
The 1st Gulf Physics Olympiad — Theoretical Competition
Riyadh, Saudi Arabia — Monday, March 21st 2016

• The examination lasts for 5 hours. There are 3 problems
worth in total 30 points. Please note that the point
values of the three theoretical problems are not
equal.

• You must not open the envelope with the prob-
lems before the signal of the beginning of compet-
ition.

• You are not allowed to leave your working place
without permission. If you need any assistance
(broken calculator, need to visit a restroom, etc), please
raise your hand until an organizer arrives.

• Use only the front side of the sheets of paper.

• For each problem, there are dedicated Solution Sheets
(see header for the number and pictogram). Write your
solutions onto the appropriate Solution Sheets. For each
Problem, the Solution Sheets are numbered; use the
sheets according to the enumeration. Always mark
which Problem Part and Question you are deal-
ing with. Copy the final answers into the appropriate

boxes of the Answer Sheets. There are also Draft pa-
pers; use these for writing things which you don’t want
to be graded. If you have written something that you
don’t want to be graded onto the Solution Sheets (such
as initial and incorrect solutions), cross these out.

• If you need more paper for a certain problem, please raise
your hand and tell an organizer the problem number; you
are given two Solution sheets (you can do this more than
once).

• You should use as little text as possible: try to
explain your solution mainly with equations, numbers,
symbols and diagrams. Though in some places textual
explanation may be unavoidable.

• After the signal signifying the end of examination
you must stop writing immediately. Put all the pa-
pers into the envelope at your desk. You are not al-
lowed to take any sheet of paper out of the room.
If you have finished solving before the final sound signal,
please raise your hand.
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Problem T1. Stabilizing unstable states
(11 points)
Part A. Stabilization via feedback (3.5 points)
Let us study, how an initially unstable equi-
librium position can be stabilized. First we
consider a reversed pendulum: a thin long
rod of homogeneous mass distribution and
length l is fixed at its lowest point to a hinge
so that it can freely rotate around the hinge.
We describe the position of the rod via the
angle φ between the rod and a vertical line.
We shall assume that φ ≪ 1 (φ is much
smaller than 1). The free fall acceleration
g = 9.8 m/s2.
i. (1.5 pts) Express the angular acceleration of the rod φ̈

in terms of φ, and the parameters l and g. Show that the
inclination angle φ as a function of time t is expressed as
φ(t) = Aet/τ + Be−t/τ , where A and B are constants which
depend on the initial position and initial angular speed of the
rod, and τ is a characteristic time. Express τ in terms of l and
g. (You may use dimensional analysis, but then you’ll lose 0.5
pts.) Hint: for a rod of length l and mass m, the moment of
inertia with respect to its endpoint is 1

3 ml2.
ii. (0.5 pts) Now, a boy tries to keep a long thin rod standing
vertically on his palm. For instance, as soon as the rod starts
falling leftwards, he moves his palm to an even greater distance
leftwards so that the rod’s centre of gravity would be positioned
rightwards from the rod’s support point. Then, the torque of
the gravity force would rotate the rod rightwards, decreasing
the previously observed leftwards angular speed. Estimate, for
which rod lengths the boy can keep the rod vertically if his
reaction time is estimated as τr = 0.2 s. (The reaction time is
the time lag between the command sent by brain to hands, and
the corresponding motion of the hands.)
iii. (0.5 pts) Humans and birds keep their standing position
similarly and move the support centre (the point at the bottom
of their feet where the total normal force is applied), e.g. by
adjusting the angle between a leg and the foot, so as to oppose
the falling motion of the upper part of their body. A small bird
of length lb = 6 cm can stand on its feet; estimate the upper
bound for its reaction time.
iv. (1 pt) Equilibrium on a bike is also kept by displacing
the support centre which lies on the line connecting the wheel-
ground contact points; that line can be conveniently displaced
by turning the handlebar while driving forth. Estimate the
minimal driving speed vm of a bicyclist by which the equilib-
rium can be maintained in such a way. Assume that for the

bicyclist, the characteristic falling time is the same as for a
rod of length L = 2 m; the distance between the centres of the
wheels d = 1 m.
Part B. Tightrope walker (3.5 points)
A tightrope walker cannot move the support point in the dir-
ection perpendicular to the rope. His equilibrium is kept by
displacing the centre of gravity, instead. Let us make a simple
model of a man balancing on a rope.
Lower half of the body is modelled
by a point mass m at height H,
and the upper half of the body

— by an equal point mass m at
the height 1.4H. The mutual pos-
ition of these point masses can be
changed by bowing right or left;
for the sake of simplicity, let us
assume that the distance of the
point masses from the rope will re-
main unchanged, i.e. these behave
as if being fixed to the endpoints
of two thin rods of lengths H and
1.4H respectively, see figure. Let
the rods form angles α1 and α2

with the vertical line (positive angles correspond to clock-wise
rotation), so that the angle between the rods is β = α1 −α2. A
tightrope walker can control the value of the angle β by bowing.
i. (1 pt) Let us assume that initially, the tightrope walker
was standing in an almost perfect equilibrium (α1 = α2 = 0).
Due to instability of this equilibrium, he starts slowly falling
clock-wise, which he notices at t = t0 when α1 = α2 = α0 > 0.
He bows rapidly to stop falling: assume that the angle β takes
almost instantaneously a new value β0. Express the new
values of the angles α1 and α2 in terms of β and α0.
ii. (0.5 pts) So, the tightrope walker is now bowing and keeps
this body shape (β = β0) for the time period Tb, upon which he
straightens himself almost instantaneously and makes thereby
β = 0. His aim is to resume the motionless standing position
with α1 = α2 = 0. Should he have bowed clock-wise (β0 > 0)
or counter-clock-wise? Motivate your answer.
iii. (1 pt) From now on, we assume that α0 ≪ β0. Imme-
diately after he has straightened himself, neither his angular
speed α̇1 = α̇2 nor angle α1 are zero: zero values will be
achived much later. Which value (expressed in terms of H

and g) should the ratio α̇1/α1 take at that moment?
iv. (1 pt) Express the required duration Tb in terms of α0, β0,
H, and g assuming that α0 ≪ β0.
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Part C. Kapitza’s pendulum (4 points)
In 1908 Andrew Stephenson found that the upper position of
a pendulum can be stable, if its suspension point oscillates
with a high frequency. The explanation of this phenomenon
was provided in 1951 by Russian physicist Pyotr Kapitza. In
what follows we’ll find the stability criterion of such a pendu-
lum. Apart from being just a nice toy, the Kapitza’s pendulum
demonstrates the method of separating fast and slow processes
which plays an important role in physics. High frequency os-
cillations can drive a slow motion in various systems, e.g. high
frequency electric fields act on charges with an effective average
force known as the ponderomotive force.
We consider a pendulum of length l, similar
to that of Part-A-Question-i, but now the
rod is massless, with a point mass at its end,
and the suspension point oscillates vertically
(see the figure). Let the velocity v of the
suspension point depend on time t as shown
in the graph below (v > 0 corresponds to
upward motion); the oscillations’ half-period
T ≪ l/v0. We also assume that v0/T ≫ g

so that for questions i–ii you may ignore the
free fall acceleration. In order to simplify calculations, you’ll
need to study this process in the frame of reference of the sus-

pension point (keep in mind: reference frame’s acceleration a⃗

gives rise to an inertial force −Ma⃗ acting on a body of mass
M).

i. (1.5 pts) Suppose that at t = T/2, the pendulum was mo-
tionless and inclined by a small angle φ0. Sketch the graph of
the inclination angle φ as a function of time, and determine
the angular displacement of the pendulum ∆φ for the moment
t = T , i.e. ∆φ = φ(T ) − φ(T/2). You may assume in your
calculations that ∆φ ≪ φ0 (this is valid because T ≪ l/v0).
ii. (1.5 pts) Since we still neglect gravity, only inertial force
exerts a torque on the pendulum. Determine the average value
of this torque (with respect to the suspension point, averaged
over the full period 2T ).
iii. (1 pt) Now, let us take into account that there is also the
gravity field of the Earth. Determine, which inequality must be
satisfied for g, T , l and v0 in order to ensure the stability of the
vertical position of such a pendulum (some of these parameters
may not be needed for your inequality).
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Problem T2. Gravitational waves (10 points)
Part A. Dipole radiation (2.4 points)
Static electric and gravity fields are described by identical set of
equations — as long as we are far from black holes. However,
if we add terms describing time variations of the fields, the
equations become different. Therefore, expressions for electro-
magnetic waves cannot be directly carried over to gravitational
waves. Still, for expressions given below, the difference will be
only in the value of numerical prefactors.

Charges moving with acceleration lose kinetic energy by ra-
diating electromagnetic waves; this radiation is known as the
dipole radiation. The total radiation power is expressed as

Ped =
¨⃗
d

2

6πε0c3 , (1)

where ¨⃗
d is the second time derivative of the dipole moment, c

is the speed of light, and ε0 — vacuum permittivity. Dipole
moment for a system of charges qi is defined as d⃗ =

∑
i r⃗iqi,

where r⃗i is vector pointing from the origin to the position of
i-th charge. For harmonically oscillating dipoles, the radiated
wave frequency equals to the frequency of oscillations.
i. (1.4 pts) Consider an electron of charge −e and mass m, cir-
culating around an atomic nucleus of charge +Ze at distance r;
neglect quantum mechanical effects. Express the total radiated
power, and the wavelength λ of the radiated waves in terms of
e, Z, m, r, and physical constants.
ii. (1 pt) Let us try to carry over Eq. (1) to gravitational
waves; then, the total radiation power Pgd would be propor-

tional to ¨⃗
dg

2
, where d⃗g is the gravitational dipole moment,

and two dots denote the second time-derivative. Analogously
to the electrical dipole, gravitational dipole moment for a sys-
tem of point masses mi is defined as d⃗g =

∑
i r⃗imi. Show that

always Pgd = 0.
Part B. Quadrupole radiation (7.6 points)
Let us consider a binary star consisting of two stars of equal
mass M which rotate around a circular orbit of radius R with
angular speed ω.
i. (1 pt) Express ω in terms of M , R, and constants.
ii. (0.8 pts) While there is no gravitational dipole radiation,
there is a quadrupole one. In analogy with the dipole radi-
ation, it should be proportional to squared time-derivatives of
the quadrupole moment. For this problem, it is enough to know
that for our binary star, the gravitational quadrupole moment
components are of the order of MR2. So, we expect the total
radiation power to have a form Pqg = AM2R4, where the factor
A may depend on ω and physical constants (here ω is an inde-
pendent parameter, though for a binary star it depends on M

and R). Find expression for Pqg using dimensional analysis.

iii. (0.8 pts) The effect of gravitational waves is measured by
strain h = ∆l/l; here l is a distance between two points in
space, and ∆l is the change of that distance due to the wave.
As usual for waves, the energy flux density S (radiation energy
per unit time and unit area) is proportional to the squared wave
amplitude: S = Kh2

0 (h0 denotes the wave amplitude). Based
on dimensional arguments, express the factor K in terms of
constants and the angular frequency of the wave ω.
iv. (1 pt) The dipole radiation is distributed over propagation
directions anisotropically, but let us ignore this: for the sake of
simplicity, assume isotropic radiation. Express the amplitude
h0 of gravitational waves at distance L in terms of M , R, and
physical constants.

The energy of the binary star decreases in time due to the
emission of gravitational waves. So, the distance R between the
two stars decreases. This process will continue until the stars
collide and merge (R becomes of the order of the radius of a
star). In LIGO experiment (reported on 11th February 2016),
gravitational waves emitted right before a merger of two black
holes were observed. For the radius of a black hole, we’ll use
the Schwarzschild radius Rs which is defined as such a critical
distance from a point mass M that light cannot escape due to
gravitational pull from distances r < Rs. To derive properly
an expression for Rs, theory of general relativity is needed.
v. (1 pt) Express Rs in terms of M and physical constants.
Use the following fact: if we neglect general relativity and use
special relativity together with Newtonian gravitation law, we
obtain a result which is exactly half of the correct one.
vi. (1.5 pts) In LIGO experiment, using a 4-km-long laser
interferometer, the strain h (see question iii) was measured as
a function of time; the result is given in the graph below. Us-
ing this graph and assuming that the masses of the two black
holes were equal, estimate the mass of each of them numer-
ically. Gravitational constant G = 6.67 × 10−11 m3s−2kg−1;
c = 3.00 × 108 m/s.

vii. (1.5 pts) Using the same data as for question vi, estimate
the distance to these black holes.
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Problem T3. Magnetars (9 points)
Magnetic fields are everywhere around us. Some typical mag-
netic B-field values: Earth’s magnetic field: 25 − 60 µT; at
Sunspots: 0.3 T; strong permanent magnets: around 1 T; con-
tinuously maintained magnetic fields in laboratory: up to 45 T;
neutron stars and magnetars: up to 1011 T. In what follows we
study few aspects of strong magnetic fields.

Magnetic field energy density
w = B2 1

2µµ0
, where µ0 ≈ 1.3 × 10−6 N/A2

is the vacuum permeability, and µ — the
relative permeability of the medium. Sys-
tem tries to move towards a lower energy
state and so ferromagnetic materials with
µ ≫ 1 are pulled towards regions with strong magnetic fields,
and diamagnetic materials with µ < 1 are pushed out. For
diamagnetic materials, the magnetic suspectibility χ = µ − 1
is small, |χ| ≪ 1, and so the effect is small unless the field
is strong. Water is a diamagnetic with χ = −9 × 10−6 and
animals are mostly made of water. So, a frog can levitate in a
magnetic field if the field is strong enough, see the photo.
i. (1.5 pts) Let the frog height hf

be not more than h0 = 10 mm, and
let us assume simplifyingly that the
squared magnetic field depends lin-
early on height z, see figure. Find
how strong magnetic field B0 (in
Teslas) is needed to keep this frog in levitation. Assume that
the frog is made entirely of water (density ρ = 1000 kg/m3);
free fall acceleration g = 9.8 m/s2. Hint: for |χ| ≪ 1, we can
write w ≈ B2 1−χ

2µ0
; hence, the energy density associated with

the presence of water is ∆w = B2 1−χ
2µ0

− B2 1
2µ0

= −B2 χ
2µ0

.
Stars are made of a plasma which is

a good electrical conductor. Because of
that, magnetic field lines behave as if be-
ing “frozen” into the moving plasma (this
follows from the Faraday’s induction law
and Kirchoff’s voltage law: due to the ab-
sence of electrical resistance, the voltage drop along a closed
fictitious contour inside the plasma must be zero, hence the
magnetic flux cannot change). If a star were to collapse into
a neutron star, this effect would lead to an instantaneous in-
crease of the magnetic field, see the sketch of the magnetic
field lines before and after the collapse (recall that magnetic
field strength is proportional to the density of field lines).
ii. (1 pt) Assuming that the polar magnetic field of a star
is Bs = 100 µT and its average density ρs = 1400 kg/m3,
what would be its polar magnetic field strength Bc after its
collapse into a neutron star due to the compression of mag-

netic field lines as depicted above? The neutron star density
ρn = 5 × 1017 kg/m3.
iii. (1 pt) In reality, magnetic fields of neutron stars are gen-
erated differently. Let us consider a very simplified model. In-
terior part of the star has collapsed to a neutron star’s size and
density, but the exterior parts remains of the same size. As-
sume that before the collapse, the star was rotating as a solid
body with angular speed ωs. Express the new angular speed
of the interior part of the star ωn in terms of ωs, ρs and ρn.
iv. (1.5 pts) Rotation speeds of the inner- and outer parts are
different, hence the field lines will be stretched, see figure.

For the sake of simplicity: (a) we use 2-dimensional geometry,
i.e. consider stars as being cylindrical; (b) while the initial field
was a dipole field, we assume that it was cylindrically symmet-
ric as shown in figure; (c) endpoints of field lines are attached
to the inner cylinder (the neutron star) and to the outer cyl-
indrical shell (the remnant of the original star). Let the initial
magnetic field at the outer shell be B0. Express the magnetic
field B as a function of time t in the region where field lines
are being stretched for t ≫ 1/ωn in terms of B0 and ωn.
v. (1 pt) So, the energy is converted during the star collapse as
follows: gravitational energy is converted into kinetic one (let
us neglect thermal energy), which is later on converted into
the magnetic one. Based on this scenario, estimate the max-
imal strength of the magnetic field Bmax for a neutron star of
mass Mn = 4 × 1030 kg and radius Rn = 13 km. Recall that
G = 6.67 × 10−11 m3s−2kg−1.
vi. (1 pt) Very strong magnetic fields affect chemical proper-
ties of matter by changing the shape of electron orbits. This
happens when the Lorenz force acting on an orbital electron be-
comes stronger than the Coulomb force due to the atomic nuc-
leus. Estimate the strength of the magnetic field BH needed
to distort the electron orbit of an hydrogen atom which has
radius RH = 5 × 10−11 m. Note that 1

4πε0
= 9 × 109 m/F ,

e = 1.6 × 10−19 C, and electron mass me = 9.1 × 10−31 kg.
vii. (2 pts) In very strong magnetic fields, atomic electron
clouds take cylindrical shape. Estimate the length-to-diameter
ratio κ = l/d of such electron clouds for hydrogen atoms near
a neutron star, in magnetic field Bn = 108 T. Note that the
Planck’s constant h = 6.6 × 10−34 J · s. Hint: the radius of the
cyclotron orbit for an electron in quantum-mechanical ground
state can be estimated using uncertainty principle.
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