt =

∫
Edq; if

E is constant, this simplifies into
A = E · δq,

where δq is the charge passing through the electromotive force.

idea 30: If a battery is connected in series to a capacitor,
the charge passing through the battery can be found as the
change of charge on a plate of the capacitor:

δq = C · δV,
where δV is the change of the capacitor’s voltage.

pr 51. A capacitor of capacitance C is charged using a bat-
tery of electromotive force E . Find the heat dissipated during
the charging process (either via a spark or in the wires or in
the battery due to (inner) resistance.

16One can also speak about the inductance of simple circuit wires: although the inductance of simple wires is small, there are applications where it
cannot be neglected

17However, in the case of inductors with ferromagnetic coils, there is an essential non-linearity: the inductance will decrease with increasing current.

— page 15 —
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This is a very simple problem which we solve here to show
the procedure. During the charging process, a plate of the
capacitor obtains charge q; this charge necessarily needs to
come through the battery, hence the work done by the battery
A = qE = CE2. Part of this work is accumulated as the poten-
tial energy of the capacitor, W = CE2/2; the rest is dissipated
as a heat, Q = A−W = CE2/2.

pr 52. A capacitor of capacitance C is charged so that its
voltage is V0. The capacitor is discharged on a series connec-
tion of a diode and resistor R. Assume that the following graph
provides a good approximation for the V –I dependence of the
diode and that the capacitor is discharged down to the voltage
Vd . Find the amount of heat which is dissipated on the resistor.

pr 53. A capacitor is charged by connecting it to a series
connection of a battery of electromotive force E , inductor of
inductance L, and a diode. For the V –I dependence of the
diode use the graph of the previous problem; inner resistance
of the battery is negligible. To which voltage the capacitor will
be charged, assuming that E > Vd?

idea 31: If a circuit includes a set of the plates of capacit-
ors which is isolated electrically from the rest of circuit by the
dielectric insulating layers of the capacitors, the net charge on
these plates is conserved.

For instance, consider a series connection of two capacitors
which were initially charge-free. Then the set of two plates
(shown in figure) forms an electrically insulated system, hence
the net charge there will remain always zero, i.e. the two capa-
citors will bear always equal by modulus charge.

pr 54. Show that the series connection of capacitors of ca-
pacitance C1, C2,. . .Cn has net capacitance C = (C−1

1 +C−1
2 +

. . . C−1
n )−1.

pr 55. Three identical charge-less capacitors of capacitance
C are connected in series. The capacitors are charged by con-
necting a battery of electromotive force E to the terminal leads
of this circuit. Next, the battery is disconnected, and two res-
istors of resistance R are connected simultaneously as shown
in figure below. Find the net heat which will be dissipated on
each of the resistances.

idea 32: Extremal currents and voltages can be often found
from the energy conservation law by noting that (a) at the mo-
ment of an inductor’s current extremum, dI

dt = 0, hence the
voltage on the inductor V = LdI

dt = 0; (b) at the moment of
a capacitor’s voltage extremum, dV

dt = C−1 dq
dt = 0, hence the

current through capacitor’s leads I = dq
dt = 0.

pr 56. Consider the electrical circuit given below: initially
chargeless capacitors C1 and C2 were connected to a battery,
and at certain moment, the key K will be closed. After that
moment, current and voltage will start oscillating. For these
oscillations, you need to find (a) the maximal current Imax
through the inductor; (b) the maximal voltage Vmax on the
capacitor C1.

One way of solving this problem is using the idea 32, to-
gether with the energy conservation law. The second way is to
study the voltage (and current) oscillations in the circuit. LC-
circuit oscillations will be studied later in more details; here it
is enough to formulate one more “fact”.

fact 17: In a closed circuit consisting of a capacitor C and
an inductor L, current through the inductor and voltage on
the capacitor will oscillate sinusoidally with circular frequency
ω0 = 1/

√
LC, e.g. V = V0 sin(ω0t+ φ).

Indeed, for such a circuit, Kirchoff’s voltage law states that
q/C + LdI

dt = 0; here, q is the capacitor’s charge, and I = dq
dt ,

hence q+LC d2I
dt2 = 0. This is a second order linear differential

equation, the solution of which is given by q = q0 sin(ω0t+ φ),
where the constants q0 and φ can be found using the initial
conditions (e.g. the current and voltage values at t = 0), c.f.
Formula sheet I-3.

idea 33: If the task is to find a temporal dependence of a
voltage or current, and the circuit contains one or more batter-
ies or constant current sources, the solution can be found as
a superposition of a stationary solution (when all the voltages
and currents are constant), and a solution obtained for a sim-
plified circuit, where all the ideal batteries are substituted with
wires, and the current sources are “cut off”.

Note that this idea can be used equally well for L−C-circuits,
L−R-circuits, and C −R-circuits. In particular, in L−R and
CR-circuits, the solutions tend exponentially (as described by
the facts 11 and 16) towards the stationary solutions.
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pr 57. Under the assumptions of the previous problem,
sketch the voltage on the capacitor C1 as a function of time.

idea 34: If a constant voltage V is applied to the leads
of an inductor, its current will start changing linearly in time:
LdI

dt = V ⇒ I = I0 + V t/L.

pr 58. The circuit below makes it possible to charge a re-
chargeable battery of voltage E = 12 V with a direct voltage
source of a voltage lower than E , V0 = 5 V. To that end, the
key K is periodically switched on and off — the open and
closed periods have equal length of τ = 10 ms. Find the aver-
age charging current assuming that L = 1 H. The diode can
be considered to be ideal; neglect the ohmic resistance of the
inductor.

idea 35: For circuits containing L and R or C and R, at
time-scales much shorter then the characteristic times

τ = RC or τ = L/R,

the capacitor’s charge and inductor’s current remain almost
constant. In particular, if a capacitor was chargeless, its voltage
remains almost zero, i.e. it is essentially short-circuited; if there
was no current in an inductor, its current remains zero, i.e. the
wire leading to the inductor can be considered as broken. If
a capacitor had a charge Q corresponding to a voltage V0, its
voltage remains essentially constant, i.e. it acts as (and can be
substituted by) a battery of emf. E = V0. Similarly, if an in-
ductor had a current I0, it can be substituted by a respective
constant current source.

At time-scales which are much longer than the characteristic
times, the situation is reversed: inductor can be considered as a
short-circuiting wire, and capacitor as an insulator. This is be-
cause all the currents and voltages tend exponentially towards
the equilibrium state so that the difference from the equilib-
rium value ∆ ∝ e−t/τ : the capacitor charge is almost constant,
hence there is no current, and the inductor current is almost
constant, hence no electromotive force.

pr 59. The key of the circuit given below has been kept
open; at certain moment, it is closed. (a) What is the ammeter
reading immediately after the key is closed? (b) The key is
kept closed until an equilibrium state is achieved; what is the
ammeter reading now? (c) Now, the key is opened, again; what
is the ammeter reading immediately after the key is opened?

The short-time-approximation of the idea 35 can be further
improved with the help of the following idea.

idea 36: If the considered time interval is much less than
RC or L/R, the time dependence of the capacitors’ charges
and inductors’ currents can be liberalized: q = q0 + Ict, where
Ic is an almost constant current feeding the capacitor, and
IL = I0 + VLt/L, where VL is an almost constant voltage ap-
plied to the leads of the inductor.

pr 60. Capacitor of capacitance C and resistor of resistance
R are connected in parallel, and rectangular current pulses (see
figure) are applied to the leads of the system. Assuming that
I2 = −I1 and that at the moment t = 0, the capacitor had
no charge, sketch the voltage on the capacitor as a function of
time (a) if T ≫ RC, and (b) if T ≪ RC.

Now assume that the periodic input current has been applied
for a very long time (for much longer than RC), and let us
now longer assume I2 = −I1. Find the average voltage and
the amplitude of the voltage oscillations on the capacitor if (c)
T ≫ RC, and (d) if T ≪ RC.

The last part of this problem requires one more idea.

idea 37: Suppose that a periodic signal is applied to a circuit
containing two or more of the following elements: resistances
(R), capacitors (C), inductances L, nonlinear elements such as
diodes. If the system has evolved long enough (much longer
than RC and L/R, so that the system response has also be-
come periodic), the average voltage on the leads of an inductor
is zero, and the average current through each capacitor is zero.

Indeed, the voltage on an inductor can be expressed via its cur-
rent, V = LdI

dt , and an average non-zero voltage would imply a
non-constant average current, d⟨I⟩

dt = ⟨V ⟩ ̸= 0, which violates
the assumption that the system response has become periodic.
Similarly, a non-zero average current through the wires leading
to a capacitor would imply a non-constant average charge on
the plates of it.

This idea is illustrated with one more problem.

pr 61. Alternating voltage V = V0 cos(2πνt) is applied to
the leads of the circuit shown below. Sketch the graphs of the
resistor’s and diode’s currents as a function of time.

Finally, there is one more idea which can be used when it
is needed to find a charge passing through a resistor.

idea 38: If a circuit contains a current loop (as defined for
idea 13) which contains a resistor R, an inductor L, and/or
embraces an externally applied magnetic flux Φ, the charge
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passing through the resistor can be expressed in terms of the
change of the magnetic flux (both external and self-induced):

q = (δΦ + LδI)/R.

Indeed, this follows immediately from the Kirchoff’s voltage law
dΦ
dt +LdΦ

dt = RI = R dq
dt , which can be written as dΦ +L · dI =

R · dq and easily integrated.

pr 62. In order to measure magnetic induction, the follow-
ing device can be used. A small coil with N loops, surface area
S and inductivity L is connected to a ballistic galvanometer
which is graduated to show the total charge of a current pulse
18. The coil is placed into a magnetic field so that the axis of
the coil is parallel to the magnetic field. With a fast motion,
the coil is flipped around by 180◦ (so that axis is again parallel
to the magnetic field); find the total charge of the current pulse
passing through the galvanometer if the total ohmic resistance
of the coil and wires is R

The next idea can be considered to be a limit case of the
idea 35, but it can be formulate as a more generic conservation
law.

idea 39: If a circuit includes a current loop which is entirely
in a superconducting state (i.e. with strictly zero resistance),
the magnetic flux through it is conserved, Φ = Const. This
follows directly from the Kirchoff’s voltage law for the super-
conducting circuit, dΦ

dt = 0. If the flux is only due to the
self-inductance, and there is only one inductor of inductance L
in the circuit then LI = Const; if L is constant then also I is
constant.

In the Section “Electromagnetism’, there will be more ex-
amples for the application of this idea (involving external fields
and mutual induction); here just one problem is provided.

pr 63. [IPhO-1994] Superconducting magnets are widely
used in laboratories. The most common form of superconduct-
ing magnets is a solenoid made of superconducting wire. The
wonderful thing about a superconducting magnet is that it pro-
duces high magnetic fields without any energy dissipation due
to Joule heating, since the electrical resistance of the supercon-
ducting wire becomes zero when the magnet is immersed in
liquid helium at a temperature of 4.2 K. Usually, the magnet
is provided with a specially designed superconducting switch,
as shown in Fig. 1. The resistance r of the switch can be
controlled: either r = 0 in the superconducting state, or in
the normal state. When the persistent mode, with a current
circulating through the magnet and superconducting switch in-
definitely. The persistent mode allows a steady magnetic field
to be maintained for long periods with the external source cut
off.

The details of the superconducting switch are not given in
Fig. (a). It is usually a small length of superconducting wire
wrapped with a heater wire and suitably thermally insulated
from the liquid helium bath. On being heated, the temperat-
ure of the superconducting wire increases and it reverts to the
resistive normal state. The typical value of is a few ohms. Here

we assume it to be 5 Ω. The inductance of a superconducting
magnet depends on its size; assume it be 10 H for the magnet
in Fig. (a). The total current I can be changed by adjusting
the resistance R.

The arrows denote the positive direction of I, I1 and I2.

(a) If the total current I and the resistance r of the super-
conducting switch are controlled to vary with time in the way
shown in Figs. (b)-i and (b)-ii respectively, and assuming the
currents I1 and I2 flowing through the magnet and the switch
respectively are equal at the beginning (Fig. (b)-iii and Fig. (b)-
iv), how do they vary with time from t1 to t4? Plot your answer
in Fig. (b)-iii and Fig. (b)-iv.

t
t t t t
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I/2
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t t t t
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t
t t t t

II

I/2

t

t t t t

II

I/2

I
(b-i)

(b-ii)

(b-iii)

(b-iv)

(b) Suppose the power switch K is turned on at time t = 0
when r = 0, I1 = 0 and R = 7.5 Ω, and the total current I is
0.5 A. With K kept closed, the resistance r of the supercon-
ducting switch is varied in he way shown in Fig. (c)-ii. Plot the
corresponding time dependences of I, I1 and I2 in Figs. (c)-i,
(c)-iii and (c)-iv respectively.

r
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2 3 min
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(c)

I

I

I

(c) Only small currents, less than 0.5 A, are allowed to flow
through the superconducting switch when it is in the normal
state, with larger currents the switch will be burnt out. Sup-

18 The needle of the ballistic galvanometer has a large inertia, it will take some time before it will reach the equilibrium position; because of that, if
a short current pulse is let through such a galvanometer (shorter than the response time of the galvanometer), the maximal declination of the needle
will be proportional to the total charge of the pulse.
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pose the superconducting magnet is operated in a persistent
mode, i. e. I = 0, and I1 = i1(e.g. 20 A), I2 = −i1, as shown
in Fig. (d), from t = 0 to t = 3 min. If the experiment is to be
stopped by reducing the current through the magnet to zero,
how would you do it? This has to be done in several operation
steps. Plot the corresponding changes of I, r, I1 and I2 in
Fig. (d)
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(d) Suppose the magnet is operated in a persistent mode with
a persistent current of 20 A [t = 0 to t = 3 min. See Fig. (e)].
How would you change it to a persistent mode with a current
of 30 A? plot your answer in Fig. (e).

(e)
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Problems involving ideas 29–38
pr 64. There are three identical lamps which are connected

to a battery as shown in figure; the current through each lamp
is I. Find the currents immediately after the key is opened.

pr 65. Capacitor of capacitance C and resistor of resistance
R are connected in series, and rectangular voltage pulses (see
figure) are applied to the leads of the system. Find the aver-
age power which dissipates on the resistors assuming (a) that
T ≫ RC; (b) that T ≪ RC.

pr 66. Determine the time constant for the circuit shown
in figure (i.e. for the process of charging the capacitor, time
interval during which the charging rate drops e times).

pr 67. A boy wants to build decorative lights using 50 light
emitting diodes, to be fed by AC-voltage V = V0 cos(2πνt),
with V0 = 311 V and ν = 50 Hz. The circuit he plans to
use is given below. The voltage of his light emitting diodes
can be taken equal to 3 V (it remains constant for a wide
range of forward currents); the nominal current is 20 mA.
Find the optimal value of the resistor R (ensuring a nom-
inal operation of the diodes), and minimal value of the ca-
pacitance C, if the current variations need to be less than
5%. The rectifying diode D can be considered to be ideal.

pr 68. [EstFin-2012] For the circuit shown in Figure, R1 =
3R, R2 = R, C1 = C2 = C, and L1 = L2 = L. The electromot-
ive force of the battery is E . Initially the switch is closed and
the system is operating in a stationary regime.
(a) Find the reading of the voltmeter in the stationary regime.
(b) Now, the switch is opened. Find the reading of the volt-
meter immediately after the opening.
(c) Find the total amount of heat which will be dissipated on
each of the resistors after opening the switch, and until a new
equilibrium state is achieved.

V

ε

L
2

L
1

R
2

R
1

C
2

C
1

pr 69. [EstFin-2008] A voltage rectifier is made according
to the circuit depicted in Figure. The load R = 10 kΩ is fed
with DC, equal to I = 2 mA. In what follows we approximate
the U-I characteristic of the diode with the curve depicted in
Figure. The relative variation of the current at the load has to
satisfy the condition ∆I/I < 1%.
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(a) Find the average power dissipation at the diode at the work-
ing regime of such a circuit.
(b) Determine the amplitude of the AC voltage (with frequency
ν = 50 Hz), which has to be applied at the input of the circuit.
(c) Find the required capacitance C.
(d) Find the average power dissipation at the diode during the
first period (of AC input voltage) immediately following the
application of AC voltage to the input of the circuit.

pr 70. [Est-Fin-2010]
(a) Consider the circuit given in Fig (a), where the diode can
be assumed to be ideal (i.e. having zero resistance for forward
current and infinite resistance for reverse current. The key is
switched on for a time τc and then switched off, again. The
input and output voltages are during the whole process con-
stant and equal to Ui and Uo, respectively (2Ui < Uo). Plot
the graphs of input and output currents as functions of time.

(b) Now, the key is switched on and off periodically; each time,
the key is kept closed for time interval τc and open — also for
τc. Find the average output current.

(c) Now, circuit (a) is substituted by circuit (b); the switch is
switched on and off as in part ii. What will be the voltage
on the load R, when a stationary working regime has been
reached? You may assume that τc ≪ RC, i.e. the voltage vari-
ation on the load (and capacitor) is negligible during the whole
period (i.e. the charge on the capacitor has no time to change
significantly).

pr 71. [IPhO-2001] A sawtooth voltage waveform V0 can
be obtained across the capacitor C in Fig. (A); R is a variable
resistor, Vi is an ideal battery, and SG is a spark gap con-
sisting of two electrodes with an adjustable distance between
them. When the voltage across the electrodes exceeds the fir-
ing voltage Vf , the air between the electrodes breaks down,
hence the gap becomes a short circuit and remains so until the
voltage across the gap becomes very small.
(a) Draw the voltage waveform V0 versus time t, after the switch
is closed.
(b) What condition must be satisfied in order to have an al-
most linearly varying sawtooth voltage waveform V0? Copy
your result onto the answer form.
(c) Provided that this condition is satisfied, derive a simplified
expression for the period T of the waveform. Copy your result
onto the answer form.
(d) What should you vary( R and/or SG ) to change the period
only? Copy your result onto the answer form.
(e) What should you vary (R and/or SG ) to change the amp-
litude only? Copy your result onto the answer form.

(f) You are given an additional, adjustable DC voltage supply.
Design and draw a new circuit indicating the terminals where
you would obtain the voltage waveform described in Fig. (B).

pr 72. [Est-Fin-2013] An inductance L and a capacitor C
are connected in series with a switch. Initially the switch is
open and the capacitor is given a charge q0. Now the switch is
closed.
(a) What are the charge q on the capacitor and the current I
in the circuit as functions of time? Draw the phase diagram
of the system — the evolution of the system on a I − q graph

— and note the curve’s parameters. Note the direction of the
system’s evolution with arrow(s).
A Zener diode is a non-linear circuit element that acts as a
bi-directional diode: it allows the current to flow in the pos-
itive direction when a forward voltage on it exceeds a certain
threshold value, but it also allows a current to flow in the oppos-
ite direction when exposed to sufficiently large negative voltage.
Normally the two voltage scales are quite different, but for our
purposes we will take a Zener diode with the following volt-
ampere characteristics: for forward currents, the voltage on
the diode is Vd, for reverse currents, the voltage on the diode is
−Vd, for zero current the voltage on the diode is −Vd < V < Vd.
Now we connect the inductance L, the capacitor C all in series
with a switch and a Zener diode. The switch is initially open.
The capacitor is again given the charge q0 > CVd and the
switch is then closed.
(b) Make a drawing of the phase diagram for the system. Note
the direction of the system’s evolution with arrow(s).
(c) Does the evolution of the system only necessarily stop for
q = 0? Find the range of values of q on the capacitor for which
the evolution of the system will necessarily come to a halt.
(d) Find the decrease ∆q in the maximum positive value of the
capacitor’s charge q after one full oscillation. How long does it
take before oscillation halts?

pr 73. [EstFin-2009] Consider an electric circuit consisting
of a coil of negligibly small inductance, consisting of N = 10
turns and with the surface area of a single loop S = 10 cm2),
resistors R1 = R2 = 3 Ω, capacitor C = 0.2 F, and an induct-
ance L = 1H, connected as shown in Fig. At the moment of
time t = 0, a magnetic field, parallel to the axis of the coil is
switched on. The induction of the magnetic field starts growing
linearly, starting from B = 0 until the maximal value B = 1 T
is achieved at t = 10 ms. Further, the induction of the magnetic
field remains constant (and equal to 1 T).
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(a) Find the current through the resistors R1 and R2 at the
moment of time t1 = 5 ms.
(b) Find the current through the resistors R1 and R2 at the
moment of time t2 = 15 ms.
(c) What is the net charge passing through the resistor R2?

pr 74. [Est-Fin-2014]
In order to obtain high voltage supply using a battery, the
following circuit is used.

An electromagnetic switch K1 connects a battery of electromot-
ive force E to an inductor of inductance L: it is closed if there
is no current in the inductor (a spring keeps it closed), but if
the inductor current reaches a critical value I0, magnetic field
created by the inductor pulls it open. Due to inertia, once the
key is open, it takes a certain time τK to close again even if
the current falls to zero.

For the diode D you may assume that its current is zero for any
reverse voltage (VD < 0), and also for any forward voltage smal-
ler than the opening voltage V0 (i.e. for 0 < VD < V0). For any
non-zero forward current, the diode voltage VD remains equal
to V0.

You may express your answers in terms of L, E , I0, V0, R, and
the capacitance C (see figure).

a) At first, let the key K2 be open. If the initial inductor
current is zero, how long time τL will it take to open the key
K1?

b) Assuming (here and in what follows) that L/R ≪ τK ≪ τL,
plot the inductor current as a function of time t (for 0 ≤ t <

3τL).

c) What is the maximal voltage Vmax on the resistor R?

d) Assuming that Vmax ≫ V0, what is the average power dis-
sipation on the diode?

e) Now, let the key K2 be closed, and let us assume simplify-
ingly that V0 = 0; also, RC ≫ τL and τK > π

√
LC. Suppose

that the circuit has been operated for a very long time. Find
the average voltage on the resistor.

f) Find the amplitude of voltage variations on the resistor.

Alternating current
Alternating current (AC) and voltage are assumed to be sinus-
oidal, e.g. I = I0 sin(ωt+φ). Kirchoff’s laws are linear — they
involve only adding first powers of voltages and currents; hence,
as long as the circuit elements are linear (i.e. their properties do
not depend on the amplitude of the current or voltage), dealing
with Kirchoff’s laws means dealing with linear combinations of
voltages and currents. However, sine and cosine are not very

convenient functions for adding, in particular if different terms
have different phase shift φ. Luckily, using the Euler’s formula
(see appendix 5), sine and cosine can be substituted with ex-
ponential function, if we switch from real numbers to complex
numbers:

ei(ωt+φ) = cos(ωt+ φ) + i sin(ωt+ φ).
So, instead of using a sine or cosine, we write I = I0e

i(ωt+φ).
The exponential function is much easier to deal with, because
if we add different voltages or currents with the same fre-
quency, the term eiωt can be factorised, owing to the property
ea+b = ea · eb (see appendix 6). There is no need to worry that
physical quantities are typically measured in real numbers, and
now we have suddenly a complex current (and voltage): cur-
rent remains to be a real-valued quantity; when we write it in a
complex form, we just keep in mind that what we actually have
(in physical reality) is the real part of that complex number. So,
if we write I = I0e

i(ωt+φ), we assume that the physically meas-
urable current is Ir = ℜI0e

i(ωt+φ) = I0 cos(ωt+ φ) (ℜz stands
for “real part of z”).

Now, if we accept the complex form I = I0e
i(ωt+φ) =

I0e
iφ · eiωt, it is convenient to combine I0 and eiφ into what

we call the complex amplitude of the current,
Ic = I0e

iφ.

Then, all the currents and voltages are products of eiωt with the
complex amplitude, which means that for any linear combin-
ation of currents and voltages, the time-dependent factor eiωt

can be brought before the braces. If so, there is no need to write
always that term: typically, all the calculations are done just
with the complex amplitudes, the modulus of which gives us
the amplitude, |Ic| = |I0e

iφ| = |I0||eiφ| = I0, and the argument
of which gives us the phase shift, φ = arg I0 = arctan ℑIc/ℜIc

(for more details about those properties of complex numbers
which have been used here, see appendix 8).

From this brief theory we can draw the following conclu-
sions. Operating with complex amplitudes works well as long
as we have a single sinusoidal signal, and only linear circuit
elements are included. Inversely, complex amplitudes cannot
be used if (a) the signal is not sinusoidal, e.g. rectangular;
(b) if there are nonlinear elements, e.g. diodes, capacitors for
which capacitance depends on the charge, etc. If we have a su-
perposition of different frequencies and these assumptions are
satisfied, the different frequency signals need to be studied sep-
arately (superposition principle can be applied), and for each
component-signal, the complex amplitudes can be used. An
important case is the power dissipated in the circuit: this is a
nonlinear function of the voltage and current, and so we need
to be careful. Let I and V be the complex amplitudes of the
current and voltage. Then

P =
⟨
ℜIeiωt · ℜV eiωt

⟩
=
⟨
Ieiωt + Īe−iωt

2
· V e

iωt + V̄ e−iωt

2

⟩
,

where ⟨. . .⟩ denotes averaging over time, and bar over a sym-
bol denotes a complex conjugate (a+ bi ≡ a− bi; eiω = e−iω).
Upon opening the braces and using the fact that

⟨
ei2ωt

⟩
=⟨

e−i2ωt
⟩

= ⟨cos 2ωt⟩ + i ⟨sin 2ωt⟩ = 0, we obtain

P = IV̄ + V Ī

4
= |I||V |e

iφ1e−iφ2 + e−iφ1eiφ2

4
;

using the formula cosx = 1
2 (eix + e−ix), we end up with

P = |I||V |e
i(φ1−φ2) + e−i(φ1−φ2)

4
= 1

2
|I||V | cos(φ1 − φ2).
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Note that this can be rewritten as P = 1
2 ℜV Ī, because

ℜV Ī = |V ||I|ℜeiφ1e−iφ2 = |V ||I| cos(φ1 − φ2). Also, since
ℜV Ī = ℜ(ZI)Ī = ℜZ|I|2 = |I|2ℜZ, we can write

P = 1
2

|I|2ℜZ.

In order to get rid of the factor 1
2 , amplitudes are often sub-

stituted by root mean square (rms) amplitudes: Ũ = U/
√

2,
Ĩ = I/

√
2 (always make clear with which amplitude you are

dealing with).
And so, in the case of AC currents, it is convenient to deal

with complex amplitudes. Most often, the temporal depend-
ence in the form of eiωt is never written, and calculations in-
volve only the complex amplitudes.

Let us recall that at the leads of an inductor, U = LdI
dt .

Once we substitute here I = I0e
iωt we obtain immediately

U = iωLI0e
iωt. The prefactor of the exponent here is the com-

plex amplitude U0 = iωLI0 of the capacitor’s voltage; upon
denoting

ZL = iωL

we can rewrite the last equality as U0 = ZLI0; here, ZL is
called impedance. So, if dealing with complex amplitudes,
an inductor’s voltage and current satisfy the Ohm’s law in the
same way as in the case of resistors with a direct current (DC)

— just instead of a resistance, its impedance is to be used.
Similarly, for a capacitor we have U = q/C =

∫
I · dt/C =∫

I0e
iωt · dt/C = I0/iωC, i.e. U0 = I0ZC with

ZC = 1
iωC

.

Finally, for a resistor we have still the Ohm’s law U = IR =
I0e

iωt, hence U0 = ZRI0 with
ZR = R.

Sometimes this is called the “active resistance”, or “ohmic res-
istance”, emphasizing the difference from the “reactive” and
non-ohmic impedances ZL and ZC .

As a conclusion:

idea 40: For AC circuits, all the techniques learnt for DC cur-
rents can be used (Kirchoff’s laws, method of potentials etc.),
if calculations are made with the complex amplitudes, and im-
pedances are used as resistors: for the complex amplitudes of
the voltage and current, V = IZ, where Z is the circuit’s full
impedance; the phase shift between the voltage and current is
given by φ = argZ.

The only difference is in the way how the power dissipation is
to be calculated (see above).

idea 41: For AC circuits, the dissipated power
P = |I||V | cosφ = ℜV Ī = |I|2ℜZ.

NB! Here V and I are assumed to be the rms amplitudes; if we
deal with the real amplitudes, the factor 1

2 is to be added. Al-
ternatively, since there is no power dissipation on the inductors
and capacitors (for which φ = π

2 so that cosφ = 0), the power
can be calculated as the power dissipated in all the resistors,
for each of which P = RI2

R (IR being the resistor’s current).

Note that if we deal with AC appliances and cosφ is small, for a
given required power dissipation, the current needs to be larger
than what would be in the case of larger values of cosφ. Un-
necessarily large current means unnecessarily large dissipation
losses in the power lines. The appliances based on inductors (in

particular those including electromagnetic motors) have intrins-
ically small cosφ. Therefore, if several appliances of small cosφ
are plugged simultaneously into a AC outlet, in order to reduce
the net current in the power lines, it would be a good idea to
equip some appliances with capacitors, which make the phase
shift opposite without introducing any additional power dissipa-
tion: when currents of opposite (or nearly opposite) phase shift
are added in the power lines, the large and opposite imaginary
parts of the complex current amplitudes cancel out, giving rise
to a significant reduction of the net current.

fact 18: It should be also mentioned that sometimes, the
concepts of reactive and apparent powers, Pr and Pa are used,
defined as

Pa = |V Ī| and Pr = ℑV Ī,
where ℑz stands for “imaginary part of z”.

However, these concepts are not very useful, and serve mainly
as tools to emphasize the importance of having large cosφ —
small reactive power.

pr 75. Consider a soldering gun of nominal power P = 30 W
and nominal voltage V = 220 V (AC voltage with frequency
ν = 50 Hz). Which capacitance needs to be connected in series
to the iron in order to reduce the power down to P1 = 20 W?

pr 76. [IPhO-1982] An alternating voltage of 50 Hz fre-
quency is applied to the fluorescent lamp as shown in the ac-
companying circuit diagram. The following quantities are meas-
ured: overall voltage (main voltage) V = 228.5 V, electric cur-
rent I = 0.6 A, voltage across the fluorescent lamp U ′ = 84 V,
ohmic resistance of the inductor Rd = 26.3 Ω. The fluorescent
lamp itself may be considered as an ohmic resistor in the cal-
culations.
(a) What is the inductance L of the series reactor?
(b) What is the phase shift φ between voltage and current?
(c) What is the active power Pw transformed by the apparatus?
(d) Apart from limiting the current the series inductor has an-
other important function. Name and explain this function!
Hint: The starter (denoted by a circle with “S”) includes a con-
tact which closes shortly after switching on the lamp, opens up
again and stays open.
(e) In a diagram with a quantitative time scale sketch the time
sequence of the luminous flux emitted by the lamp.
(f) Why has the lamp to be ignited only once although the ap-
plied alternating voltage goes through zero in regular intervals?
(g) According to the statement of the manufacturer, for a
fluorescent lamp of the described type a capacitor of about
C = 4.7µF can be switched in series with the series reactor.
How does this affect the operation of the lamp and to what
intent is this possibility provided for?

fact 19: In AC circuits the impedance of which is domin-
ated by capacitors and inductors, free oscillations of current
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and voltage can take place; the decay rate of oscillations is
defined by the ohmic resistance of the circuit. The frequency
of such an oscillation is called the natural frequency, or eigenfre-
quency; the corresponding current- and voltage oscillations are
referred to as the natural modes. If the circuit contains more
than one current loop, there may be more than one natural
frequencies. Then, if the circuit is left isolated from external
inputs, any current- and voltage dynamics in that circuit can
be represented as a superposition of the natural modes.

That superposition thing means mathematically that if we have
n nodes characterized by the node potentials ϕj , j = 1, . . . , n,
and m natural frequencies ωµ, µ = 1, . . .m, and in the case of
the µ-th natural frequency, the node voltages oscillate accord-
ing to the law

ϕj = Vµje
iωµt,

where Vµj is the complex amplitude of the potential of the j-
th node in the case of the µ-th natural mode, then arbitrary
motion of the system can be represented as

ϕj =
m∑

µ=1
AµVµje

iωµt,

where Aµ is a constant — the amplitude of the µ-th natural
motion. Such a decomposition into natural modes will be re-
visited in the section “Oscillations and waves”.

idea 42: The upper limit for the number of different non-zero
natural frequencies equals can be determined by representing
the circuit as a set of linearly independent loop currents as
the number of such current loops which contain at least two
different types of elements (e.g. inductors and resistors). In ad-
dition to that, each loop containing only inductors contributes
one zero-frequency mode: a constant current can circulate in
each such a loop.

In most cases, this upper limit provides the actual number of
the natural modes, at least when care is taken to decompose
the circuit into the current loops in such a way that there are
as many as possible non-contributing loops (which involve only
single-type elements). Note that among the natural frequen-
cies, some may be complex numbers; then, imaginary part of
the complex number gives the exponential decay of the cor-
responding mode. For instance, one can say that the natural
frequency of a simple RC-circuit is ω = i/RC; indeed, with
I = I0e

iωt = I0e
−t/RC we recover the fact 10.

fact 20: Suppose at a certain circular frequency ω, imped-
ance is very large, 1

Z(ω) ≈ 0. Then, a very small current driven
to the leads will give rise to a very large voltage V = IZ; this
phenomenon is called the voltage resonance. Similarly, if the
impedance is very small, Z(ω) ≈ 0, we have a current reson-
ance: small input voltage will lead to a large current.

idea 43: The natural frequencies can be found as the reson-
ance frequencies; there are two options. First, you can select
two points A and B at the circuit, and equate the impedance of
the circuit between A and B to infinity and solve the equation
with respect to the frequency: although there is no input cur-
rent, there can be voltage oscillations at a resonant frequency,
because with V = IZ, I = 0, and Z = ∞, V can take any

value. Second option: select a point A the circuit and cut
the circuit at that point. Thus, one “half” of the point A be-
comes the first input lead A1 of the new circuit, and another
“half” becomes the second input lead A2. Since in the original
circuit, A1 and A2 coincide, they must have the same voltage:
voltage between A1 and A2 is zero. Finally, equate the imped-
ance between A1 and A2 to zero and solve it: although the
voltage is zero, there can be a non-zero current I = U/R.

pr 77. [IPhO-1983] Let us consider the electric circuit in
the figure, for which L1 = 10 mH, L2 = 20 mH, C1 = 10 nF,
C2 = 5 nF, R = 100 kΩ. The switch K being closed, the circuit
is coupled with a source of alternating current. The current fur-
nished by the source has constant intensity while the frequency
of the current may be varied.

L 1

C1

L2

C2

R

i01

i02

A

B

K

(a) Find the ratio of frequency νM/∆ν, where νm is the fre-
quency for which the active power in circuit has the maximum
value Pm, and the frequency difference ∆ν = ν+ − ν−, where
ν+ and ν− are the frequencies for which the active power in
the circuit is half of the maximum power P = 1

2Pm.

The switch is opened in the moment t0 when there is no current
through the resistor. Immediately after the switch is open, the
intensities of the currents in the coils L1 and L2 are respect-
ively i01 = 0,1 A and i02 = 0,2 A. (the currents flow as in the
figure); at the same moment, the potential difference on the
capacitor with capacity C1 is U0 = 40 V.
(b) Calculate the frequency of electromagnetic oscillation in
L1C1C2L2 circuit;
(c) Determine the intensity of the electric current in the AB
conductor;
(d) Calculate the amplitude of the oscillation of the intensity
of electric current in the coil L1.

The idea 35 is useful in the case of AC, as well; let us
formulate this as another idea, which can be used to find qual-
itatively or asymptotically19 the dependence of something on
the frequency of the input signal, or to simplify the analysis ac-
cording to the idea 77 in those cases when the circuit includes
both large and small inductances and/or capacitors.

idea 44: At the limit of low frequencies, capacitors can be
“cut off”, and inductors — “short-circuited”; similarly, at the
limit of high frequencies, inductors can be “cut off”, and capa-
citors — “short-circuited”. Systematic analysis assumes that all
the appropriate limit cases are considered, e.g. for ω ≪ 1/RC,
|ZC | ≪ |ZR| and hence, if connected in parallel, the resistor
can be “cut off”, and if connected in series, the capacitor can
be short-circuited.

19at the limit high- or low frequencies
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Keep also in mind that at a voltage resonance, a parallel L−C

connection has an infinite impedance, and can be cut off; sim-
ilarly, at the current resonance, a series L− C connection has
a zero impedance, and can be short-circuited.

pr 78. In a black box with two output leads, there are three
components connected in series: a capacitor, an inductance,
and a resistor. Devise a method to determine the values of all
three components, if you have a sinusoidal voltage generator
with adjustable output frequency ν, an AC-voltmeter and an
AC-ammeter.

idea 45: Mathematically, electrical oscillations are analog-
ous to the mechanical ones, which are usually studied by writ-
ing down differential equations. Method of impedances allows
us to bypass this step. The safest method for verifying the
equivalence of a mechanical system with an electrical one is
to write down the differential equations (or systems of differ-
ential equations, if appropriate) describing the both systems
and verify that these two are mathematically equivalent. The
matching scheme is as follows: a capacitor’s charge or loop
current’s time integral corresponds to a coordinate of a point
mass; an inductance — to a mass; a capacitance — to a spring’s
stiffness.

pr 79. [IPhO-1987] When sine waves propagate in an infin-
ite LC-grid (see the figure below) the phase of the AC voltage
across two successive capacitors differs by φ.
(a) Determine how φ depends on ω, L and C (ω is the angular
frequency of the sine wave).
(b) Determine the velocity of propagation of the waves if the
length of each unit is l.
(c) State under what conditions the propagation velocity of the
waves is almost independent of ω. Determine the velocity in
this case.
(d) Suggest a simple mechanical model which is an analogue
to the above circuit and derive equations which establish the
validity of your model.

CC CL L

l l

In general, when dealing with two-dimensional problems,
complex number analysis is a more powerful tool than a vector
analysis, because everything what can be done with vectors,
can be also done with complex numbers: addition and subtrac-
tion, multiplication with a constant, and even the scalar and
vector products (although this is a little bit more tricky, see be-
low), but there are many more things what can be done with
the complex numbers (addition, division, taking powers and
exponents, etc). A hint for the way of obtaining scalar- and
vector products can be found in the idea 41: if we take two com-
plex numbers z1 and z2, and consider the product z1z̄2, then
ℜz1z̄2 equals to the scalar product of the respective vectors
z⃗1 and z⃗2, and ℑz1z̄2 equals to the z-component of the vector
product z⃗2 × z⃗1 (assuming that the real axis corresponds to
the x-axis, and the imaginary axis — to the y axis). However,
regardless of what have been said, there are cases when it is

more convenient to deal with vector diagrams of voltages and
currents, rather than with the complex amplitudes.

idea 46: If an AC-circuit problem turns out to be essentially
a geometrical problem, it is better to use vector diagrams in-
stead of complex amplitudes, i.e. to draw the vectors corres-
ponding to the complex amplitudes, and to study the problem
geometrically; keep in mind that using scalar product and rms.
amplitudes, P = U⃗ · I⃗.

pr 80. The circuit consists of a capacitor, inductance, and
two resistors, see figure. The voltage on both resistors is 10 V,
and the voltage between the leads A and B is also 10 V. Find
the applied voltage U0.

Problems involving ideas 40–46
pr 81. Consider a so-called Maxwell’s bridge shown in fig-

ure below, which is used for measuring the inductance L and
the ohmic resistance R of an inductor. To that end, the other
parameters are adjusted so that the voltage reading will be
zero. Assuming that such a state has been achieved, express L
and R in terms of R1, R2, RC and C.

pr 82. Below a circuit is given which makes it possible to
adjust the phase of a voltage signal. Show that if the output
current is negligibly small, its voltage amplitude will be the
same as at the input leads, but with a different phase. Find
the phase shift.

pr 83. A remote summer house receives electricity from a
power station over a rather long cable. To check the status
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of the cables, the power meter can also measure the voltage
supplied to the household. People left the summer house, and
switched all the other electricity devices off, but forgot the
transformer under the voltage (the transformer was used for
feeding low-voltage lamps). The transformer can be considered
as a series connection of an inductance L and ohmic resist-
ance r. Readings at the power meter of the house: when the
transformer was switched on, voltage U1 = 234.0 V and power
consumption P1 = 5 W;
when everything was switched off, voltage U0 = 236.0 V;
when the transformer is off, but an electric oven is switched on:
electrical power P2 = 1200 W, and voltage U2 = 219.6 V (oven
is a purely ohmic resistance R).

You may assume that the voltage at the power station (to which
the cables are connected) is always constant. Determine the
power of electrical energy which was dissipated in the power
cables (connecting the house with the power station).

pr 84. A circuit consists of two identical inductances, two
identical resistors, and two identical capacitors, see figure. The
applied voltage U0 = 10 V; the voltage on the lower inductance
is 10 V, and the voltage between the leads D and E is also 10 V.
Determine the voltage between the leads B and D.

pr 85. A circuit consists of two identical inductances, two
identical capacitors, and one resistor, see figure. The applied
voltage is U0 = 10 V, and the total current at the input leads
is I0 = 1 A; the voltage measured at the left capacitor is 10 V,
and 10 V is also measured at the left inductance. What is the
active power dissipated in this circuit and what is the resistance
of the resistor?

pr 86. Find the natural frequencies of the circuit given be-
low.

pr 87. Edges of a dodecahedron are made of wire of neg-
ligible electrical resistance; each wire includes a capacitor of
capacitance C, see figure. Let us mark a vertex A and its three
neighbours B, D and E. The wire segments AB and AD are
removed. What is the capacitance between the vertices B and
E?

pr 88. Determine all the natural frequencies of the circuit
shown in Figure. You may assume that all the capacitors and
inductances are ideal, and that the following strong inequalities
are satisfied: C1 ≪ C2, and L1 ≪ L2. Note that your answers
need to be simplified according to these strong inequalities.

pr 89. An electronic frequency filter consists of four com-
ponents as shown in figure: there are two capacitors of capa-
citance C, an inductor L, and a resistor R. An input voltage
Vin is applied to the input leads, and the output voltage Vout
is measured with an ideal voltmeter at the output leads, see
figure. The frequency ν of the input voltage can be freely ad-
justed. Find the ratio of Vout/Vin and the phase shift between
the input- and output voltages for the following cases: (a) at
the limit of very high frequencies; (b) at the limit of very low
frequencies; (c) in the case of such a frequency ν0 for which
there is no voltage on the resistor; (d) in the case of such a
frequency ν1 for which the power dissipation in the circuit is
maximal (assuming that the amplitude of the input voltage is
kept constant). Find also the frequencies ν0 and ν1.

pr 90. Initially: switch S in the circuit below is open; the
capacitor of capacitance 2C carries electric charge q0; the capa-
citor of capacitance C is uncharged; and there are no electric
currents in either the coil of inductance L or the coil of induct-
ance 2L. The capacitor starts to discharge and at the moment
when the current in the coils reaches its maximum value, the
switch S is instantly closed. Find the maximum current Imax
through the switch S thereafter.
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appendix 5: Euler’s formula
The standard way of generalizing a function F (x) from its real

argument x to complex argument z is by using a Taylor expan-

sion:

F (x) = F (x0) +
∑

F (n)(x0)(x− x0)n/n! :
in such a power series, we can just substitute x with z. Here,

F (n)(x0) stands for the n-th derivative of F (x), calculated at

x = x0. The structure of this power series is quite easy to un-

derstand: if we truncate it by keeping only the �rst N terms,

it approximates the function F (x) with such a polynomial of

N -th order for which the �rst N derivatives at x = x0 are equal

to those of the function F (x). Furthermore, the thrown-away

terms with n > N are small if |x−x0| is not very large, because
the denominator grows rapidly with n. By keeping more and

more terms, the approximation becomes increasingly accurate,

so that at the limit N → ∞, the series becomes equal to the

function.

With x0 = 0, the Taylor series for the exponent, sine, and

cosine functions are written as

ex =
∞∑

n=0

xn

n!
,

sin(x) =
∞∑

k=0

(−1)kx2k+1

(2k + 1)!
,

cos(x) =
∞∑

k=0

(−1)kx2k

(2k)!
.

Now, if we substitute in the expression of ex the argument x

with ix, we obtain

eix =
∞∑

n=0

(ix)n

n!
=

∞∑
k=0

[
(ix)2k

(2k)!
+ (ix)2k+1

(2k + 1)!

]
=

=
∞∑

k=0

[
i2kx2k

(2k)!
+ i · i2k ·x2k+1

(2k + 1)!

]
.

Let us notice that i2k = (i2)k = (−1)k; if we compare now the

series expansion for eix, and those of sin x and cosx, we see

that

eix = cosx+ i sin x.

appendix 6: Exponent of a sum of two complex
numbers
For real-valued arguments, the property ea+b = ea · eb is an

easy generalization from the same rule for integer arguments.

This is a very useful property, and actually the only reason

why the exponential function is easier to deal with than sine

or cosine, but it is not obvious why it should held for complex-

valued arguments. Since we generalized ex to complex-valued

arguments via the Taylor expansion, this series is the only thing

we can use to prove the validity of this property. So, we start

with

ea+b =
∞∑

n=0

(a+ b)n

n!
,

where a and b are complex numbers. Here we need the binomial

theorem (see appendix 7),

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k =

n∑
k=0

n!
k!(n− k)!

akbn−k,

which leads us to

ea+b =
∞∑

n=0

n∑
k=0

n!
k!(n− k)!

akbn−k

n!
==

∞∑
n=0

n∑
k=0

ak

k!
bn−k

(n− k)!
.

Now, let us substitute m = n−k; in this double sum, as n goes

from 0 to ∞, and k goes from 0 to n, the pair of numbers k,m

takes all the possible integer-valued combinations, with both

m and k varying from 0 to ∞:
∞∑

n=0

n∑
k=0

ak

k!
bn−k

(n− k)!
=

∞∑
k=0

∞∑
m=0

ak

k!
bm

m!
.

This double sum can be factorised, because one factor doesn't

depend on m, and the other one � on k, and constant terms

(independent of the summation index) can be brought before

the summation sign (before the braces):
∞∑

k=0

∞∑
m=0

ak

k!
bm

m!
=

∞∑
k=0

( ∞∑
m=0

ak

k!
bm

m!

)
=

∞∑
k=0

[
ak

k!

( ∞∑
m=0

bm

m!

)]
=

( ∞∑
k=0

ak

k!

)( ∞∑
m=0

bm

m!

)
= ea · eb.

appendix 7: Newton binomial formula
If we open the n braces in the expression (a+ b)n, we'll have a

sum of terms where each term is a product of n factors, each

of which is either a or b. In that sum, akbn−k will arise as

many times as many di�erent possibilities there is for select-

ing exactly k braces out of the total n braces: from the �se-

lected� braces we pick a as the factor entering a term in the

de-factorised sum, and from the �non-selected� braces we pick

b). This so-called number of k-combinations from a set of n

elements is denoted by
(

n
k

)
.

In order to �nd the number of possibilities for selecting k ob-

jects out of n objects, let us enumerate all the objects with

numbers from 1 till n. The number of permutations (di�erent

ways for ordering these enumerated objects) is n! (there is n

di�erent ways for picking the �rst object, n− 1 for picking the

second, etc). In the case of each ordering of the objects, we

�select� the �rst k ones. If we go through all the di�erent or-

derings, we de�nitely obtain all the di�erent ways of selecting

k objects, but each selection will be obtained many times: as

many times as we can re-order objects within a given selection.

The selected object can be re-ordered in k! di�erent ways, and
the non-selected objects � in (n− k)! di�erent ways. In order

to obtain the number of di�erent ways of selecting k objects,

we divide the overall number of permutations by the number

of di�erent ways of re-ordering, which results in
(

n
k

)
= n!

k!(n−k)! .

appendix 8: Basic properties of complex numbers
Complex numbers can be thought of as two-dimensional vec-

tors: the real part of a complex number z = x + iy de�nes

the x-coordinate of a vector, and the imaginary part � the

y-coordinate. What di�ers complex numbers from vectors is

that two complex numbers can be multiplied so that the result

is still a complex number (there is a vector product of two vec-

tors, but if we have two-dimensional vectors lying in x−y-plane,
the resulting vector will no longer lie in that plane). Because

of that, you can also divide two non-complex numbers with a

uniquely-de�ned result � as long as the divisor is not zero (you

cannot divide two non-parallel vectors!).

The modulus of a complex number is de�ned as the length

of the corresponding vector, |z| =
√
x2 + y2. Bearing in mind
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the geometrical (vectorial) representation and using Euler's for-

mula, we can write

z = |z|(cosα+ i sinα) = |z|eiα,

where α is the angle between the vector and the x-axis; this

is called the exponential form of a complex number, and α is

called the argument (arg) of the complex number. Apparently,

α = arctan y/x = arctan ℑz/ℜz.

Now, if we consider the product of two complex numbers,

z1 · z2 = |z1|eiα1 |z2|eiα2 = |z1||z2|ei(α1+α2).

Here, the right-hand-side of the equality is an exponential rep-

resentation of the complex number z1z2,which means that

|z1z2| = |z1||z2|,
and

arg z1z2 = arg z1 + arg z2.

Similarly, of course, |z1/z2| = |z1/z2| and arg z1/z2 = arg z1 −
arg z2.

Here is a list of simple but sometimes useful formulae:

ℜz = 1
2

(z + z̄),

where z = x− iy is called the complex conjugate of z;

|z|2 = zz̄.

Note that z̄ is a vector symmetric to z with respect to the

x-axis, and therefore
¯eiα = e−iα;

in particular, applying these two formulae for z = eiα results

in

cosα = eiα + e−iα

2
, sinα = eiα + e−iα

2i
.

If you need to get rid of a complex number in a denominator

of a fraction, you can use equality
z1

z2
= z1z̄2

|z2|2
.

Hints
1. Determine the surface area under the graph(count the cells

or approximate the shape with a set of trapezoids; pay at-
tention to the units of your surface area (mm · m).

2. The sum of the voltages on R1 and R2 is constant,
I1R1 + I2R2 = Const, hence one can find the change of
current through R2. Initially, I1 = I2; later, the difference
of these two currents goes to the lamp.

3. Resistors 4 and 5 are connected in parallel between B and
C.

4. Due to symmetry, there is no current through the bridge
resistor, hence it can be removed (the both leads of it
divide the overall voltage between the input leads of the
circuit in 2:3-proportion).

5. Find the currents in the upper resistors (2 Ω and 3 Ω) by
short-circuit the ammeter; the difference of these two cur-
rents goes to the ammeter.

6. For a voltmeter, the reading is proportional to the current
through it. Hence, you can find the current through V2;
use the Kirchoff’s current law for finding the ammeter’s
current.

7. The sum of the voltmeters’ readings is related to the sum
of their currents:

∑15
i=2 Vi =

∑15
i=2 rIi = r

∑15
i=2 Ii, which

equals to A2, as it follows from the idea 8 for the region
marked with a red line in the figure below; here, r is the
voltmeters’ inner resistance.

8. The left three resistors form a ∆-connection which can be
substituted by a Y -connection consisting of 1 Ω-resistors.

10. Substitute the entire circuit in figure with an equivalent
battery with Eeff = E R2

r+R1+R2
.

11. When solving using the idea 10: first find the inner resist-
ance of an equivalent battery; the equivalent electromotive
force will be found by comparing the currents of the two
systems when the output leads are short-circuited. When
using the idea 11: substitute all the batteries with current
sources; for a parallel connection of current sources, the
currents are just added, so it is easy to substitute a set
of current sources with a single equivalent current source
(and at the final step, the current source with a battery).

12. Assume that E1 is short-circuited and calculate the cur-
rents through the batteries I1n, n = 1 . . . 4; then as-
sume that E2 is short-circuited and calculate the currents
through the batteries I2n n = 1 . . . 4. The final answers
will be I1n +I2n, n = 1 . . . 4. Alternatively, show that after
mirroring the circuit with respect to the vertical axis, it re-
mains identical to itself, but the currents through R2 and
R4 will be reversed, hence these currents need to be zero,
hence these resistors can be “cut” off.

16. Assume that the circuit is equivalent to a battery of electro-
motive force E and inner resistance r; then write equations
for E and r analogously to how it was done for problem
15.

17. If a current I is let into one of the leads, it is distributed
equally between the three branches: I/3 flows in each. At
the next junction, each of these currents is divided equally,
again, so that the next wires have current equal to I/6.

18. For node-merging: merge B with F and C with E so that
A will be connected with the merged BF node (and BF

with CE) via a R/2-resistance. For edge-splitting: split
OD into resistors OD′ and OD′′, each of resistance 2R.

20. Consider symmetric current distributions: (A) I is driven
into one vertex (P ), and I/19 is driven out from all the
other 19 vertices; (B) I is driven out from a neighbouring
vertex of the vertex P , and I/19 is driven into all the other
19 vertices.

21. Reduce this problem to the previous one by representing
the missing wire as a parallel connection of R and −R: the
resistance of all the other resistors, except for the −R, is
given by the answer of the previous problem.

22. For the first half of the process, the transitions of the states
of the resistors will take place at the overall voltage values
V1 = 1.5 V and V2 = 5 V; for the second half, the respect-
ive transition voltages are V ′

2 = 3 V and V ′
1 = 1.25 V.
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23. The diode current can be expressed as E − IR; draw this
straight line onto the graph provided, and find the inter-
section point.

24. Find the tunnel diode current exactly in the same way as
for problem 23; let the intersection point voltage be V0.
Find the cotangent Rt = ∆V/∆I of the I(V )-curve at
that voltage (note that Rt < 0). Substitute the tunnel di-
ode with a series connection of a battery of electromotive
force V0 and resistance Rt. If the input voltage changes
by ∆V , the current will change by ∆I = ∆V/(R + Rt),
and the output voltage will change by R∆I, hence the
amplification factor n = R∆I/∆V .

26. Keep 4 more wires(four red ones in the left figure below);
short-circuit only four nodes as shown in figure; then, due
to symmetry, the middle point C of the green wire can be
also merged with the short-circuited nodes (because both
will have the same potential if a voltage is applied between
the leads A and B).

27. For the original polarity, the two leftmost diodes are open,
i.e. these can be short-circuited (resulting in a parallel
connection of the three leftmost resistors), and the third
diode is closed, i.e. can be “cut” off. For the reversed po-
larity, the states of the diodes are reversed: the rightmost
diode is open and short-circuits the four rightmost resist-
ors (which can thus be removed), and the other diodes are
closed so that the three leftmost resistors are connected in
series.

28. The voltage on the first diode is 1 V, hence the other di-
odes have a lesser voltage applied (resistors take also some
voltage), and are closed. As a result, the first diode can
be replaced by a battery of 1 V, and the other diodes —
“cut off”. The power dissipation on the first diode is found
as its voltage (1 V) times the current through it.

29. Calculate the electromotive force and internal resistance of
the battery which is equivalent to the set of four resistors
and the battery; internal resistance calculation can be sim-
plified, if the three ∆-connected resistors are substituted
with a Y -connection.

30. Substitute the three resistors and the battery with an equi-
valent battery with an internal resistance r; thus the prob-
lem is reduced to Pr. 23.

31. Note that IA/IB = RB/RA = 2, hence the fuse A will
melt first. Pay attention that in the second case, the fuse
B tolerates more current than the overall current by which
the fuse A melts.

32. The circuit breaks down into a combination of series- and
parallel connections. Using the given voltage values, one
can conclude that Rr

R+r = 2
3

2Rr
2R+r , where r is the volt-

meter’s resistance.

33. The radiated heat AT 4 equals to the electrical power V I;
also, R = V/I = BT (where A and B are constants).

34. First we apply the idea 6 and substitute the ammeters
with wires; then we apply the idea 5: the two vertically
positioned resistors connect directly the battery leads; the
other four resistors form two pairs of parallel-connected
resistors (these pairs are connected in series).

35. The voltage distribution between the voltmeters in this
circuit is defined by the ratio of the resistor’s resistance
R and the voltmeter’s internal resistance r. If we express
the ratio V3/V1 = 0.8 in terms of r/R (the battery voltage
cancels out from this equation), we obtain a square equa-
tion for x = r/R. Once we know r/R, we can also find
V2/V1.

36. Apply the result of the problem 11 for the particular case
of three batteries (one of which has E = 0).

37. Since there is no current through the ammeter, it can be
“cut” off. Additionally, since there was no current in the
ammeter, the voltages on R1 and R2 are equal; owing to
this, we can find the voltage V2 on R2. In order to find
the voltage on R3, we need its current, which goes also
through R2 and can be found as V2/R2.

38. Apply the idea 1 for the two cases (7 lamps and 8 lamps).

39. Solution is completely analogous to 34.

40. Apply the idea 9: it is not good to combine A1, A2 and
A3 into a Y , because we loose information supplied by the
problem conditions (currents I1 and I2 would be merged
into a single wire of the equivalent Y -connection). There-
fore, we substitute A2, A3 and A4 with a ∆-connection
(with each resistor having a resistance of 3r). We know the
sum of currents I2 in the two wires of the ∆-connection,
and we can find the current through that 3r-resistor which
is parallel to A1 as I1/3 (see idea 1). Hence we can de-
termine all the currents (knowing the currents, it is easy
to find also R/r). Alternatively, the problem can be solved
by making use of the idea 13.

41. For the first polarity, the leftmost diode short-circuits all
the other resistors, except for the two at the left upper
corner of the circuit. For the reversed polarity, the left-
most diode is closed (can be “cut” off), and the next diode
short-circuits five resistors which remain rightwards from
it.

42. Apply the solving technique of problem 19.

43. Apply the solving technique of problem 19.

44. Apply ideas 20 and 21 (use a negative resistor between
B and C); calculate all the pair-wise resistances (A − B,
A−C,and B −C) for the symmetric lattice; apply idea 9
to “cut off” the wire between B and C.

45. Apply the solving technique of problem 20.

46. Consider this side-less decagon as the decagon of the prob-
lem 45, which has additionally negative resistances −R
connected parallel between the sides AB and BC (idea 21).
Further, apply the generalized idea 9: represent the deca-
gon of the problem 45 as a Y -connection of 10 identical
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resistors. Finally, calculate the resistance using the idea
1.

47. (I) leave the wires as shown below by red, blue and green
lines; (II) short-circuit the nodes as shown by black lines
below.

For a precise calculation, consider this side-less octagon as
the octagon of the problem 45, which has additionally neg-
ative resistances −R connected parallel to the sides (idea
21). Further, apply the generalized idea 9: represent the
octagon of the problem 45 as a Y -connection of 8 identical
resistors. Finally, calculate the resistance using the idea
1.

48. Note that removing the first cell of this infinite chain will
increase its resistance exactly two times; use this fact to
apply the idea 16.

49. Apply the idea 25: short-circuit (and later, cut off) all
these wires which are not known to be intact; the ideas 18,
19, and 5 will be also useful.

50. First, we need to write down expression for the resistance
between i-th node and j-th node if there is a direct con-
nection between these two, and this can be done easily:
Rij = (φ(ij)

i − φ
(ij)
j )/I, where φ(ij)

k denotes the potential
of the k-th node when a current I is driven into the i-th
node, and driven out from the j-th node. Our plan is to
add up all the equations, and because of that, we don’t
want to have in our expression “if”-conditions, because it
is difficult to expect that such expressions will cancel out
when a sum is taken. The solution here is to multiply
this expression by the conductance σij of a direct connec-
tion between the two nodes: if there is a direct connection,
σij = 1/R, and the result will be Rij/R. If there is no
direct connection, the result will be zero, and hence, there
will be no contribution to the sum. The second issue is
that if we keep using the potentials φ(ij)

k , nothing will can-
cel out upon taking a sum: for each resistance Rij , we
introduce a new distribution of potentials (as indicated by
the upper indices). We clearly need to reduce the num-
ber of potential distributions. Luckily, this can be done
by using the superposition principle (similarly to the idea
20): we introduce a reference node, let it have index i = 1;
we consider n− 1 potential distributions φ(k)

j (2 ≤ k ≤ n)
when a current I is driven into the i-th node, and out of
the 1st node. Then, φ(ij)

k = φ
(i)
k −φ

(j)
k . What is left to do,

is to take a sum
∑

i,j Rij ; note that the summation order
can be chosen as needed, either

∑
i

∑
j Rij or

∑
j

∑
j Rij ;

don’t forget that with this sum, each node pair is counted
twice.

52. Repeat the solution of pr 51 while using the ideas 29, 30,
and 29 (which means that the energy loss at the diode
equals to Vd∆q, where ∆q is the charge change).

53. Use idea 29 to obtain an equation for the final voltage;
apply also ideas 30, and 29, and notice that at the initial

and final states, there is no current, hence no energy of
the inductor.

55. Initially, all the capacitors are charged to the voltage 1
3 E ,

i.e. q = 1
3CE . The total charge of the system “right plate

of the 1st + left plate of the 2nd capacitor + right plate of
the 3rd capacitor” (the system A) is conserved; at the final
state, when there is no current through the resistor, the
system A will be equipotential, and the applies to the sys-
tem B (consisting of all the other capacitor plates), hence
all the plates of the system A will have the same charge.

56. Part (a): apply ideas 29 and 32: for dI
dt = 0, there is no

voltage of L, and hence no voltage on C2, and hence a
voltage E on C1.
Part (b): use the same approach by noting that when
there is an extremal voltage on C1, there is also an ex-
tremal voltage on C2 (as the sum of these voltages gives a
constant E). Hence, there is no current through the wires
leading to C1, and there is no current through the wires
leading to C2; from the Kirchoff’s current law, there is also
no current through L.

57. Apply idea 33: find the voltage on C1 for the stationary
state of the system (constant I implies no voltage on L,
hence full E on C1). Next, short-circuit E (C1 and C2 be-
come parallel), and find the free voltage oscillations on C1
in the form V = V0 cos(ωt+φ) (what is ω?) and determine
V0 and φ from the initial condition (i.e. initial values of V
and dV

dt ).

58. During the first half-period when K is closed, the diode
receives the reverse voltage of the battery and, hence, is
closed; according to the idea 34, the current through the
diode grows linearly according to the applied voltage 5 V.
At the beginning of the second half-period, when the key
is opened, this current will be re-directed through the di-
ode; the diode will open since this is a forward current.
Now, the inductor will receive voltage −7 V, which corres-
ponds to a linear decrease of the current. Once the current
reaches 0 A, the diode will close again (a reverse voltage of
−7 V will be applied to it). The average charging current is
found as the charge through the battery (the surface area
under the I(t)-graph for the second half-period), divided
by the period.

59. (a) Initially, there was no charge nor current in the system;
hence, immediately after the key is closed, there is still no
current in L, according to the idea 35, we “cut” it off, and
there is still no charge nor voltage on the capacitor, hence
we short-circuit it; for such a simplified circuit, we can
easily calculate the ammeter current.
(b) Once a new equilibrium is achieved, according to the
idea 35, we “cut off” the capacitor, and short-circuit the
inductance.
(c) For the final part, the inductor will retain the current
of part (b), hence we substitute with the respective ideal
current source; the capacitor will retain the voltage of the
part (b), hence we substitute it with the respective ideal
battery. The circuit is further simplified by using the idea
6.
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60. (a) During each half-period, the capacitor will reach very
fast (as compared with the period length) a stationary
state: constant charge on the capacitor means no current,
so that all the current flows through the resistor.
(b) According to the idea 35, capacitor remains essentially
short-circuited, so that almost all the current goes to the
capacitor plates (and nothing goes to the resistor). Hence,
the charge q on the capacitor can be found using the idea
36; V = q/C.
(c) Use the graph from part (a); keep in mind that the
amplitude of oscillations is half of the difference between
the minimal and maximal values.
(d) There are still the same saw-tooth oscillations as in
part (b), but the value V0 around which the voltage oscil-
lates changes slowly, until a completely periodic behaviour
is reached; the stationary value of V0 can be found by ap-
plying the idea 37. the mean current

61. Characteristic time L/R is much larger than the period:
the current in the inductor will remain almost constant
during a period. Suppose the AC input voltage is switched
on; first, there is no current in inductor, it is as if “cut off”.
The diode is opened during a half-period: then, the diode
works as a resistance-less wire, and the inductor’s voltage
equals to the input voltage; during the other half-period,
the diode is closed, “cutting off” the right-hand-part of the
circuit: since there is no current in the inductor, there is
also no current in the resistor, and hence, no voltage on the
inductor. This means that when averaged over the entire
period, there is a positive voltage on the inductor: the in-
ductor current starts slowly increasing. Constant inductor
current means that the diode will remain open for a longer
time than a half-period. Now, in order to apply the idea
37, sketch a graph for the inductor voltage as a function
of time, and try to figure out, under which condition the
average inductor voltage will become equal to zero.

62. Notice that the external magnetic field changes from
−NBS to +NBS (or vice versa), and that the self-induced
flux is 0 both at the beginning and at the end (although
takes non-zero values in between); apply the idea 38.

63. (a) Notice that if r = 0, there is a superconducting loop
containing L and r, which means that I2 = Const); use
the Kirchoff’s current law to obtain I1 for t < t3; notice
that for t = t3, I1 = 0, so that even for t > t3, there is no
voltage on r, hence I2 = Const.
(b) At the moment t = 1 min, the characteristic time of the
circuit containing L will drop from infinity to a new value
(use the idea 33 to find it); analyse now the problem using
the idea 35 (the system will relax to the new equilibrium
state with the above mentioned characteristic time).
(c) There are three stages: first, reduce the current in r

(by increasing the total current) so that it falls below 0.5 A;
second, switch it to a normal conduction state and while
keeping I1 small, reduce I2 by reducing the total current
I2 (in order to keep I1 small, I1 = LdI1

dt r
−1
n needs to be

small, i.e. the process needs to be slow); third, switch r

back to superconducting state.
(d) First step is the same as for (c), second step is to in-

crease the total current further (from 20 Ato30 A) while
r = rn, third step is to make r = 0 and to decrease the
total current back to zero.

64. Apply the idea 35: immediately after the key is closed,
all the inductor currents are the same as before, which
you can find from the Kirchoff’s current law; knowing the
inductor currents, you can also find the currents in the
lamps.

65. (a) Apply the idea 35: during each half-period, a new equi-
librium will be reached, and the dissipated energy can be
found using the idea 29.
(b) Apply the idea 36: the capacitor’s voltage VC remains
essentially constant, hence the resistor’s voltage will be
V2 − VC , or V1 − VC , depending on the half-period. Upon
long-term evolution, the average current through the ca-
pacitor will be equal to 0, hence VC = 1

2 (V1 + V2).

66. According to the idea 33, short-circuit the battery, upon
which the parallel/series connection of the three resistors
can be substituted by a single equivalent resistor.

67. To begin with, notice that RC needs to be large, so that
the capacitor will keep almost a constant voltage during
each period (otherwise there would be large current fluctu-
ations). Next, the capacitor’s voltage will be equal to the
maximal voltage of the sinusoidal input voltage (the diode
is opened once during each period, when the input voltage
is maximal). Now, the resistance R can be found by com-
bining the Kirchoff’s voltage law (to obtain the resistor’s
voltage), and the Ohm’s law. During each period when the
diode is closed, the capacitor’s voltage will decrease by the
amount ∆V corresponding to the charge ∆Q which flew
through the light emitting diodes. On the other hand, the
allowed voltage variations can be expressed in terms of the
allowed current variations by using the Ohm’s law.

68. (a) Apply the ideas 35 (cut off the capacitors) and 6 (cut
off the voltmeter).
(b) Use the same approach as in part (a): substitute capa-
citors with batteries and inductors — with current sources.
(c) Apply energy conservation law (notice that the circuit
breaks down into two independent circuits, so that the
power dissipation can be calculated separately for each of
the circuits).

69. (a) Use the fact 5: P (t) = V · I(t) , where V is the diode
voltage, which is constant and can be brought before the
braces (i.e. the averaging sign), ⟨P ⟩ = V ⟨I⟩; apply the
idea 37 (together with the Kirchoff’s current law) to con-
clude that the average current through the diode equals to
the current through the load.
(b) Proceed in the same way as in Problem 67; do not
forget the diode opening voltage 1 V, which needs to be
subtracted from the AC voltage amplitude to obtain the
maximal voltage of the capacitor.
(c) Proceed in the same way as in Problem 67.
(d) Apply the idea 27 to the first period when the capacitor
is charged from zero volts up to the full working voltage.

70. (a) This problem is very similar to Pr 58: the inductor re-
ceives a constant voltage Ui when the key is closed, U0−Ui
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when the key is opened and there is a forward current
through the diode, and 0 V when the key is opened and
there is no current. This corresponds respectively to a lin-
early increasing, to linearly decreasing, or to a constantly
zero input current. Output current can be found from the
Kirchoff’s current law.
(b) See the hints of Pr 58.
(c) Apply the ideas 35, 37, and Kirchoff’s current law to
conclude the resistor current equals to the average output
current from part (b); then apply the Ohm’s law.

71. (a) Consider separately two cases: SG is open, we have a
simple RC-circuit with a battery; SG is closed, essentially
short-circuiting the capacitor and almost immediately dis-
charging it.
(b) During the charging cycle, the capacitor current needs
to remain almost constant; this current is defined by the
voltage falling onto the resistor throughout the cycle.
(c) Charging current times T gives the break-down charge
of the capacitor; equate this to the value defined by the
break-down voltage and C.
(d) Look at your expression for T .
(e) Notice that amplitude equals to V0/2. (f) Notice that
the required waveform can be obtained from the waveform
Vb(t) from the question (b) as V0 −Vb(t); construct circuit
which gives such an output.

72. (a) Apply fact 17; if V = V0 cos(ωt), current can be ex-
pressed as I = dq

dt , where q = V C.
(b) Apply the ideas 27 and 33: consider separately the
cases of forward and reverse currents; in both cases, there
is a sinusoidal signal with a shifted symmetry axis.
(c) The system will stop if there is no current, i.e. when
−Vd < V < Vd.
(d) Use your graph for question (b) to find the corres-
ponding change of the capacitor’s voltage ∆V (of course,
∆q = C∆V ).

73. (a) During the linear growth of B (from 0 ms to 10 ms, the
coil serves as an ideal battery of emf. NS dB

dt . Estimate the
characteristic times for two current loops: first involving
the coil and C, and second, involving the coil and L; com-
pare this with the time-scale of 10 ms. Apply the idea 35.
(b) Now, the coil operates essentially as a wire (as its in-
ductance is negligible); the current in R1 is defined by the
voltage obtained by the capacitor during the first 10 ms,
and the current in R2 is defined by the current induced in
the inductor during the first 10 ms.
(c) apply the idea 38 for the current loop consisting of the
coil, L, and R2.

74. (a) Write down the Kirchoff’s current law for the loop con-
taining L and E and keep in minde idea 34;
(b) when K1 opens, the current flows in loop L-R: study
the behaviour of current in time, keep in mind the idea 15
and pay attention to the fact that L/R ≪ τK ≪ τL;
(c) recall the intermediate result of the previous question
— how behaves I(t) on the inductor;
(d) use the idea 27; charge can be found by either using
the idea 38, or direct integration of the I(t)-dependance
(cf. fact 16);

(e) apply the idea 29: compare the energy released by the
inductor and the heat dissipation by keeping in mind that
in average, the capacitor’s energy remains constant;
(f) study, how large charge is lost on capacitor when the
diode is closed: keep in mind the idea 36.

75. Apply ideas 40 and 41: calculate the ohmic resistance
R of the gun from the nominal values, express the new
power dissipation as P1 = |I1|2R, where I1 = V/Z, with
Z = R+ 1/iωC.

76. (a) calculate the ohmic resistance of the lamp as U ′/I, and
apply the idea 40 (express the total impedance containing
L as an unknown, and take the modulus from the Ohm’s
law, written for the entire circuit, to obtain equation for
finding L).
(b) Apply idea 40 (the formula φ = argZ).
(c) Apply the idea 41 (keep in mind that we are dealing
with the rms amplitudes here).
(d) Apply the idea 35 (for a brief instance, the inductor
will act as a constant current source).
(e) Express the instantaneous power as a function of time
by substituting I = I0 cos(ωt) into the Joule’s law.
(f) Ignition is needed when the gas is insulating, i.e. when
there are almost no ions in the gas.
(g) Calculate the new power dissipation; does it change?
Compare the magnitudes of the active and reactive powers
of this device (see fact 18).

77. (a) Apply the ideas 40 and 41. Note that for the frequen-
cies ν+ and ν−, you’ll have a fourth order equation with
breaks easily down into two quadratic equations, one of
which has roots ν+ and −ν−, and the other one — −ν+
and ν−. Indeed, both negative and positive frequencies
must be the solutions, because they provide physically the
same signal, cos(ωt) = cos(−ωt), and each of these quad-
ratic equations have roots which are clearly different by
modulus. Because of that, the difference ν+ − ν− is ac-
tually the sum of the two roots of a quadratic equation,
which can be found using the Vieta’s formula.
(b) Apply the idea 42 to conclude that there is only one
non-zero natural frequency, and the idea 43 to find it
(equate the impedance between the left- and right-hand-
sides of the circuit to infinity).
(c,d) Note that there is a zero-frequency-mode: a constant
current can circulate in the loop formed by the two induct-
ors. The total current is the sum of such a constant cur-
rent, and a sinusoidally oscillating current; use the initial
conditions (the values of i01, i02, and U0), together with
the Kirchoff’s current law, and the fact that the ratio of
capacitor currents equals to the ratio of the capacitances,
to find the respective amplitudes.

78. Study the behaviour of the impedance of the black box
as a function of frequency, and pay attention to the low-
frequency asymptotics, to the high-frequency asymptotics,
and to the minimum of the modulus of the impedance.

79. (a) Apply the idea 40, together with either the method
of loop currents, or node potentials; keep in mind that
each next node has potentials and currents phase-shifted
by φ, for instance, ϕj+1 = ϕje

iφ, where ϕj is the poten-
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tial of the j-th node (we assume that the lower wire has
a zero-potential); once you eliminate potentials (or cur-
rents) from your system of equations, you should obtain
an equation relating ω to φ .
(b) Keep in mind that the phase speed of a wave is
vp = ω/k, and the phase shift is related to the wave vector
via equality φ = kl.
(c) Study the low-frequency limit of your result for part
(b).
(d) Use the idea 45 to compare two systems: an infinite
chain of springs and masses, and the given circuit; now it is
more convenient to work with the loop currents, and write
differential equations for charges passing through induct-
ors. This is because for the mechanical system, the second
derivative of each coordinate enters only into one of the dif-
ferential equations (the Newton’s II law); meanwhile, when
using the node potential method and capacitors’ charges,
the inductors’ currents (terms giving rise to second deriv-
atives) are expressed from the Kirchoff’s current law and
would involve the charges of all the capacitors).

80. Apply the idea 46. More specifically, notice that the four
vectors form a quadrilateral, opposing angles A and B of
which are right angles, hence this is an inscribed quadri-
lateral, and the other diagonal (other than AB) is the dia-
meter. Pay attention to the fact that the quadrilateral is
not convex, because the direction of the voltage vector on
L is obtained from that of R1 by a 90◦-counter-clockwise
rotation (multiplication by iLω/R1), and the direction of
the voltage vector on R2 is obtained from that of C by
the same rotation (multiplication by iCωR2. The prob-
lem simplifies further owing to the fact that two sides and
one diagonal of the inscribed quadrilateral are all equal to
each other.

81. Apply the idea 40, together with the idea 6: the circuit
breaks down into parallel and series connections. Express
the voltage on the voltmeter and equate it to zero; pay at-
tention to the fact that a complex number is zero if both
real and imaginary parts are zeros, i.e. one equation for
complex numbers gives actually two equations for the real-
valued quantities.

82. You can solve it either by straightforward calculations by
applying idea 40, or geometrically (idea 46).

83. Knowing P2, U2, and U0, one can easily find the resistance
of the power lines Rl. Further there are two options. First,
one can proceed via a brute-force approach and using the
idea 40: with the known voltage at the power station U0,
the values U1 and P1 yield two equations for finding two
unknowns, r and L.
Another and mathematically easier way is to use the idea
46: apply the cosine theorem to express the known voltage
at the power station via the voltage on the power lines
Ul = IRl, and the voltage on the transformer. This equa-
tion can be solved directly with respect to Pl = I2Rl once
you notice that the term with cosine can be written as
2PRl and hence, is already known.

84. Proceed similarly to the problem 80 (though, the quadrilat-
eral is not inscribed): show that the diagonal AE divides

the quadrilateral of voltages into two equilateral triangles.
More specifically, notice that lower and upper branches of
the circuit have identical impedances and hence, there is
no phase shift between the currents in them; because of
that, the voltage vector on AB is equal (hence also paral-
lel) to the one on DE; the same applies to the voltages on
BE and AD. Therefore, the triangle formed by voltage
vectors on AB, BE, and AE is equilateral; the same ap-
plies to the remaining triplet of voltages.

85. Apply the idea 46. Show that similarly to the problem 84,
the voltage vectors form two equilateral triangles. More
specifically, use the symmetry to show that the voltage
vectors on the two capacitors are equal to each other, and
the voltage vectors on the two inductors are equal to each
other. Details of exploiting the symmetry are as follows.
Rotate the circuit by 180◦, upon which the capacitors (and
inductors) are swapped, and the applied voltage becomes
negative; further, rotate the input voltage vector by 180◦:
the new and old circuits become identical, hence, all the
corresponding voltages are equal. In particular, if origin-
ally, the left capacitor had voltage U⃗C1 (from the input
lead towards the resistor), the originally right capacitor
has now also voltage U⃗C1, i.e. before the input voltage re-
versal, it had voltage −U⃗C1 (towards the resistor), which
means that originally, it had voltage U⃗C1, as measured
from the resistor to the input lead. Next, study the quad-
rilateral of the voltage vectors: its one diagonal gives the
input voltage, and the other one — the voltage on the res-
istor. While the current vector of the resistor is parallel
to the voltage vector, in the case of a capacitor it is ro-
tated by 90◦ clockwise, and in the case of an inductor —
by 90◦ counter-clockwise; use this observation when writ-
ing down the Kirchoff’s current law (for the node where
R, L, and C meet each other) to conclude that the cur-
rents in C, L, and R are all equal by modulus. Keep in
mind that while the difference of the current vectors of L
and C gives the resistor’s current, the sum of those gives
the input current. Finally, find the power dissipation and
the resistor’s resistance by using the resistor’s voltage and
current values.

86. Proceed according to the idea 43: “cut” the circuit near
one of the inductors and equate the impedance of the res-
ulting circuit to zero.

87. Apply the idea 40 to reduce the problem to a problem of
resistances, very similar to the problem 21. Similarly to
that problem, you need to apply the ideas 21 and 20. No-
tice that the segment AE is also essentially broken, and
once AB and AE are broken, we can keep DA because if
the output leads are B and E, there is no current in the
segment DA (due to symmetry); breaking BA and AE

is the same as connecting respective negative resistances;
with these negative resistances, we can perform a node
splitting at A, so that a negative resistance is connected
only between B and E.

88. First, count the number of degrees of freedom (i.e. the
number of natural frequencies). Further, notice that there
is one loop current, which involves only inductors through
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which a permanent current can circulate (this yields one
frequency). Next, apply the idea 44: two limit cases are
obtained: one circuit contains only L1 and C1 (use the
result of problem 86!), and the other — L2 and C2.

89. Use the idea 35: for (a), inductors can be “cut off”, and
the capacitors short-circuited; for (b) it is vice versa. For
(c), the impedance of the connection of inductors and capa-
citors needs to be inifinite (there is a voltage resonance),
and since there is no voltage on the resistor, it can be
short-circuited. For (d), the voltage on R needs to be
maximal, hence the modulus of the overall impedance —
minimal; this means that the impedance of the connection
of inductors and capacitors is zero (current resonance).

90. Keep in mind the idea 31. Find the maximal current Ix

when the switch is opened — either using the idea 32, or
using the idea 33 with fact 17. When the switch is closed,
we have two independent LC-circuits with the same fre-
quency, so the current in the switch is found as the differ-
ence between the two currents in these LC-circuits. Amp-
litude (and hence, the maximal value) can be found using
phasor diagram, phase shift is to be found from the ini-
tial charges on capacitors and initial currents in inductors
when the switch was closed.

Answers
1. R ≈ 14 Ω

2. I = 0.5 A

3. R = 0.5 Ω

4. R = 2.5 Ω

5. I = 3
22 A

6. I = 196µA

7. VΣ = 78 V

8. I = 21
19 A

9. I4 = 3 A, I3 = 2 A

10. P = 1
4

R2
(r+R1+R2)(R1+r) E2

11. r = (
∑n

i=1 r
−1
i )−1, E = r

∑n
i=1 Eir

−1
i

12. I2 = I4 = 0, I1 = I3 = E/R

15. R = R1( 1
2 +

√
1
4 +R2/R1)

16. r′ = R( 1
2 +

√
1
4 +R/r), E ′ = E

17. R = 5
6 Ω

18. RAO = 9
20R.

20. r = 19
30R

21. r = 19
11R

22. Straight lines connecting the following points: (0 s, 0 A);
(1.5 s, 1 A); (1.5 s, 0.6 A); (5 s, 2 A); (5 s, 5

3 A); (10 s, 10
3 A);

(17 s, 1 A); (17 s, 1.2 A); (18.75 s, 0.5 A); (18.75 s, 5
6 A);

(20 s, 0 A)

23. I ≈ 8 mA

24. approximately −1.4 times

26. 2
29R ≈ 0.414R < r < 4

9R ≈ 0.444R.

27. increases 16
9 times

28. 0.75 mW, 0 W, 0 W.
29. r′ = R 3R+2r

5R+3r , E ′ = E R
5R+3r , Pmax = E2R

4(5R+3r)(3R+2r)

30. I ≈ 3 mA
31. I1 = 1.5 A; I2 = 1.7 A
32. R = 40 kΩ
33. I ∝ V 0.6 or equivalently V ∝ I5/3

34. I1 = 0, I2 = 3E/R, I3 = I4 = 1.5E/R
35. V2 ≈ 8.65 V
36. V = (E1R2 − E2R1)/(R1 +R2 + R1R2

R3
)

37. V3 = 1 V
38. increases ≈ 1.14 times
39. 3 mA, 6 mA, 7 mA, and 14 mA.
40. R/r = 9
41. I1 = 0.7I0

42. RAB = R/3
43. r = R

44. r = 3
8R

45. r = 2R/n
46. r = 67

315R

47. R
3 < r < 5R

11 ; r = 6
17R

48. r = R 1
4 (3 +

√
17)

49. 40
87R ≤ r ≤ 47

87R

52. 1
2 (V0 − Vd)2C

53. 2(E − Vd)
55. 2

27CE2

56. C1E/
√
L(C1 + C2), E

(
1 + C1

C1+C2

)
57. Sinusoid with minima at V = E C1

C1+C2
and maxima at

V = Vmax; ω = 1/
√

(C1 + C2)L
58. 8.9 mA
59. 0 mA, 0 mA, and 0 mA
60. V = IR for the first half-period, and V = −IR for the

second half-period [more precisely, for each half-period,
the asymptotic values are reached exponentially, V =
±I1R(1 − 2e−∆t/RC), where ∆t is the time elapsed since
the beginning of the half-period]; saw-tooth profile which
grows linearly from 0 to I1T/C, and decreases linearly
down to 0 during the second half-period; (I2 + I1)R/2,
(I2 − I1)R/2; (I2 + I1)R/2, (I2 − I1)T/8C

61. IR = V0 cos(2πνt)/R, ID = V0[cos(2πνt) + 1]/R
(if we don’t use approximation Lω ≫ R then ID =
V0
√
R−2 + (2πνL)−2[cos(2πνt+ φ) + 1]).

62. 2BNS/R
63. See at the website of IPhO
64. 2I, I, and I

65. P = (U2 − U1)2/4R, and P = C(U2 − U1)2/T

66. τ =
(
R1 + R2R3

R2 +R3

)
C.

67. 8.06 kΩ, > 50µF
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68. E ; −2E ; LE2/(2R2), CE2/2 + LE2/(2R2).

69. P = 2 mW; U0 = 21 V; C ≥ 200µF; P1 = 200 mW

70.

J = τc

4L
U2

i

U0−Ui
; U0 = max

[
2Ui,

Ui

2

(
1 +

√
1 + τcR

L

)]
71. sawtooth profile consisting of curve segments V0 = Vi(1 −

e−t/RC) (from V0 = 0 till V0 = Vf ) and vertical line seg-
ments (from V0 = Vf till V0 = 0); Vi ≫ Vf ; T = VfRC/Vi;
R; both; for instance: use tha same circuit, but connect
another battery of emf. Vi − Vf and opposed polarity to
the node between the battery and the resistance, and take
output signal between the ‘−’-lead of the new battery, and
the top lead of the SG (many other solutions are possible).

72.

−CVd < q < CVd; ∆q = −4CVd, t = Nπ
√
LC, N =⌊

|q0|−CVd

2CVd

⌋
73. I1 ≈ 0.33 A, I2 = 5 mA; I ′

1 ≈ 5.6 mA, I ′
2 = Uτ/L =

10 mA; ∆q = LI ′
2/R2 = 3.3 mC.

74. a) τL = LI0/E ; b) Vmax = RI0; c) P = V0E
R ; d) Vav =√

EI0R
2 ; e) U0 = I0L

2C

√
I0

2RE .

75. 2.8µF

76. 1.09 H; 64.1◦ 59.9 W; to create huge voltage to ionize the
gas, graph ∝ 1+cos(2πνt) [or slightly raised: a+cos(2πνt)
with a > 1]; recombination time is large enough to keep
vapors in the plasma state; the current is almost the same
as before, the phase −63.6◦, this is to reduce the reactive
power if two lamps are in parallel

77. R
√
C/L; 1/

√
LC with L = L1L2

L1+L2
and C = C1 +C2; 0.1 A;

0.2 A

78. C = 1/ω limω→0 |Z(ω)|, L = limω→∞ |Z(ω)|/ω, R =
minω |Z(ω)|

79. φ = 2 arcsin
(

1
2ω

√
LC
)

; ωl/φ; φ ≪ 1 when v0 = l/
√
LC;

infinite chain of masses connected by springs

80. 20 V

81. L = R1R2C, R = R1R2/RC

82. 2 arctan(ωRC)

83. ≈ 300 W

84. 10
√

3V

85. 10 W, 30 Ω

86. ω =
√

5±1
2

√
LC

87. 11
18C

88. 0; 2√
L2C2

;
√

5±1
2

√
L1C1

89. 1, 0; 1, 0; 1, π, ν0 = 4π/
√

2LC;
√

1 + L
R2C , arctan L

R2C ,
ν1 = 2π/

√
LC

90. q0/
√

2LC.
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