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1 Rolling of a hexagonal prism

1

1.1 Problem text

Consider a long, solid, rigid, regular hexagonal prism like a 
ommon type of pen
il (Figure

1.1). The mass of the prism is M and it is uniformly distributed. The length of ea
h

side of the 
ross-se
tional hexagon is a. The moment of inertia I of the hexagonal prism

about its 
entral axis is

I =

5

12

Ma

2

(1.1)

PSfrag repla
ements

a

Figure 1.1: A solid prism with the 
ross se
tion of a regular hexagon.

The moment of inertia I

0

about an edge of the prism is

I

0

=

17

12

Ma

2

(1.2)

a) (3.5 points) The prism is initially at rest with its axis horizontal on an in
lined plane

whi
h makes a small angle � with the horizontal (Figure 1.2). Assume that the surfa
es

of the prism are slightly 
on
ave so that the prism only tou
hes the plane at its edges.

The e�e
t of this 
on
avity on the moment of inertia 
an be ignored. The prism is now

displa
ed from rest and starts an uneven rolling down the plane. Assume that fri
tion

prevents any sliding and that the prism does not lose 
onta
t with the plane. The angular

velo
ity just before a given edge hits the plane is !

i

while !

f

is the angular velo
ity

immediately after the impa
t.

Show that we may write

!

f

= s!

i

(1.3)

and write the value of the 
oe�
ient s on the answer sheet.

1
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�

Figure 1.2: A hexagonal prism lying on an in
lined plane.

b) (1 point) The kineti
 energy of the prism just before and after impa
t is similarly K

i

and K

f

.

Show that we may write

K

f

= rK

i

(1.4)

and write the value of the 
oe�
ient r on the answer sheet.


) (1.5 points) For the next impa
t to o

ur K

i

must ex
eed a minimum value K

i;min

whi
h may be written in the form

K

i;min

= ÆMga (1.5)

where g = 9.81 m/s

2

is the a

eleration of gravity.

Find the 
oe�
ient Æ in terms of the slope angle � and the 
oe�
ient r. Write your

answer on the answer sheet. (Use the algebrai
 symbol r, not its value).

d) (2 points) If the 
ondition of part (
) is satis�ed, the kineti
 energy K

i

will approa
h

a �xed value K

i;0

as the prism rolls down the in
line.

Given that the limit exists, show that K

i;0

may be written as:

K

i;0

= �Mga (1.6)

and write the 
oe�
ient � in terms of � and r on the answer sheet.

e) (2 points) Cal
ulate, to within 0.1

Æ

, the minimum slope angle �

0

, for whi
h the uneven

rolling, on
e started, will 
ontinue inde�nitely. Write your numeri
al answer on the answer

sheet.

1.2 Solution

a)

Solution Method 1

At the impa
t the prism starts rotating about a new axis, i.e. the edge whi
h just hit

the plane. The for
e from the plane has no torque about this axis, so that the angular

momentum about the edge is 
onserved during the brief interval of impa
t. The linear

3



momentum of the prism as a whole has the same dire
tion as the velo
ity of the 
enter of

mass (

~

P = M ~v

C

where the subs
ript C refers to the 
enter of mass), and this dire
tion

is easy to follow when we know the axis of rotation at a given time. Just before impa
t

~

P

is dire
ted 30

Æ

downwards relative to the plane, but will after impa
t point 30

Æ

upwards

from the plane, see Figure 1.3.

PSfrag repla
ements
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Figure 1.3: The linear momentum of the prism as a whole, before and after impa
t.

To �nd the angular momentum about the edge of impa
t just before the impa
t we

use the equation relating angular momentum

~

L about an arbitrary axis to the angular

momentum

~

L

C

about an axis through the 
enter of mass parallel to the �rst one:

~

L =

~

L

C

+M ~r

C

� ~v

C

(1.7)

where the subs
ript C refers to the 
enter of mass. Here, this is applied to an axis at the

point of impa
t so that ~r

C

is the ve
tor from that point to the 
enter of mass (Figure

1.3). The ve
tors on the right hand side of equation (1.7) both have the same dire
tion.

Hen
e we get for the quantities just before impa
t

2

j~r

C

� ~v

Ci

j = r

C

v

Ci

sin 30

Æ

= a

2

!

i

= 2 (1.8)

L

i

= I !

i

+

1

2

M a

2

!

i

=

�

5

12

+

1

2

�

M a

2

!

i

=

11

12

M a

2

!

i

(1.9)

On the other hand, angular momentum about the edge just after impa
t is, from

equation (1.2):

3

2

This may also be done by using Steiner's theorem twi
e, going from the previous axis of impa
t to

the 
enter of mass and from there to the new axis of impa
t.

3

Alternatively:
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L

f

= I

0

!

f

=

17

12

Ma

2

!

f

(1.10)

where the subs
ript f always refers to the situation just after impa
t. We may noti
e that

the di�eren
e 
omes about be
ause of the di�erent dire
tions of ~v

Ci

and ~v

Cf

. Now, when

we state the 
onservation of angular momentum, L

i

= L

f

, we obtain a relation between

the angular velo
ities as follows:

!

f

=

11=12

17=12

!

i

=

11

17

!

i

(1.11)

We thus get:

s = 11=17 (1.12)

We may note that s is independent of a, !

i

, and �.

Solution Method 2

On impa
t the prism re
eives an impulse

~

P [N � s℄ from the plane at the edge where the

impa
t o

urs. There is no rea
tion at the edge whi
h is leaving the plane. The impulse

has a 
omponent P

k

parallel to the in
lined plane (positive upwards along the in
line in

Figure 1.3 and a 
omponent P

?

perpendi
ular to the plane (positive upwards from the

plane in the same �gure).

We 
an set up three equations with the three unknowns P

k

, P

?

and the ratio s =

!

f

!

i

.

The quantity P

k

is the 
hange in the parallel 
omponent of the linear momentum of the

prism and P

?

is the 
orresponding 
hange in perpendi
ular linear momentum. Thus:

P

k

= M (!

i

� !

f

) a �

p

3

2

(1.13)

P

?

= M (!

i

+ !

f

) a �

1

2

: (1.14)

We �nally have:

P

?

a

1

2

� P

k

a

p

3

2

= I (!

i

� !

f

) (1.15)

sin
e the right hand side is the 
hange in angular momentum about the 
enter of mass.

Equations (1.13), (1.14) and (1.15) 
an now be solved for the ratio s =

!

f

!

i

giving, of


ourse, the same result as before.

L

f

= I !

f

+M j~r

C

� ~v

Cf

j = I!

f

+Ma

2

!

f

sin 90

Æ

=

�

5

12

+ 1

�

Ma

2

!

f

=

17

12

Ma

2

!

f
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b)

The linear speed of the 
enter of mass just before impa
t is a!

i

and just after impa
t

it is a!

f

. We know that we 
an always write the kineti
 energy of a rotating rigid body

as a sum of �internal� and �external� kineti
 energy:

K

tot

=

1

2

I !

2

+

1

2

M v

2

C

(1.16)

From this we see that in our 
ase the kineti
 energy K

tot

is proportional to !

2

both

before and after impa
t so that we get

K

f

= r K

i

=

�

11

17

�

2

K

i

=

121

289

K

i

(1.17)

so

r = 121=289 � 0:419 (1.18)


)

The kineti
 energy K

f

after the impa
t must be su�
ient to lift the 
enter of mass

to its highest position, straight above the point of 
onta
t. The angle through whi
h ~r

C

moves for this is

x =

�

2

� � (1.19)

where � = 60

Æ

is the top angle of the triangles meeting at the 
enter of the polygon.

4

The

energy for this lifting of the 
enter of mass is

E

0

=Mga(1� 
os x) = Mga (1� 
os(30

Æ

� �)) (1.20)

and we get the 
ondition

K

f

= rK

i

> E

0

= Mga (1� 
os(30

Æ

� �)) (1.21)

thus

Æ =

1

r

(1� 
os(30

Æ

� �)) (1.22)

(Note that 
os(30

Æ

� �) =

p

3

2


os � +

1

2

sin �).

d)

Let K

i;n

and K

f;n

be the kineti
 energies just before and just after the nth impa
t.

We have shown that we have the relation

4

In the general 
ase � = 2�=N .
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K

f;n

= r K

i;n

(1.23)

where r =

121

289

for a hexagonal prism. Between subsequent impa
ts the height of the 
enter

of mass of the prism de
reases by a sin � and its kineti
 energy in
reases for this reason

by

� =Mga sin � (1.24)

We therefore have

K

i;n+1

= rK

i;n

+�: (1.25)

One does not have to write out the 
omplete expression K

i;n

as a fun
tion of K

i;1

and

n to �nd the limit. This would a
tually be a proof that the limit exists (see below) but

this is given in the problem text. Hen
e one 
an make K

i;n+1

� K

i;n

arbitrarily a

urate

for su�
iently large n. The limit K

i;0

must thus satisfy the iterative formula, i.e.

K

i;0

= rK

i;0

+� (1.26)

yielding the solution

K

i;0

=

�

1� r

: (1.27)

i.e.

� =

sin �

1� r

(1.28)

We 
an also solve the problem expli
itly by writing out the full expressions:

K

i;2

= r K

i;1

+� (1.29)

K

i;3

= r K

i;2

+� = r

2

K

i;1

+ (1 + r)� (1.30)

: : :

K

i;n

= r

n�1

K

i;1

+ (1 + r + : : :+ r

n�2

)� (1.31)

= r

n�1

K

i;1

+

1� r

n�1

1� r

� (1.32)

In the limit of n!1 we get

K

i;n

! K

i;0

=

�

1� r

(1.33)

whi
h is, of 
ourse, the same result as before.

If we 
al
ulate the 
hange in kineti
 energy through a whole 
y
le, i.e. from just before impa
t

number n until just before impa
t n+ 1 we get

�K

i;n

= K

i;n+1

�K

i;n

= (r � 1)r

n�1

K

i;1

+ r

n�1

� (1.34)

= r

n�1

(�� (1� r)K

i;1

) (1.35)
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This is positive if the initial value K

i;1

< K

i;0

so that K

i;n

will then in
rease up to the limit

value K

i;0

. If, on the other hand, K

i;1

> K

i;0

, the kineti
 energy K

i;n

just before impa
t will

de
rease down to the limit K

i;0

.

All of this may remind you of motion with fri
tion whi
h in
reases with speed. Mathemati-


ally speaking, the main di�eren
e is that we here are dealing with di�eren
e equations instead

of di�erential equations.

e)

For inde�nite 
ontinuation the limit value of K

i

in part (d) must be larger than the

minimum value for 
ontinuation found in part (
):

1

1� r

� =

1

1� r

Mga sin � > Mga (1� 
os(30

Æ

� �)) =r (1.36)

We put A =

r

1�r

=

121

168

:

A sin � > 1� 
os 30

Æ


os � � sin 30

Æ

sin � (1.37)

(A+ 1=2) sin � +

p

3=2 
os � > 1 (1.38)

To solve this we de�ne

5

u = ar

os

 

A+ 1=2

p

(A+ 1=2)

2

+ 3=4

!

� 35:36

Æ

(1.39)

and obtain


os u sin � + sinu 
os � > 1=

p

(A+ 1=2)

2

+ 3=4 (1.40)

sin(u+ �) > 1=

p

(A+ 1=2)

2

+ 3=4 (1.41)

� > ar
sinf1=

p

(A + 1=2)

2

+ 3=4g � u � 41:94

Æ

� 35:36

Æ

= 6:58

Æ

(1.42)

That is

�

0

� 6:58

Æ

(1.43)

If � > �

0

and the kineti
 energy before the �rst impa
t is su�
ient a

ording to part

(
), we will, under the assumptions made, get an inde�nite �rolling�.

5

You 
an of 
ourse solve any of the inequalities in a purely numeri
al way, e.g. by progressive guessing

or by using the approximations sin� � � and 
os� � 1� �

2

=2.

8



1.3 Grading s
heme

Part 2(a)

Answer: s = !

f

=!

i

= 11=17, equation (1.12) 3.5

Part 2(b)

Answer: r = K

f

=K

i

= s

2

= 121=289, equation (1.18) 1.0

Part 2(
)

Answer: K

i;min

by Æ, equation (1.22) 1.5

Part 2(d)

Answer: Limit K

i;0

by � = sin �=(1� r), equation (1.28) 2.0

Part 2(e)

Answer: Minimum angle �

0

= 6:58

Æ

, equation (1.43) 2.0
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2 Water under an i
e 
ap

6

2.1 Problem text

An i
e 
ap is a thi
k sheet of i
e (up to a few km in thi
kness) resting on the ground below

and extending horizontally over tens or hundreds of km. In this problem we 
onsider the

melting of i
e and the behavior of water under a temperate i
e 
ap, i.e. an i
e 
ap at

the melting point. We may assume that under su
h 
onditions the i
e 
auses pressure

variations as a vis
ous �uid, but deforms in a brittle fashion, prin
ipally by verti
al

movement. For the purposes of this problem the following information is given.

Density of water: �

w

= 1:000 � 10

3

kg=m

3

Density of i
e: �

i

= 0:917 � 10

3

kg=m

3

Spe
i�
 heat of i
e: 


i

= 2:1 � 10

3

J=(kg

Æ

C)

Spe
i�
 latent heat of i
e: L

i

= 3:4 � 10

5

J=kg

Density of ro
k and magma: �

r

= 2:9 � 10

3

kg=m

3

Spe
i�
 heat of ro
k and magma: 


r

= 700 J=(kg

Æ

C)

Spe
i�
 latent heat of ro
k and magma: L

r

= 4:2 � 10

5

J=kg

Average outward heat �ow through the

surfa
e of the earth:

J

Q

= 0:06 W=m

2

Melting point of i
e: T

0

= 0

Æ

C, 
onstant

a) (0.5 points) Consider a thi
k i
e 
ap at a lo
ation of average heat �ow from the interior

of the earth. Using the data from the table, 
al
ulate the thi
kness d of the i
e layer

melted every year and write your answer in the designated box on the answer sheet.

b) (3.5 points) Consider now the upper surfa
e of an i
e 
ap. The ground below the i
e


ap has a slope angle �. The upper surfa
e of the 
ap slopes by an angle � as shown in

Figure 2.1. The verti
al thi
kness of the i
e at x = 0 is h

0

. Hen
e the lower and upper

surfa
es of the i
e 
ap 
an be des
ribed by the equations

y

1

= x tan�; y

2

= h

0

+ x tan � (2.1)

Derive an expression for the pressure p at the bottom of the i
e 
ap as a fun
tion of

the horizontal 
oordinate x and write it on the answer sheet.

Formulate mathemati
ally a 
ondition between � and �, so that water in a layer

between the i
e 
ap and the ground will �ow in neither dire
tion. Show that the 
ondition

is of the form tan � = s tan�. Find the 
oe�
ient s and write the result in a symboli


form on the answer sheet.

The line y

1

= 0:8 x in Figure 2.2 shows the surfa
e of the earth below an i
e 
ap. The

verti
al thi
kness h

0

at x = 0 is 2 km. Assume that water at the bottom is in equilibrium.

On a graph answer sheet draw the line y

1

and add a line y

2

showing the upper surfa
e

of the i
e. Indi
ate on the �gure whi
h line is whi
h.

6

Authors: Gudni Axelsson and Thorsteinn Vilhjálmsson

10



aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa a aaaaaaaaaaa a aa aaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa a aaaaaaaaaaa a aa aaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaa a a aaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaa a aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaPSfrag repla
ements

�

�

y

x

y = h

0

y = 0

x = 0

S

I

G

Figure 2.1: Cross se
tion of an i
e 
ap with a plane surfa
e resting on an in
lined plane

ground. S: surfa
e, G: ground, I: i
e 
ap.


) (1 point) Within a large i
e sheet on horizontal ground and originally of 
onstant

thi
kness D = 2:0 km, a 
oni
al body of water of height H = 1:0 km and radius r = 1:0

km is formed rather suddenly by melting of the i
e (Figure 2.3). We assume that the

remaining i
e adapts to this by verti
al motion only.

Show analyti
ally on a blank answer sheet and pi
torially on a graph answer sheet,

the shape of the surfa
e of the i
e 
ap after the water 
one has formed and hydrostati


equilibrium has been rea
hed.

d) (5 points) In its annual expedition an international group of s
ientists explores a

temperate i
e 
ap in Antar
ti
a. The area is normally a wide plateau but this time they

�nd a deep 
rater-like depression, formed like a top-down 
one with a depth h of 100 m

and a radius r of 500 m (Figure 2.4). The thi
kness of the i
e in the area is 2000 m.

After a dis
ussion the s
ientists 
on
lude that most probably there was a minor vol-


ani
 eruption below the i
e 
ap. A small amount of magma (molten ro
k) intruded at

the bottom of the i
e 
ap, solidi�ed and 
ooled, melting a 
ertain volume of i
e. The

s
ientists try as follows to estimate the volume of the intrusion and get an idea of what

be
ame of the melt water.

Assume that the i
e only moved verti
ally. Also assume that the magma was 
om-

pletely molten and at 1200

Æ

C at the start. For simpli
ity, assume further that the intrusion

had the form of a 
one with a 
ir
ular base verti
ally below the 
oni
al depression in the

surfa
e. The time for the rising of the magma was short relative to the time for the

ex
hange of heat in the pro
ess. The heat �ow is assumed to have been primarily verti
al

su
h that the volume melted from the i
e at any time is bounded by a 
oni
al surfa
e


entered above the 
enter of the magma intrusion.

Given these assumptions the melting of the i
e takes pla
e in two steps. At �rst the

water is not in pressure equilibrium at the surfa
e of the magma and hen
e �ows away.

The water �owing away 
an be assumed to have a temperature of 0

Æ

C. Subsequently,

11
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y

x

y = h

0

y = 0

x = 0

y

1

= 0:8x

G

I

Figure 2.2: Cross se
tion of a temperate i
e 
ap resting on an in
lined ground with water

at the bottom in equilibrium. G: ground, I: i
e 
ap.

hydrostati
 equilibrium is rea
hed and the water a

umulates above the intrusion instead

of �owing away.

When thermal equilibrium has been rea
hed, you are asked to determine the following

quantities. Write the answers on the answer sheet.

1. The height H of the top of the water 
one formed under the i
e 
ap, relative to the

original bottom of the i
e 
ap.

2. The height h

1

of the intrusion.

3. The total mass m

tot

of the water produ
ed and the mass m

0

of water that �ows

away.

Plot on a graph answer sheet, to s
ale, the shapes of the ro
k intrusion and of the

body of water remaining. Use the 
oordinate system suggested in Figure 2.4.

2.2 Solution

a)

Based on the 
onservation of energy we have

J

Q

� 1 year = L

i

�

i

d (2.2)

12
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W

S

I

G

Figure 2.3: A verti
al se
tion through the mid-plane of a water 
one inside an i
e 
ap. S:

surfa
e, W : water, G: ground, I: i
e 
ap.

d =

J

Q

� 1 year

L

i

�

i

=

0:06 J s

�1

m

�2

365:25 � 24 � 60 � 60 s

3:4 � 10

5

J=kg 917 kg=m

3

= 6:1 � 10

�3

m (2.3)

b)

Let p

a

be the atmospheri
 pressure, taken to be 
onstant. At a depth z inside the i
e


ap the pressure is given by:

p = �

i

gz + p

a

(2.4)

Therefore, at the bottom of the i
e 
ap, where z = y

2

� y

1

:

p = �

i

g(y

2

� y

1

) + p

a

(2.5)

= �

i

gx(tan� � tan�) + �

i

gh

0

+ p

a

(2.6)

For water not to move at the base of the i
e 
ap the pressure must be hydrostati


(trivial, but 
an be seen from Bernoulli's equation), i.e.

13
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ements
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x

h

x = r

x = 0

I
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M

S

Figure 2.4: A verti
al and 
entral 
ross se
tion of a 
oni
al depression in a temperate i
e


ap. S: surfa
e, G: ground, I: i
e 
ap, M : ro
k/magma intrusion, W : water. Note that

the �gure is NOT drawn to s
ale.

p = 
onstant� �

w

gy

1

(2.7)

= 
onstant� �

w

gx tan� (2.8)

Therefore

�

i

gx(tan� � tan�) = ��

w

gx tan� (2.9)

leading to

tan � = �

�

w

� �

i

�

i

tan� = �

��

�

i

tan� � �0:091 tan� (2.10)

s = ���=�

i

= �0:091 (2.11)

(2.12)

where the minus-sign is signi�
ant.

This 
an also be seen in various ways by looking at a mass element of water at the

bottom of the i
e and demanding equilibrium. � We now pro
eed with the solution.

14



With tan� = 0:8, we get tan � = �0:073 and

y

2

= 2 km� 0:073 x (2.13)

The students are supposed to draw this line on a graph.


)

Sin
e the i
e adapts by verti
al motion only we see that the 
oni
al depression at the

surfa
e will have the same radius of 1.0 km as the intrusion. A

ording to (b) it will have

a depth of

h = jr tan�j =

��

�

i

r tan� (2.14)

=

��

�

i

H (2.15)

= 0:091 � 1 km = 91 m: (2.16)

The students are supposed to show this result as a graph.

d)

The volume of a 
ir
ular 
one is V =

1

3

�r

2

h. We assume that the height of the intrusion

is h

1

. We may say that it �rstly melts an i
e 
one of its own volume V

1

=

1

3

�r

2

h

1

. Pressure

equilibrium has not yet been rea
hed. Hen
e the water will �ow away and the i
e will keep


onta
t with the fa
e of the intrusion making the upper surfa
e of the i
e horizontal again.

The intrusion then melts a volume equivalent to a 
one of height h

2

=

��

�

i

h

1

whereupon

pressure equilibrium has been rea
hed (following part (
)). During this se
ond phase the

melted water will also �ow away. Assuming that the intrusion still has not 
ooled down

to 0

Æ

C the intrusion will further melt a volume equivalent to a 
one of height h

3

, its water

a

umulating in pla
e, forming a 
one of height h

0

3

=

�

i

�

w

h

3

relative to the top of the

intrusion. The total height of the i
e 
one melted is

h

tot

= h

1

+ h

2

+ h

3

(2.17)

The depth of the depression at the surfa
e will be given by

h =

��

�

i

(h

1

+ h

0

3

) (2.18)

whi
h is most easily seen by 
onsidering pressure equilibrium in the �nal situation (again

following part (
)). Thus, the requested height of the top of the water 
one is

H = h

1

+ h

0

3

=

�

i

��

h = 1:1� 10

3

m (2.19)

The heat balan
e gives

1

3

� r

2

f�

r

h

1

(L

r

+ 


r

�T )� �

i

L

i

h

tot

g = 0 (2.20)
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where �T = 1200

Æ

C is the 
hange in temperature of the ro
k intrusion. Following equa-

tion (2.17) and using the fa
ts that h

2

=

��

�

i

h

1

and h

3

=

�

w

�

i

h

0

3

we obtain

h

tot

= h

1

+

��

�

i

h

1

+

�

w

�

i

h

0

3

=

�

w

�

i

(h

1

+ h

0

3

) (2.21)

Therefore (using equation (2.19))

h

tot

=

�

w

�

i

(h

1

+ h

0

3

) =

�

w

�

i

H =

�

w

��

h = 1:20 � 10

3

m (2.22)

This implies that the 
one does not rea
h the surfa
e of the i
e 
ap. Inserting the

result into the equation (2.20) we 
an solve for h

1

:

�

r

h

1

(L

r

+ 


r

�T ) =

�

i

�

w

L

i

h

��

(2.23)

h

1

=

�

i

�

w

L

i

h

�� �

r

(L

r

+ 


r

�T )

(2.24)

= 103 m (2.25)

The total mass of water formed is of 
ourse equal to the mass of the i
e melted and is

m

tot

= �

i

(1=3) � r

2

h

tot

= 2:9 � 10

11

kg (2.26)

The mass of the water whi
h �ows away is

m

0

=

h

1

+ h

2

h

tot

m

tot

=

�

w

h

1

�

i

h

tot

m

tot

= 2:7 � 10

10

kg (2.27)

The students are �nally expe
ted to plot the shapes of the ro
k intrusion and the

water body.

2.3 Grading s
heme

2(a)

Answer: equation (2.3), d = 6:1 � 10

�3

m 0.5

2(b)

Answer i): equation (2.6): p = �

i

gx(tan� � tan�) + �

i

gh

0

+ p

a

1.0

Answer ii): equation (2.10): s = �

�

w

��

i

�

i

= �

��

�

i

2.0

Answer iii): Graph based on equation (2.13) 0.5

2(
)

Answer: Depth, radius and graph, r = 1000 m, h = 91 m 1.0

2(d)

Answer i): Height of water 
one as in (2.19): H = 1:1 � 10

3

m 2.0

Answer ii): Height of intrusion as in (2.25): h

1

= 103 m 1.0

Answer iii): Total mass of melt water as in (2.26): m

tot

= 2:9 � 10

11

kg 0.5

Answer iv): Mass of water �owing away as in (2.27): m

0

= 2:7 � 10

10

kg 1.0

Answer v): Graph 0.5
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3 Faster than light?

7

3.1 Problem text

In this problem we analyze and interpret measurements made in 1994 on radio wave

emission from a 
ompound sour
e within our galaxy.

The re
eiver was tuned to a broad band of radio waves of wavelengths of several


entimeters. Figure 3.1 shows a series of images re
orded at di�erent times. The 
ontours

indi
ate 
onstant radiation strength in mu
h the same way as altitude 
ontours on a

geographi
al map. In the �gure the two maxima are interpreted as showing two obje
ts

moving away from a 
ommon 
enter shown by 
rosses in the images. (The 
enter, whi
h

is assumed to be �xed in spa
e, is also a strong radiation emitter but mainly at other

wavelengths). The measurements 
ondu
ted on the various dates were made at the same

time of day.

The s
ale of the �gure is given by a line segment showing one ar
 se
ond (as). (1 as =

1=3600 of a degree). The distan
e to the 
elestial body at the 
enter of the �gure, indi
ated

by 
rosses, is estimated to be R = 12.5 kp
. A kiloparse
 (kp
) equals 3.09 �10

19

m. The

speed of light is 
 = 3.00 �10

8

m/s. Error 
al
ulations are not required in the solution.

a) (2 points) We denote the angular positions of the two eje
ted radio emitters, relative

to the 
ommon 
enter, by �

1

(t) and �

2

(t), where the subs
ripts 1 and 2 refer to the left

and right hand ones, respe
tively, and t is the time of observation. The angular speeds, as

seen from the Earth, are !

1

and !

2

. The 
orresponding apparent transverse linear speeds

of the two sour
es are denoted by v

0

1;?

and v

0

2;?

.

Using Figure 3.1, make a graph to �nd the numeri
al values of !

1

and !

2

in milli-ar
-

se
onds per day (mas/d). Also determine the numeri
al values of v

0

1;?

and v

0

2;?

, and write

all answers on the answer sheet. (You may be puzzled by some of the results).

b) (3 points) In order to resolve the puzzle arising in part (a), 
onsider a light-sour
e

moving with velo
ity ~v at an angle � (0 � � � �) to the dire
tion towards a distant

observer O (Figure 3.2). The speed may be written as v = �
, where 
 is the speed of

light. The distan
e to the sour
e, as measured by the observer, is R. The angular speed

of the sour
e, as seen from the observer, is !, and the apparent linear speed perpendi
ular

to the line of sight is v

0

?

.

Find ! and v

0

?

in terms of �, R and � and write your answer on the answer sheet.


) (1 point) We assume that the two eje
ted obje
ts, des
ribed in the introdu
tion and in

part (a), are moving in opposite dire
tions with equal speeds v = �
. Then the results of

part (b) make it possible to 
al
ulate � and � from the angular speeds !

1

and !

2

and the

distan
e R. Here � is the angle de�ned in part (b), for the left hand obje
t, 
orresponding

to subs
ript 1 in part (a).

Derive formulas for � and � in terms of known quantities and determine their numeri
al

values from the data in part (a). Write your answers in the designated �elds on the answer

sheet.

d) (2 points) In the one-body situation of part (b), �nd the 
ondition for the apparent

perpendi
ular speed v

0

?

to be larger than the speed of light 
.

7

Authors: Einar Gudmundsson, Knútur Árnason and Thorsteinn Vilhjálmsson
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Figure 3.1: Radio emission from a sour
e in our galaxy.
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PSfrag repla
ements

A

O

~v

�

R

Figure 3.2: The observer is at O and the original position of the light sour
e is at A. The

velo
ity ve
tor is ~v.

Write the 
ondition in the form � > f(�) and provide an analyti
 expression for the

fun
tion f on the answer sheet.

Draw on the graph answer sheet the physi
ally relevant region of the (�; �)-plane.

Show by shading in whi
h part of this region the 
ondition v

0

?

> 
 holds.

e) (1 point) Still in the one-body situation of part (b), �nd an expression for the maximum

value (v

0

?

)

max

of the apparent perpendi
ular speed v

0

?

for a given � and write it in the

designated �eld on the answer sheet. Note that this speed in
reases without limit when

� ! 1.

f) (1 point) The estimate for R given in the introdu
tion is not very reliable. S
ientists

have therefore started spe
ulating on a better and more dire
t method for determining R.

One idea for this goes as follows. Assume that we 
an identify and measure the Doppler

shifted wavelengths �

1

and �

2

of radiation from the two eje
ted obje
ts, 
orresponding to

the same known original wavelength �

0

in the rest frames of the obje
ts.

Starting from the equations for the relativisti
 Doppler shift,

� = �

0

(1�� 
os�)(1��

2

)

�1=2

, and assuming, as before, that both obje
ts have the same

speed, v, show that the unknown � = v=
 
an be expressed in terms of �

0

, �

1

, and �

2

as

� =

s

1�

� �

2

0

(�

1

+ �

2

)

2

: (3.1)

Write the numeri
al value of the 
oe�
ient � in the designated �eld on the answer sheet.

You may note that this means that the suggested wavelength measurements will in

pra
ti
e provide a new estimate of the distan
e.

3.2 Solution

a) On Figure 3.1 we mark the 
enters of the sour
es as neatly as we 
an. Let �

1

(t) be

the angular distan
e of the left 
enter from the 
ross as a fun
tion of time and �

2

(t) the

angular distan
e of the right 
enter. We measure these quantities on the �gure at the

given times by a ruler and 
onvert to ar
se
onds a

ording to the given s
ale. This results

in the following numeri
al data:

19



time �

1

�

2

[days℄ [as℄ [as℄

0 0.139 0.076

7 0.253 0.139

13 0.354 0.190

20 0.468 0.253

27 0.601 0.316

34 0.709 0.367

The un
ertainty in the readings by the ruler is estimated to be �0.5 mm, resulting in

the un
ertainty of � 0.013 as in the � values. We plot the data in Figure 3.3.

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 5 1 0 1 5 2 0 2 5 3 0 3 5

time (days)

s
e

p
a

r
a

ti
o

n
 
(a

s
)

Figure 3.3: The angular distan
es �

1

and �

2

(in as) as fun
tions of the time in days.

Fitting straight lines through the data results in:

!

1

= d�

1

=dt = (17:0� 1:0) mas=day = 9:54 � 10

�13

rad=s (3.2)

!

2

= d�

2

=dt = (8:7� 1:0) mas=day = 4:88 � 10

�13

rad=s (3.3)

v

0

1;?

= !

1

R = 9:54 � 10

�13

� 12:5 � 3:09 � 10

19

(3.4)

= 3:68 � 10

8

m=s � (1:23� 0:07) 
 (3.5)

v

0

2;?

= 1:89 � 10

8

m=s � (0:63� 0:07) 
 (3.6)

b) We 
onsider the motion of the sour
e during the time interval �t from the point A to

the point A

0

, see Figure 3.4.

We then have

~r

AA

0

= ~r

A

0

� ~r

A

= ~v ��t : (3.7)

Now let �t

0

denote the di�eren
e in arrival times at O of the signals from A and A

0

.

Due to the di�erent distan
es to A and A

0

and the �nite speed of light, 
, we have
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Figure 3.4: The observer is at O and the original position of the sour
e is at A. The

velo
ity ve
tor is ~v.

�t

0

= �t+ (r

A

0

� r

A

)=
 : (3.8)

For small �t, su
h that v �t << r

A

= R, we have

r

A

0

� r

A

� �v �t 
os� (3.9)

and hen
e

�t

0

� �t (1� � 
os�) ; � = v=
 : (3.10)

This implies that an observer at O will �nd the apparent transverse speed of the sour
e

to be

v

0

?

=

�x

�t

0

=

�x

�t (1� � 
os�)

=


� sin�

1� � 
os�

(3.11)

where we have used that the real transverse speed in the referen
e frame of the observer

is v

?

= �x=�t = 
� sin�.

The angular speed observed at O is

! =

v

0

?

R

=


� sin�

R (1� � 
os�)

(3.12)


) Figure 3.5 shows the situation in this 
ase. Note the relations given in the 
aption.

Taking � = �

1

we have sin�

2

= sin� and 
os�

2

= � 
os�. Equation (3.12) then gives:

!

1

=

� 
 sin�

R (1� � 
os�)

(3.13)

!

2

=

� 
 sin�

R (1 + � 
os �)

: (3.14)
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Figure 3.5: If the two obje
ts have equal speeds but opposite velo
ities we have v

1

= v

2

=

v; �

1

= �

2

= � and �

2

= � � �

1

.

The quantities !

1

, !

2

and R are given, but � and � are to be determined as stated in

the problem text. Simple algebra gives:

(1� � 
os�) !

1

!

2

= � 
 sin� !

2

=R (3.15)

(1 + � 
os�) !

2

!

1

= � 
 sin� !

1

=R : (3.16)

Subtra
ting (3.15) from (3.16) gives:

2 � 
os� !

2

!

1

= � 
 sin� (!

1

� !

2

)=R (3.17)

tan� =

2 R !

2

!

1


 (!

1

� !

2

)

(3.18)

� = ar
tan

�

2 R !

2

!

1


 (!

1

� !

2

)

�

: (3.19)

Dividing (3.15) by (3.16) gives � in terms of 
os� and the known quantities !

1

and

!

2

:

!

1

(1� � 
os�) = !

2

(1 + � 
os �) (3.20)

� =

!

1

� !

2


os� (!

1

+ !

2

)

: (3.21)

Inserting the values of !

1

and !

2

from part (a) and the given values of R and 
 we get:

� = ar
tan(2:57) = 1:20 rad = 68:8

Æ

� 2

Æ

(3.22)

� = 0:892� 0:08 (3.23)
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d) Equation (3.11) shows that the observer will �nd the apparent transverse speed to be

larger than or equal to the speed of light if and only if:

� sin�

1� � 
os�

� 1: (3.24)

If � < 1 
ondition (3.24) is equivalent to:

� sin� � 1� � 
os� (3.25)

� (sin�+ 
os�) � 1 (3.26)

�

p

2

�

sin� 
os

�

4

+ 
os � sin

�

4

�

� 1 (3.27)

sin

�

�+

�

4

�

�

1

�

p

2

(3.28)

and hen
e (3.24) is satis�ed if:

� > f(�) =

�

p

2 sin(�+ �=4)

�

�1

: (3.29)

The physi
ally relevant region in the (�; �)-plane is:

(�; �) 2 [0; 1[�[0; �℄ : (3.30)

It is obvious that (3.24) 
an only be satis�ed for � 2 [0; �=2℄ and (3.28) 
an only have

a solution for � if � � 1=

p

2.

We therefore take a 
loser look at the region

(�; �) 2 [2

�1=2

; 1[ � [0; �=2℄ (3.31)

The mapping

(�; �) 7! � sin

�

�+

�

4

�

(3.32)

is 
ontinuous in this region. It is therefor su�
ient to look at the boundary of the region,

de�ned by the equality sign in (3.28):

� sin

�

�+

�

4

�

=

1

p

2

(3.33)

This de�nes � as a fun
tion of � whi
h is shown in Figure 3.6 as the 
urve bounding

the shaded area where v

0

?

> 
.

e) To �nd the extrema of v

0

?

as a fun
tion of � we di�erentiate (3.11) and get

d

d�

�

v

0

?




�

=

�(
os�� �)

(1� � 
os�)

2

: (3.34)

This is zero for � = �

m

where:
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Figure 3.6: The region between the

horizontal line and the 
urve in the

upper left hand 
orner shows where

v

0

?

=
 > 1.
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Figure 3.7: The 
urved surfa
e is v

0

?

=


as a fun
tion of � and �. The plane

represents the 
onstant fun
tion � = 1.


os �

m

= � ; �

m

= ar

os � 2℄0; �=2℄ (3.35)

To see that this is indeed a maximum, we di�erentiate (3.34) again and get:

d

2

d�

2

�

v

0

?




�

= ��

�

sin�

(1� � 
os�)

2

+ 2

� sin�(
os�� �)

(1� � 
os�)

3

�

(3.36)

At the extremum

d

2

d�

2

�

v

0

?




�

�

�

�

�

�

m

= �

� sin�

m

(1� �

2

)

2

< 0 (3.37)

showing that �

m


orresponds to a maximum. From (3.11) and (3.35) the maximum

apparent transverse speed is given:

(v

0

?

)

max

=

�


p

1� �

2

(3.38)

From this and (3.35) we see that

(v

0

?

)

max

�!

�!1

1 ; �

m

�!

�!1

0 : (3.39)

Figure 3.7 shows v

0

?

=
 as a fun
tion of � and � in the region (�; �) 2 [2

�1=2

; 1[� [0; �=2℄.

f) We have the equations for relativisti
 Doppler-shift:
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�

1;2

�

0

=

1� � 
os �

p

1� �

2

(3.40)

We add them, de�ne an auxiliary ratio � and solve for �.

� :=

�

1

+ �

2

2 �

0

=

1

p

1� �

2

(3.41)

�

2

(1� �

2

) = 1 (3.42)

� =

p

1� 1=�

2

=

s

1�

4 �

2

0

(�

1

+ �

2

)

2

(3.43)

giving

� = 4 (3.44)

Adding equation (3.43) to the set of equations (3.18) and (3.21) we have three equations

whi
h 
an be solved for the three unknowns �, � and R. For instan
e, we may 
al
ulate �

from (3.43), insert that into (3.21), and solve for �. The distan
e R 
an then be obtained

from (3.18). Thus the measurement of the Doppler-shifted wavelengths turns out to give

an estimate of the distan
e to the sour
e provided that !

1

and !

2

are known.

3.3 Grading s
heme

Part 1(a)

Answer i): equation (3.2), !

1

in the range (16.5-17.5) mas/day 0.8

Answer ii): equation (3.3), !

2

in the range (8.2-9.2) mas/day 0.8

Answer iii): equation (3.4), for v

0

1;?

in the range (1.13-1.30)
 0.2

Answer iv): equation (3.6), for v

0

2;?

in the range (0.56-0.70)
 0.2

Part 1(b)

Answer i): v

0

?

(�; �), equation (3.11) 2.5

Answer ii): !(�; �), equation (3.12) 0.5

Part 1(
)

Answer i): �(!

1

; !

2

), equation (3.19) 0.3

Answer ii): �(!

1

; !

2

), equation (3.21) 0.3

Answer iii): � numeri
al in the range 67

Æ

- 71

Æ

0.2

Answer iv): � numeri
al in the range 0.81-0.97 0.2

Part 1(d)

Answer i): Condition � > f(�), equation (3.29) 1.0

Answer ii): Condition on (�; �), graph 1.0

Part 1(e)

Answer: (v

0

?

)

max

, equation (3.38) 1.0

Part 1(f)

Answer: � in terms of �-s, by �, equation (3.44) 1.0
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