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This booklet is a sequel to a similar col-
lection of problems on kinematics. Sim-
ilarly to that collection the aim here is
to present the most important ideas us-
ing which one can solve most (> 95%) of
olympiad problems on mechanics. Usu-
ally a problem is stated first, and is fol-
lowed by some relevant ideas and sug-
gestions (letter ‘K’ in front of the number
of an idea refers to the correspondingly
numbered idea in the kinematics book-
let). The answers to the problems are lis-
ted at the end of the booklet. They are pre-
ceded by quite detailed hints (no full solu-
tions), but think carefully before reading
the hints as a last resort!

The guiding principle of this booklet
argues that almost all olympiad problems
are “variations” on a specific set of top-
ics — the solutions follow from corres-
ponding solution ideas. Usually it is not
very hard to recognize the right idea for
a given problem, having studied enough
solution ideas. Discovering all the ne-
cessary ideas during the actual solving
would certainly show much more creativ-
ity and offer a greater joy, but the skill of
conceiving ideas is unfortunately difficult
(or even impracticable) to learn or teach.
Moreover, it may take a long time to reach
a new idea, and those relying on trying it
during an olympiad would be in disad-
vantage in comparison to those who have
mastered the ideas.

In science as a whole, solution ideas
play a similar role as in olympiads:
most scientific papers apply and combine
known ideas for solving new (or worse,
old) problems, at best developing and
generalising the ideas. Genuinely new
good ideas occur extremely rarely and
many of them are later known as master-

pieces of science. However, as the whole
repertoire of scientific ideas encompasses
immensely more than mere mechanics, it
is not so easy to remember and utilise
them in right places. The respective skill
is highly valued; an especial achievement
would be employing a well-known idea
in an unconventional (unexpected, novel)
situation.

In addition to ideas, the booklet also
presents “facts” and “methods”. The dis-
tinction is largely arbitrary, some facts
could have been called methods and vice
versa. In principle, an “idea” should have
wider and/or more creative applications
than a “fact”; a “method” is a universal
and conventionalized “idea”.

Several sources have been used for the
problems: Estonian olympiads’ regional
and national rounds, journal “Kvant”,
Russian and Soviet Union’s olympi-
ads; some problems have been modified
(either easier or tougher), some are “folk-
lore” (origins unknown).

STATICS

For problems on statics the solution is
usually standard: we have to write down
the condition of force balance for the x-,
y- and (if necessary) z-components; often
the condition of torque balance must be
added. Usually the main ingenuity lies in

IDEA 1: choose optimal axes to zero as
many projections of forces as possible. It
is especially good to zero the projections of
the forces we do not know and are not in-
terested in,

for instance, the reaction force between
two bodies or the tensile force in a string
(or a rod). To zero as many forces as pos-
sible it is worthwhile to note that a) the
axes may not be perpendicular; b) if the
system consists of several bodies, then a

different set of axes may be chosen for
each body.

IDEA 2: for the torques equation it is wise
to choose such a pivot point that zeroes as
many moment arms as possible. Again it is
especially bene�cial to zero the torques of
�uninteresting� forces.

For example, if we choose the pivot to
be at the contact point of two bodies,
then the moment arms of the friction force
between the bodies and of their reaction
force are both zero.

IDEA 3: in case of a two-dimensional sys-
tem, we can write two equations per body
for the forces (x- and y-components) and
one equation (per body) for the torques.

An equation for the torques can be writ-
ten about any pivot point (“axis” of rota-
tion). In principle, we could write several
equations for several pivots at the same
time, but together with the equations for
the forces the maximum number of linearly
independent equations equals the number of
degrees of freedom of the body (three in the
two-dimensional case, as the body can
rotate in a plane and shift along the x-
and y-axis). Accordingly, all is fine if we
write one forces equation and two torques
equations (or just three torques equations
— as long as the pivots do not lie on a
straight line); on the other hand, if we
wrote two equations of both types, then
one of the four equations would always
be a redundant consequence of the three
others and needless to write down.

So, an equation for the force balance
may be replaced by an equation for the
torque balance about an additional pivot.
Such a substitution may turn out to be
useful if the unwanted (uninteresting)
forces are unparallel, because a choice of
a projection axis can zero only one force
in the balance of forces, while a choice of

a pivot for the torques can zero two forces
at once.

PROB 1. An end of a light wire rod is
bent into a hoop of radius r. The straight
part of the rod has length l; a ball of mass
M is attached to the other end of the rod.
The pendulum thus formed is hung by the
hoop onto a revolving shaft. The coef-
ficient of friction between the shaft and
the hoop is µ. Find the equilibrium angle
between the rod and the vertical.
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Here we mainly need idea 2 with some
simplification offered by

FACT 1: on an inclined surface, slipping
will start when the slope angle α ful�lls
tan α = µ.

PROB 2. On an incline with slope angle
α there lies a cylinder with mass M, its axis
being horizontal. A small block with mass
m is placed inside it. The coefficient of fric-
tion between the block and the cylinder is
µ; the incline is nonslippery. What is the
maximum slope angle α for the cylinder
to stay at rest? The block is much smaller
than the radius of the cylinder.

α

m

M

Here we can again use fact 1 and idea 2 if
we add



IDEA 4: sometimes it is useful to consider
a system of two (or more) bodies as one
whole and write the equations for the forces
and/or the torques for the whole system.

Further, the net force (or torque) is the
sum of forces (torques) acting on the con-
stituents (the effort is eased as the internal
forces are needless — they cancel each
other out). In our case, it is useful to as-
semble such a whole system from the cyl-
inder and the block.

PROB 3. Three identical rods are connec-
ted by hinges to each other, the outmost
ones are hinged to a ceiling at points A
and B. The distance between these points
is twice the length of a rod. A weight of
mass m is hanged onto hinge C. At least
how strong a force onto hinge D is neces-
sary to keep the system stationary with the
rod CD horizontal?
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m
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Again we can use idea 2. The work is also
aided by

FACT 2: if forces are applied only to two
points of a rod and the �xture of the rod is
not rigid (the rod rests freely on its supports
or is attached to a string or a hinge), then
the tension force in the rod is directed along
the rod.

Indeed, the net external force F⃗ onto
either point of application of the forces
must point along the rod, as its torque
with respect to the other point of applic-
ation must be zero. In addition to the ex-
ternal forces, the point is acted on by ten-
sion force T⃗ that must compensate the rest
of the forces, so F⃗ = −T⃗.

Some ideas are very universal, espe-
cially the mathematical ones.

IDEA K5: some extrema are easier to �nd
without using derivatives,

for example, the shortest path from a
point to a plane is perpendicular to it.

PROB 4. What is the minimum force
needed to dislodge a block of mass m rest-
ing on an inclined plane of slope angle α,
if the coefficient of friction is µ? Investig-
ate the cases when a) α = 0; b) 0 < α <
arctan µ.

α

Fm

IDEA 5: force balance can sometimes be
resolved vectorially without projecting any-
thing onto axes.

Fact 1, or rather its following generalisa-
tion, turns out to be of use:

FACT 3: if a body is on the verge of slip-
ping (or already slipping), then the sum of
the friction force and the reaction force is
angled by arctan µ from the surface normal.

This fact is also beneficial in the next prob-
lem.

PROB 5. A block rests on an inclined sur-
face with slope angle α. The surface moves
with a horizontal acceleration a which lies
in the same vertical plane as a normal vec-
tor to the surface. Determine the values of
the coefficient of friction µ that allow the
block to remain still.

α

a

µ

Here we are helped by the very universal

IDEA 6: many problems become very easy
in a non-inertial translationally moving ref-
erence frame.

To clarify: in a translationally moving ref-
erence frame we can re-establish New-
ton’s laws by imagining that every body
with mass m is additionally acted on by
an inertial force −m⃗a where a⃗ is the ac-
celeration of the frame of reference. Note
that that the fictitious force is totally ana-
logous to the gravitational force and (as
an aside) their equivalence is the corner-
stone of the theory of general relativity
(more specifically, it assumes the inertial
and gravitational forces to be indistin-
guishable in any local measurement).

IDEA 7: The net of the inertial and gravit-
ational forces is usable as an e�ective grav-
itational force.

PROB 6. A cylinder with radius R spins
around its axis with an angular speed
ω. On its inner surface there lies a small
block; the coefficient of friction between
the block and the inner surface of the cyl-
inder is µ. Find the values of ω for which
the block does not slip (stays still with re-
spect to the cylinder). Consider the cases
where (a) the axis of the cylinder is hori-
zontal; (b) the axis is inclined by angle α
with respect to the horizon.

ω

α

IDEA 8: a rotating frame of reference may
be used by adding a centrifugal force mω2R⃗
(with ω being the angular speed of the
frame and R being a vector drawn from the
axis of rotation to the point in question) and
Coriolis force. The latter is unimportant (a)
for a body standing still or moving in paral-
lel to the axis of rotation in a rotating frame
of reference (in this case the Coriolis force
is zero); (b) for energy conservation (in this
case the Coriolis force is perpendicular to
the velocity and, thus, does not change the
energy).

Warning: in this idea, the axis of rotation
must be actual, not instantaneous. For the
last problem, recall idea K5 and fact 3; for
part (b), add

IDEA 9: in case of three-dimensional geo-
metry, consider two-dimensional sections. It
is especially good if all interesting objects
(for example, force vectors) lie on one sec-
tion. The orientation and location of the
sections may change in time.

PROB 7. A hollow cylinder with mass m
and radius R stands on a horizontal sur-
face with its smooth flat end in contact the
surface everywhere. A thread has been
wound around it and its free end is pulled
with velocity v in parallel to the thread.
Find the speed of the cylinder. Consider
two cases: (a) the coefficient of friction
between the surface and the cylinder is
zero everywhere except for a thin straight
band (much thinner than the radius of the
cylinder) with a coefficient of friction of
µ, the band is parallel to the thread and
its distance to the thread a < 2R (the fig-
ure shows a top-down view); (b) the coef-
ficient of friction is µ everywhere. Hint:
any planar motion of a rigid body can
be viewed as rotation around an instant
centre of rotation, i.e. the velocity vector
of any point of the body is the same as if
the instant centre were the real axis of ro-
tation.

v

a
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This is quite a hard problem. It is use-
ful to note



IDEA 10: if a body has to move with a
constant velocity, then the problem is about
statics.

Also remember ideas 1 and 2. The latter
can be replaced with its consequence,

FACT 4: if a body in equilibrium is acted on
by three forces at three separate points, then
their lines of action intersect at one point.
If there are only two points of action, then
the corresponding lines coincide.

Another useful fact is

FACT 5: the friction force acting on a given
point is always antiparallel to the velocity of
the point in the frame of reference of the
body causing the friction.

From time to time some mathematical
tricks are also of use; here it is the prop-
erty of inscribed angles (Thales’ theorem),

FACT 6: a right angle is subtended by a
semicircle (in general: an inscribed angle in
radians equals half of the ratio between its
arc-length and radius).

The property of inscribed angles is
also useful in the next problem, if we add
(somewhat trivial)

IDEA 11: in stable equilibrium the potential
energy of a body is minimum.

PROB 8. A light wire is bent into a right
angle and a heavy ball is attached to the
bend. The wire is placed onto supports
with height difference h and horizontal
distance a. Find the position of the wire
in its equilibrium. Express the position as
the angle between the bisector of the right
angle and the vertical. Neglect any fric-
tion between the wire and the supports;
the supports have little grooves keeping
all motion in the plane of the wire and the
figure.
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h

PROB 9. A rod with length l is hinged
to a ceiling with height h < l. Under-
neath, a board is being dragged on the
floor. The rod is meant to block the move-
ment the board in one direction while al-
lowing it move in the opposite direction.
What condition should be fulfilled for it
to do its job? The coefficient of friction is
µ1 between the board and the rod, and µ2
between the board and the floor.

α

µ1
µ2

Let’s remember fact 3: if the relative
sliding between two bodies has a known
direction, then the direction of the sum of
the friction and reaction force vectors is
always uniquely determined by the coef-
ficient of friction. If a force makes one of
the bodies move in such a way that the
reaction force grows, then they jam: the
larger the forces we try to drag the bod-
ies with, the larger friction and reaction
forces restrain them.

IDEA 12: Friction can block movement. In
such a case, all forces become negligible ex-
cept for the friction force, reaction force
and the externally applied force that tries
to make the system move, because gravit-
ational (and such) forces are �xed, but the
said forces become the larger the harder we
push or pull.

PROB 10. Four long and four half as
long rods are hinged to each other form-
ing three identical rhombi. One end of

the contraption is hinged to a ceiling,
the other one is attached to a weight of
mass m. The hinge next to the weight is
connected to the hinge above by a string.
Find the tension force in the string.

m

This problem is the easiest to solve us-
ing the method of virtual displacement.

METHOD 1: Imagine that we are able to
change the length of the string or rod the
tension in which is searched for by an in-
�nitesimal amount ∆x. Equating the work
T∆x by the change ∆Π of the potential en-
ergy, we get T = ∆Π/∆x.

Generalisation: if some additional external
forces F⃗i (i = 1, 2, . . .) act on the sys-
tem with the displacements of their points
of action being δx⃗i, while the interest-
ing string or rod undergoes a virtual
lengthening of ∆x, then T = (∆Π −
∑i δx⃗i · F⃗i)/∆x.

The method can also be used for find-
ing some other forces than tension (for
example, in problems about pulleys): by
imaginarily shifting the point of action of
the unknown force one can find the pro-
jection of this force onto the direction of
the virtual displacement.

PROB 11. A rope with mass m is hung
from the ceiling by its both ends and a
weight with mass M is attached to its
centre. The tangent to the rope at its either
end forms angle α with the ceiling. What
is the angle β between the tangents to the
rope at the weight?

α α

β
m

M

FACT 7: The tension in a freely hanging
string is directed along the tangent to the
string.

In addition, we can employ

IDEA 13: consider a piece of string separ-
ately and think about the componentwise
balance of forces acting onto it.

In fact, here we do not need the idea as a
whole, but, rather, its consequence,

FACT 8: the horizontal component of the
tension in a massive string is constant.

In problems about ropes one may some-
times use

IDEA 14: If the weight of a hanging part of
a rope is much less than its tension, then
the curvature of the rope is small and its
horizontal mass distribution can quite ac-
curately be regarded as constant.

This allows us to write down the con-
dition of torque balance for the hanging
portion of the rope (as we know the ho-
rizontal coordinate of its centre of mass).
The next problem illustrates that ap-
proach.

PROB 12. A boy is dragging a rope
with length L = 50 m along a horizontal
ground with a coefficient of friction of µ =
0.6, holding an end of the rope at height
H = 1 m from the ground. What is the
length l of the part of the rope not touch-
ing the ground?

PROB 13. A light rod with length l is
hinged in such a way that the hinge folds
in one plane only. The hinge is spun with
angular speed ω around a vertical axis. A
small ball is fixed to the other end of the



rod. (a) Find the angular speeds for which
the vertical orientation is stable. (b) The
ball is now attached to another hinge and,
in turn, to another identical rod; the upper
hinge is spun in the same way. What is
now the condition of stability for the ver-
tical orientation?

ω ω

a) b)

l

l
l

For answering about the stability of
an equilibrium, usually the following fact
works best.

IDEA 15: Presume that the system devi-
ates a little from the equilibrium, either by
a small displacement ∆x or by a small angle
∆φ, and �nd the direction of the appear-
ing force or torque � whether it is to-
wards the equilibrium or away from it. NB!
compute approximately: in almost all cases,
an approximation linear in the deviation is
enough.

Incidentally use all formulae of approx-
imate calculation known from mathemat-
ics (sin φ ≈ φ and others);

IDEA 16: f (x + ∆x) ≈ f (x) + f ′(x)∆x
[+ f ′′(x)∆x2

2 ]; (x + ∆x)(y + ∆y) ≈ xy +
x∆y + y∆x etc (consider them wherever
initial data suggest some parameter to be
small).

The case (b) is substantially more diffi-
cult as the system has two degrees of free-
dom (for example, the deviation angles
∆φ1 and ∆φ2 of the rods). Although idea
15 is generalisable for more than one de-
grees of freedom, apparently it is easier to
start from idea 11.

IDEA 17: The equilibrium x = y = 0 of
a system having two degrees of freedom is
stable if (and only if) the potential energy

Π(x, y), when viewed as a one-variable func-
tion Π(x, kx), has a minimum for all real
constants k.

PROB 14. If a beam with square cross-
section and very low density is placed in
water, it will turn one pair of its long op-
posite faces horizontal. This orientation,
however, becomes unstable as we increase
its density. Find the critical density when
this transition occurs. The density of wa-
ter is ρv = 1000 kg/m3.

IDEA 18: The torque acting on a body
placed into a liquid is equal to torque from
buoyancy, if we take the latter force to be
acting on the centre of the mass of the dis-
placed liquid.

Indeed, consider a body with density of
the liquid and shape identical to the part
of the given body that is immersed in
the liquid. Of course it must be in equi-
librium when placed in water: whatever
point we choose to measure torques from,
the sum of moments from pressure forces
is always equal to the opposite value of
torque from gravity. When calculating the
moments from buoyancy in this question,
it is useful to keep in mind that we can
give negative mass to bits of some body:
if two bits overlap that have the same
density with different signs, they add up
to zero density. The last suggestion can be
formulated in a more general way:

IDEA 19: In order to achieve a more sym-
metric con�guration or to make the situ-
ation simpler in some other way, it is some-
times useful to represent a region with zero
value of some quantity as a superposition of
two regions with opposite signs of the same
quantity.

This quantity can be mass density (like in
this case), charge or current density, some
force field etc. Often this trick can be com-
bined with

IDEA 20: Make the problem as symmetric
as possible.

This goal can be reached by applying
idea 19, but also by using appropriate
reference frames, dividing the process of
solving into several phases (where some
phases use symmetric geometry), etc.

PROB 15. A hemispherical container is
placed upside down on a smooth hori-
zontal surface. Through a small hole
at the bottom of the container, water is
then poured in. Exactly when the con-
tainer gets full, water starts leaking from
between the table and the edge of the con-
tainer. Find the mass of the container
if water has density ρ and radius of the
hemisphere is R.

M

R

IDEA 21: If water starts �owing out from
under an upside down container, normal
force must have vanished between the table
and the edge of the container. Therefore
force acting on the system container+liquid
from the table is equal solely to force from
hydrostatic pressure.

The latter is given by pS, where p is pres-
sure of the liquid near the tabletop and S
is area of the container’s open side.

PROB 16. A block is situated on a slope
with angle α, the coefficient of friction
between them is µ > tan α. The slope
is rapidly driven back and forth in a way
that its velocity vector u⃗ is parallel to both
the slope and the horizontal and has con-
stant modulus v; the direction of u⃗ re-
verses abruptly after each time interval τ.
What will be the average velocity w of the
block’s motion? Assume that gτ ≪ v.
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IDEA 22: If the system changes at high fre-
quency, then it is often pratical to use time-
averaged values ⟨X⟩ instead of detailed cal-
culations. In more complicated situations a
high-frequency component X̃ might have to
be included (so that X = ⟨X⟩+ X̃).

METHOD 2: (perturbation method) If the
impact of some force on a body's motion can
be assumed to be small, then solve the prob-
lem in two (or more) phases: �rst �nd mo-
tion of the body in the absence of that force
(so-called zeroth approximation); then pre-
tend that the body is moving just as found
in the �rst phase, but there is this small
force acting on it. Look what correction (so-
called �rst correction) has to be made to the
zeroth approximation due to that force.

In this particular case, the choice of zeroth
approximation needs some explanation.
The condition gτ ≪ v implies that within
one period, the block’s velocity cannot
change much. Therefore if the block is ini-
tially slipping downwards at some velo-
city w and we investigate a short enough
time interval, then we can take the block’s
velocity to be constant in zeroth approx-
imation, so that it is moving in a straight
line. We can then move on to phase two
and find the average value of frictional
force, based on the motion obtained in
phase one.

PROB 17. Let us investigate the extent to
which an iron deposit can influence water
level. Consider an iron deposit at the bot-
tom of the ocean at depth h = 2 km. To
simplify our analysis, let us assume that
it is a spherical volume with radius 1 km
with density greater from the surround-



ing rock by ∆ρ = 1000 kg/m3. Presume
that this sphere touches the bottom of the
ocean with its top, i.e. that its centre is
situated at depth r + h. By how much
is the water level directly above the iron
deposit different from the average water
level?

iron 
deposit
iron 
deposit

rr
hh

IDEA 23: The surface of a liquid in equilib-
rium takes an equipotential shape, i.e. ener-
gies of its constituent particles are the same
at every point of the surface.

If this was not the case, the potential en-
ergy of the liquid could be decreased by
allowing some particles on the surface to
flow along the surface to where their po-
tential energy is smaller.

IDEA 24: Gravitational potentials can be
calculated exactly in the same way as elec-
trostatic potentials.

The principle of superposition still holds
and a sphere’s potential only has a dif-
ferent factor: instead of Q/4πε0r in elec-
trostatics the gravitational potential of a
sphere with respect to infinity is φ =
−GM/r; the minus sign comes from the
fact that masses with the same sign [“+”]
attract.

PROB 18. A horizontal platform rotates
around a vertical axis at angular velo-
city ω. A disk with radius R can freely
rotate and move up and down along a
slippery vertical axle situated at distance
d > R from the platform’s axis. The disk
is pressed against the rotating platform
due to gravity, the coefficient of friction
between them is µ. Find the angular ve-
locity acquired by the disk. Assume that

pressure is distributed evenly over the en-
tire base of the disk.

d
R

ω

r

IDEA 25: If we transform into a rotating
frame of reference, then we can add angular
velocities about instantaneous axes of ro-
tation in the same way as we usually add
velocities.

Thus ω⃗3 = ω⃗1 + ω⃗2, where ω⃗1 is angu-
lar velocity of the reference frame, ω⃗2 an-
gular velocity of the body in the rotating
frame of reference and ω⃗3 that in the sta-
tionary frame. In this question, we can
use fact 5, ideas 2, 8, 10 and also

IDEA K5: Arbitrary motion of a rigid body
can be considered as rotation about an in-
stantaneous centre of rotation (in terms of
velocity vectors of the body).

METHOD 3: (di�erential calculus) Divide
the object into in�nitesimally small bits or
the process into in�nitesimally short periods
(if necessary, combine this with idea 16).

Within an infinitesimal bit (period),
quantities changing in space (time) can be
taken constant (in our case, that quantity
is the direction of frictional force vector).
If necessary (see the next question), these
quantities may be summed over all bits
— this is called integration.

PROB 19. A waxing machine consists
of a heavy disk with mass M densely
covered with short bristles on one side, so
that if it lies on the floor, then its weight
is evenly distributed over a circular area
with radius R. An electrical motor makes
the disk rotate at angular velocity ω, the
user compensates for the torque from fric-
tional forces by a long handle. The same

handle can be used to push the machine
back and forth along the floor. With what
force does the machine have to be pushed
to make it move at velocity v? Assume
that angular velocity of the disk is large,
ωR ≫ v, and that the force needed to
compensate for the torque can be neg-
lected. The coefficient of friction between
the bristles and the floor is µ.

Here we need fact 5, ideas K5 and 19 and
additionally

IDEA 26: Try to determine the region of
space where forces (or torques etc) cancel
at pairs of points.

These pairs of points are often symmetric-
ally located. Idea 20 is relevant as well.

PROB 20. A hexagonal pencil lies on a
slope with inclination angle α; the angle
between the pencil’s axis and the line of
intersection of the slope and the horizontal
is φ. Under what condition will the pencil
not roll down?

α

ϕ

IDEA 27: When solving three-dimensional
problems, sometimes calculating coordin-
ates in appropriately chosen axes and ap-
plying formulae of spatial rotations can be
of use.

What (which vector) could be expressed
in terms of its components in our case?
The only promising option is the small
shift vector of centre of mass when its
starts to move; ultimately we are only in-
terested in its vertical component.

PROB 21. A slippery cylinder with ra-
dius R has been tilted to make an angle
α between its axis and the horizontal. A

string with length L has been attached to
the highest point P of some cross-section
of the cylinder, the other end of it is tied to
a weight with mass m. The string takes
its equilibrium position, how long (l) is
the part not touching the cylinder? The
weight is shifted from its equilibrium pos-
ition in such a way that the shift vector is
parallel to the vertical plane including the
cylinder’s axis; what is the period of small
oscillations?
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IDEA 28: Unfolding a three-dimensional ob-
ject and looking at its surfaces in the same
plane can assist in solving problems, among
other things it helps to �nd shortest dis-
tances.

PROB 22. A uniform bar with mass m
and length l hangs on four identical light
wires. The wires have been attached to the
bar at distances l

3 from one another and
are vertical, whereas the bar is horizontal.
Initially, tensions are the same in all wires,
T0 = mg/4. Find tensions after one of the
outermost wires has been cut.

l

l/3

IDEA 29: If more �xing elements (rods,
strings, etc) than the necessary minimum
have been used to keep a body in static equi-
librium (i.e. more than the number of de-
grees of freedom) and �xing elements are
absolutely rigid, then tensions in the ele-
ments cannot be determined. In order to



make it possible, the elements have to be
considered elastic (able to deform).

Let us note that this statement is in ac-
cordance with idea 3 that gives the num-
ber of available equations (there can be no
more unknowns than equations). In this
particular case, we are dealing with ef-
fectively one-dimensional geometry with
no horizontal forces, but the body could
rotate (in absence of the wires). Thus
we have two degrees of freedom, corres-
ponding to vertical and rotational motion.
Since the wires are identical, they must
have the same stiffness as well; the word
“wire” hints at large stiffness, i.e. deform-
ations (and the inclination angle of the
bar) are small.

DYNAMICS

A large proportion of dynamics problems
consist of finding the acceleration of some
system or forces acting between some
bodies. There are several possible ap-
proaches for solving these questions, here
we consider three of them.

METHOD 4: For each body, we �nd all the
forces acting on it, including normal forces
and frictional forces, and write out Newton's
second law in terms of components (i.e. by
projecting the equation on x, y, and possibly
z-axes).

We need the same number of equations as
we have unknowns; following idea 1 can
help to reduce that number.

PROB 23. A block with mass M lies on
a slippery horizontal surface. On top of it
there is another block with mass m which
in turn is attached to an identical block
by a string. The string has been pulled
across a pulley situated at the corner of
the big block and the second small block
is hanging vertically. Initially, the system

is held at rest. Find the acceleration of the
big block immediately after the system is
released. You may neglect friction, as well
as masses of the string and the pulley.

M

m

m

This question can be successfully
solved using method 4, but we need two
more ideas.

IDEA 30: If a body is initially at rest, then
its shift vector is parallel to the force acting
on it (and its acceleration) right after the
start of its motion.

IDEA 31: If bodies are connected by a rope
or a rod or perhaps a pulley or one is sup-
ported by the other, then there is an arith-
metic relation between the bodies' shifts
(and velocities, accelerations) that describes
the fact that length of the string (rod, etc.)
is constant.

If bodies start at rest or if motion is along a
straight line, then the same relation holds
between accelerations, since the relation
for shifts can be differentiated w.r.t. time.
This relation is usually relatively simple,
but in some problems it is easy to make a
mistake.

METHOD 5: Otherwise the same as method
4, but motion is investigated in a non-
inertial frame of reference (see idea 6) where
one of the bodies is at rest.

Method 5 is useful in many questions con-
cerning wedges, where it can be difficult
to write out the condition for an object to
stay on the wedge in the laboratory frame.
Applying idea 31 is also often easier in
the wedge’s frame of reference than in the
laboratory frame. Since the body defining

the reference frame is at rest, we can write
out the condition(s) of equilibrium for it.

FACT 9: If the frame of reference of an ac-
celerating body is used (method 5), then in
the new frame the forces acting on this body
add up to zero.

PROB 24. A wedge has been made out
of a very light and slippery material.
Its upper surface consists of two slopes
making an angle α with the horizontal
and inclined towards one another. The
block is situated on a horizontal plane;
a ball with mass m lies at the bottom
of the hole on its upper surface. An-
other ball with mass M is placed higher
than the first ball and the system is re-
leased. On what condition will the small
ball with mass m start slipping upwards
along the slope? Friction can be neglected.

M

m

α α

The final method is based on using gener-
alised coordinates and originates from the-
oretical mechanics. There its description
requires relatively complicated mathem-
atical apparatus, but in most problems it
can be used in a much simpler form.

METHOD 6: Let us call ξ a generalised co-
ordinate if the entire state of a system can
be described by this single number. Say we
need to �nd the acceleration ξ̈ of coordinate
ξ. If we can express the potential energy Π
of the system as a function Π(ξ) of ξ and
the kinetic energy in the form K = Mξ̇2/2
where coe�cient M is a combination of
masses of the bodies (and perhaps of mo-
ments of inertia), then

ξ̈ = −Π′(ξ)/M.

Here, a dot denotes differentiation w.r.t.
time and dash w.r.t. coordinate ξ. Indeed,
due to conservation of energy Π(ξ) +
Mξ̇2/2 =Const. Differentiating that
w.r.t. time and using the chain rule, we
obtain Π′(ξ)ξ̇ + Mξ̇ ξ̈ = 0. We reach
the aforementioned formula after divid-
ing through by ξ̇.

PROB 25. A small block with mass m lies
on a wedge with angle α and mass M. The
block is attached to a rope pulled over a
pulley attached to the tip of the wedge and
fixed to a horizontal wall (see the figure).
Find the acceleration of the wedge. All
surfaces are slippery (there is no friction).

m

α

M

a = ?

Full solution of this problem is given
in the hints’ section to illustrate method 6

PROB 26. A wedge with mass M and
acute angles α1 and α2 lies on a horizontal
surface. A string has been drawn across
a pulley situated at the top of the wedge,
its ends are tied to blocks with masses m1
and m2. What will be the acceleration of
the wedge? There is no friction anywhere.

m2
m1

α1 α2

M

It may seem that there is more than one
degree of freedom in this question: the
wedge can move and the string can shift
w.r.t. the wedge. However, we are saved
by

IDEA 32: If x-components of the sum of ex-
ternal forces and of centre of mass velocity
are both zero, then the x-coordinate of the
centre of mass remains constant.



We can use this circumstance to reduce
the effective number of degrees of free-
dom. In our particular case, the system
consists of two components and thus the
shift of component can be expressed by
that of the other.

IDEA 33: The x-coordinate of the centre of
mass of a system of bodies is

XC = ∑ ximi/ ∑ mi,
where mi denotes mass of the i-th com-
ponent and xi the coordinate of its centre
of mass. The formula can be rewritten in
integral form, XC =

∫
xdm/

∫
dm, where

dm = ρ(x, y, z)dV is di�erential of mass.

PROB 27. Two slippery horizontal sur-
faces form a step. A block with the same
height as the step is pushed near the step,
and a cylinder with radius r is placed on
the gap. Both the cylinder and the block
have mass m. Find the normal force N
between the cylinder and the step at the
moment when distance between the block
and the step is

√
2r. Initially, the block

and the step were very close together and
all bodies were at rest. Friction is zero
everywhere. Will the cylinder first separ-
ate from the block or the step?

√−

2 rm

m

r

It is easy to end up with very complic-
ated expressions when solving this prob-
lem, this may lead to mistakes. Therefore
it is wise to plan the solution carefully be-
fore writing down any equations.

IDEA 34: Newton's laws are mostly used to
�nd acceleration from force, but sometimes
it is clever to �nd force from acceleration.

But how to find acceleration(s) in that
case? It is entirely possible if we use
method 6, but this path leads to long
expressions. A tactical suggestion: if
you see that the solution is getting very
complicated technically, take a break and
think if there is an easier way. There is a
“coincidence” in this particular problem:
straight lines drawn from the sphere’s
centre to points of touching are perpen-
dicular; can this perhaps help? It turns
out that it does.

IDEA 35: Pay attention to special cases and
use simpli�cations that they give rise to!

Let us remind what we learned in kin-
ematics:

IDEA K29: In case of motion along a curve,
the radial component (perpendicular to the
trajectory) of a point's acceleration v2/R
is determined by velocity v and radius of
curvature R; the component along the tra-
jectory is linear acceleration (equal to εR in
case of rotational motion, ε is angular accel-
eration).

The centre of mass of the cylinder under-
goes rotational motion, method 6 is ne-
cessary to find angular acceleration — but
we hoped to refrain from using it. An im-
provement on idea 1 helps us out:

IDEA 36: Project Newton's 2nd law on the
axis perpendicular to an unwanted vector,
e.g. an unknown force or the tangential
component of acceleration.

We can easily find the cylinder’s velocity
(and thus the radial component of accel-
eration) if we use

IDEA 37: If energy is conserved (or its
change can be calculated from work done
etc), write it out immediately. Energy is
conserved if there is no dissipation (friction,
inelastic collisions etc) and external forces
acting on the system are static (e.g. a sta-
tionary inclined plane);

forces changing in time (force acting on
a moving point, moving inclined plane)
change energy as well. Idea 31 helps to
write out conservation of energy (relation
between bodies’ velocities!). To answer
the second question, we need

IDEA 38: Normal force vanishes at the mo-
ment when a body detaches from a surface.

Also, review idea 31 for horizontal com-
ponents of accelerations.

PROB 28. Light wheels with radius R are
attached to a heavy axle. The system rolls
along a horizontal surface which suddenly
turns into a slope with angle α. For which
angles α will the wheels move without lift-
ing off, i.e. touch the surface at all times?
Mass of the wheels can be neglected. The
axle is parallel to the boundary between
horizontal and sloped surfaces and has ve-
locity v.

m

α

v

IDEA 39: To answer the question whether
a body lifts o�, we have to �nd the point
on the non-lifting-o� trajectory with smal-
lest normal force.

If normal force has to be negative at that
point, then the body lifts off; the critical
value is zero — compare with idea 38).
Also, review ideas 1, 37 and K29.

PROB 29. A block with mass M lies
on a horizontal slippery surface and also
touches a vertical wall. In the upper sur-
face of the block, there is a cavity with the
shape of a half-cylinder with radius r. A
small pellet with mass m is released at the
upper edge of the cavity, on the side closer

to the wall. What is the maximum velocity
of the block during its subsequent motion?
Friction can be neglected.

r

m

M

IDEA 40: Conservation law can hold only
during some period of time.

IDEA 41: Momentum is conserved if the
sum of external forces is zero; sometimes
momentum is conserved only along one axis.

You will also need idea 37.

IDEA 42: Velocity is maximal (or minimal)
when acceleration (and net force) is zero
(since 0= dv

dt = a); shift is extremal when
velocity is zero. Possible other pairs: elec-
trical charge (capacitor's voltage)-current,
current-inductive emf, etc.

PROB 30. A light rod with length 3l is
attached to the ceiling by two strings with
equal lengths. Two balls with masses m
and M are fixed to the rod, the distance
between them and their distances from the
ends of the rod are all equal to l. Find the
tension in the second string right after the
first has been cut.

m

l

M

ll

There are several good solutions for this
problem, all of which share applying
idea 34 and the need to find the angu-
lar acceleration of the rod. Firstly, angu-
lar acceleration of the rod can be found
from method 6 by choosing angle of ro-
tation φ to be the generalised coordinate.



Secondly, we may use Newton’s 2nd law
for rotational motion: we find the torque
on the rod about the point of attachment
of the second string and equate it to Iε
with angular acceleration ε and moment
of inertia I = ml2 + 4Ml2. More gener-
ally,

IDEA 43: When a body is rotating around
the axis s, the net torque it experiences
is M = Iε (not to be confused with the
body's mass), where I is its moment of iner-
tia with respect to the axis s, I = ∑ mir2

i =∫
r2 · dm =

∫
r2ρ · dV and ri is the distance

of i-th particle from the axis s (the sum
is evaluated over all particles of the body).
Kinetic energy is K = 1

2 Iω2.

Once the angular acceleration is found, in
order to apply the idea 34 it may be help-
ful to use

IDEA 44: The more general and sometimes
indispensable form of Newton's 2nd law is

F⃗ = dP⃗
dt , where P⃗ is the net momentum

of the system and F⃗ is the sum of external
forces acting on the system. An analogous

formula is M⃗ = d⃗L
dt , where L⃗ is the net angu-

lar momentum of the system (with respect

to a given point) and M⃗ is the sum of ex-
ternal torques.

In our case this last method is fruitful
when applied both to forces and torques.

Another solution method is to con-
sider the rod and the balls as three dif-
ferent (interacting) bodies. Then the balls’
accelerations can be found as per idea 31;
one can also employ

IDEA 45: Net force and torque acting on
very light bodies (compared to other bod-
ies) are zero.

Clearly if this were not true, a non-zero
force would generate an infinite accelera-
tion for a massless body.

PROB 31. An inextensible rough thread
with mass per unit length ρ and length
L is thrown over a pulley such that the
length of one hanging end is l. The pul-
ley is comprised of a hoop of mass m and
radius R attached to a horizontal axle by
light spokes. The initially motionless sys-
tem is let go. Find the force on the axle
immediately after the motion begins. The
friction between the pulley and the axle is
negligible.

R

Why not proceed as follows: to find the
force, we will use idea 34; the acceleration
of the system will be found using Method
6. To apply idea 34 most handily, let us
employ

IDEA 46: Newton's 2nd law can be written
as F⃗ = Ma⃗C, where a⃗C is the acceleration
of the centre of mass.

This idea is best utilised when a part of
the system’s mass is motionless and only
a relatively small mass is moved about
(just like in this case: the only difference
after a small period of time is that a short
length of thread is “lost” at one end and
“gained” at the other end). Obviously
idea 32 will be useful here, and idea 19
will save you some effort. Bear in mind
that in this case we are not interested in
the centre of mass coordinate per se, but
only in its change as a function of time;
therefore in the expression for this co-
ordinate we can omit the terms that are
independent of time: their time derivat-

ives will vanish. The time-dependent part
of the centre of mass coordinate should be
expressed using the same coordinate that
we will use with Method 6 (since Method
6 will produce its second derivative with
respect to time). A technical bit of ad-
vice may help: a vector is specified by (a)
its magnitude and direction; (b) its projec-
tions onto coordinate axes in a given co-
ordinate system;

IDEA 47: sometimes it is easier to compute
the components of a vector, even if we are
interested in its magnitude only.

Above all, this applies when the direction
of the vector is neither known nor appar-
ent. In this instance, we should find Fx
and Fy in a suitable coordinate system.

PROB 32. A thread is thrown over a pul-
ley. At its both ends there are two blocks
with equal masses. Initially the two blocks
are at the same height. One of them is
instantaneously given a small horizontal
velocity v. Which of the two blocks will
reach higher during the subsequent mo-
tion? The pulley’s mass is negligible.

v

This problem is really tough, because the
key to the solution is a very specific and
rarely used

IDEA 48: If the centre of mass of a system
cannot move, then the net force acting on
it is zero.

Here the centre of mass can move about
a little bit, but in the longer term (aver-
aged over one period of the pendulum-
like motion of the kicked block — cf. idea

22) it is motionless: the blocks have the
same mass and if one of them rises, then
in the expression for the centre of mass
this will be compensated by the descent
of the other block. This is also true for
the horizontal coordinate of the centre of
mass, but it is enough to consider the ver-
tical coordinate only to solve the problem.
Let us also bring up the rather obvious

FACT 10: the tension in a weightless thread
thrown over a weightless pulley or pulled
along a frictionless surface is the same every-
where.

The solution algorithm is then as follows:
we write down Newton’s 2nd law for (a)
the system made out of two blocks and
(b) one block; we average both equations
and use the equality apparent from (a)
to find the average tension in the thread,
which we then substitute into equation
(b). Based on idea 22, we partition the ten-
sion in the thread into the average and the
high-frequency component and use idea
16.

PROB 33. A system of blocks sits on
a smooth surface, as shown in the fig-
ure. The coefficient of friction between
the blocks is µ, while that between the
blocks and the surface is µ = 0.

m m

x

M M
F

The bottom right block is being pulled by
a force F. Find the accelerations of all
blocks.

IDEA 49: When bodies are connected by
frictional forces, then to answer some ques-
tions fully one needs to consider all possible
combinations of there being relative slipping
between all possible touching surfaces.



For example, if we are to assume that
there is no slipping between two touch-
ing bodies, then they could be treated as
a whole. Then one should find the fric-
tional force Fh between the bodies and de-
termine when the assumption holds, or
when is Fh less that the maximum static
friction force µN.

PROB 34. A billiard ball hits another sta-
tionary billiard ball. At which collection
of points could the stationary ball be po-
sitioned such that it would be possible
to achieve the situation where both balls
will fall into two (different) pockets on the
table? The collisions are perfectly elastic,
the balls are perfectly slippery (hence the
rotation of the balls is negligible).

IDEA 50: If an absolutely elastic ball hits
another motionless identical ball and the ro-
tation (rolling) of the balls can be ignored,
then upon impact there will be a right angle
between the velocity vectors of the two balls.

To prove this, note that the three velocity
vectors (velocity before and the two ve-
locities after the impact) form a triangle
because of the momentum conservation
law. The conservation of energy means
that the sides of the triangle satisfy Py-
thagore’s theorem. A special case of this
result is (see the problem after next)

FACT 11: When an elastic ball undergoes a
central collision with another identical sta-
tionary ball, then the �rst ball stops and the
second gains the velocity of the �rst ball.

PROB 35. An absolutely elastic and slip-
pery billiard ball is moving with velocity v
toward two motionless identical balls. The
motionless balls are touching and their
centres lie on a straight line that is per-
pendicular to the incoming ball’s velocity
vector. The moving ball is directed ex-
actly toward the touching point of the two
balls. Which velocity will the incoming

ball have after the collisions? Consider
two scenarios: (a) the incoming ball hits
exactly in the middle between the balls; (b)
its trajectory is a little bit off and it hits one
of the stationary balls marginally earlier.

v

To answer the first question, it is neces-
sary to use

IDEA 51: collisions (and other many-body
interactions, like the motion of balls con-
nected by threads or springs) are easier to
treated in the centre of mass system, be-
cause in that system the momentum con-
servation is the easiest to write down (the
net momentum is zero).

Also, do not forget idea 37! For the second
question, let us use

IDEA 52: if a force acting on a body dur-
ing a known time does not change direc-
tion, then the transferred momentum has
the same direction as the force.

PROB 36. n absolutely elastic beads are
sliding along the frictionless wire. What
is the maximum possible number of col-
lisions? The sizes of the beads are negli-
gible, and so is the probability that more
than two beads will collide at the same
time.

IDEA 53: Representing the process visually,
e.g. with a graph, tends to be great help.

Here is an auxiliary question: what
would the elastic collision of two balls on
an x − t diagram look like?

PROB 37. A plank of length L and mass
M is lying on a smooth horisontal surface;
on its one end lies a small block of mass
m. The coefficient of friction between the
block and the plank is µ. What is the min-
imal velocity v that needs to be imparted
to the plank with a quick shove such that

during the subsequent motion the block
would slide the whole length of the board
and then would fall off the plank? The size
of the block is negligible.

Lµµ=0 m
M

v

This problem has two more or less equi-
valent solutions. First, we could solve it
using idea 6. Second, we could use ideas
37 and 51, further employing

IDEA 54: if a body slides along a level sur-
face, then the energy that gets converted to
heat is equal to the product of the friction
force and the length of the sliding track.

Indeed, the friction force has a constant
magnitude and, as seen in the reference
frame of the support, it is always parallel
to displacement.

PROB 38. The given figure has been pro-
duced off a stroboscopic photograph and
it depicts the collision of two balls of equal
diameters but different masses. The arrow
notes the direction of motion of one of the
balls before the impact. Find the ratio of
the masses of the two balls and show what
the direction of motion for the second ball
was before the impact.

IDEA 55: sometimes it is bene�cial to treat
momenta as vectors, treating their vectorial
sums and di�erences using triangle or par-
allelogram rules (this is also true of other
vectorial quantities: displacements, velocit-
ies, accelerations, forces etc.)

To be more specific: when two bodies in-
teract, the vector of the impulse is equal
to the vectorial difference of their two mo-
menta. Cf. idea 5.

FACT 12: In a stroboscopic photograph, the
vector from one position of the body to the
next is proportional to its velocity (vector).

FACT 13: (Newton's 3rd law) if two bodies
have interacted, the changes of momenta of
the two bodies are equal and opposite.

PROB 39. There are two barrels (A and
B) whose taps have different design, see
figure. The tap is opened, the height of the
water surface from the tap is H. What ve-
locity does the water stream leave the bar-
rels with?

HH

A B

IDEA 56: If it seems that it is possible to
solve a problem using both energy and mo-
mentum conservation, then at least one of
these is not actually conserved!

It could not be otherwise: the answers are,
after all, different. It pays to be attentive
here. While designing the tap A, there
was a clear attempt to preserve the lam-
inarity of the flow: energy is conserved.
However, if, motivated by method 3, we
were to write down the momentum given
to the stream by the air pressure during
an infinitesimal time dt — pSdt (where
S is the tap’s area of cross-section), we
would see that, owing to the flow of wa-
ter, p ̸= ρg (cf. dynamical pressure,
Bernoulli’s law!). On the other hand, for
tap B the laminar flow is not preserved;
there will be eddies and loss of energy. We
could nonetheless work with momentum:
we write the expression for the pressure



exerted on the liquid by the walls of the
barrel (generally the pressures exerted by
the left and the right hand side walls of
the barrel cancel each other out, but there
remains an uncompensated pressure p =
ρgH exerted to the left of the cross-section
of the tap S).

PROB 40. Sand is transported to the con-
struction site using a conveyor belt. The
length of the belt is l, the angle with re-
spect to the horizontal is α; the belt is
driven by the lower pulley with radius R,
powered externally. The sand is put onto
the belt at a constant rate µ (kg/s). What
is the minimal required torque needed
to transport the sand? What is the ve-
locity of the belt at that torque? The
coefficient of friction is large enough for
the sand grains to stop moving immedi-
ately after hitting the belt; take the ini-
tial velocity of the sand grains to be zero.

α

µ l
R

FACT 14: To make anything move � bod-
ies or a �ow (e.g. of sand) � force needs
to be exerted.

For this problem, idea 56 and methode 3
will come in handy in addition to

IDEA 57: (the condition for continuity) for
a stationary �ow the �ux of matter (the
quantity of stu� crossing the cross-section of
the �ow per unite time) is constant and is in-
dependent of the cross-section: σv = Const
[σ(x) is the matter density per unit distance
and v(x) � the velocity of the �ow].

For a flow of incompressible (constant
density) liquid in a pipe, such a density
is σ = ρS and therefore vS = Const. For
a region of space where the flow is dis-
charged — a sink — the mass increases:

dm
dt = σv — this equation, too, could be

called the condition for continuity.

PROB 41. A ductile blob of clay falls
against the floor from the height h and
starts sliding. What is the velocity of the
blob at the very beginning of sliding if
the coefficient of friction between the floor
and the blob is µ? The initial horizontal
velocity of the blob was u.

IDEA 58: If during an impact against a hard
wall there is always sliding, then the ratio of
the impulses imparted along and perpendic-
ular to the wall is µ.

Indeed, ∆p⊥ =
∫

N(t)dt (integrated over
the duration of the impact) and ∆p∥ =∫

µN(t)dt = µ
∫

N(t)dt.

PROB 42. A boy is dragging a sled by
the rope behind him as he slowly ascends
a hill. What is the work that the boy does
to transport the sled to the tip of the hill
if its height is h and the horizontal dis-
tance from the foot of the hill to its tip is
a? Assume that the rope is always parallel
to the tangent of the hill’s slope, and that
the coefficient of friction between the sled
and the snow is µ.

h

a

FACT 15: if the exact shape of a certain
surface or a time dependence is not given,
then you have to deal with the general case:
prove that the proposition is true for an ar-
bitrary shape.

Clearly, to apply the fact 15, one will need
idea 3.

PROB 43. An empty cylinder with mass
M is rolling without slipping along a
slanted surface, whose angle of inclination
is α = 45◦. On its inner surface can slide

freely a small block of mass m = M/2.
What is the angle β between the normal
to the slanted surface and the straight line
segment connecting the centre of the cyl-
inder and the block?

β

α m

M

Clearly the simplest solution is based on
idea 6, but one needs to calculate the kin-
etic energy of a rolling cylinder.

IDEA 59: K = Kc + MΣv2
c /2, where Kc

is the kinetic energy as seen in the centre
of mass frame and MΣ � is the net mass
of the system. Analogously: P⃗ = MΣv⃗c
(since P⃗c ≡ 0) and the angular momentum

L⃗ = Lc + r⃗c × P⃗. Parallel-axis (Steiner) the-
orem holds: I = I0 + MΣa2, where I is the
moment of inertia with respect to an axis
s and I0 � that with respect to an axis
through the centre of mass (parallel to s)
while a is the distance between these two
axes.

We will have to compute angular mo-
mentum already in the next problem, so
let us clarify things a little.

IDEA 60: Angular momentum is additive.
Dividing the system into point-like masses,
L⃗ = ∑ L⃗i, where for i-th point-like mass
L⃗i = r⃗i × p⃗i (generally) or Li = hi pi = ri pti
(motion in a plane), hi = ri sin αi is the lever
arm and pti = pi sin α � is the tangential
component of the momentum). Kinetic en-
ergy, momentum etc. are also additive.

If in a three-dimensional space the an-
gular momentum is a vector, for a mo-
tion in a plane this vector is perpendicu-
lar to the plane and is therefore effectively
a scalar (and thus one can abandon cross

products). It is often handy to combine
ideas 59 and 60: we do not divide the sys-
tem into particles but, instead, into rigid
bodies (L = ∑ Li), we compute the mo-
ment of inertia Li of each body according
to idea 59: the moment of inertia of the
centre of mass plus the moment of inertia
as measured in the centre of mass frame.

IDEA 61: Here are moments of inertia for
a few bodies, with respect to the centre of
mass. A rod of length of l: 1

12 Ml2, solid

sphere: 2
5 MR2, spherical shell: 2

3 MR2, cyl-

inder: 1
2 MR2, square with side length a, axis

perpendicular to its plane: 1
6 Ma2.

If the the rotation axis does not go
through the centre of mass, then one can
(a) find the moment of inertia with respect
to the axis of interest using the parallel-
axis (Steiner) theorem; (b) apply idea 59
to calculate kinetic energy or angular mo-
mentum (in which case it is only enough
to know the moment of inertia with re-
spect to the centre of mass).

PROB 44. A rod of mass M and length 2l
is sliding on ice. The velocity of the centre
of mass of the rod is v, the rod’s angu-
lar velocity is ω. At the instant when the
centre of mass velocity is perpendicular to
the rod itself, it hits a motionless post with
an end. What is the velocity of the centre
of mass of the rod after the impact if (a) the
impact is perfectly inelastic (the end that
hits the post stops moving); (b) the impact
is perfectly elastic.

v

ωM
2l

In case of an absolutely elastic collision
one equation follows from energy conser-
vation; if the collision is inelastic, then
another condition arises: that of a mo-
tionless end of the rod. Still, we have



two variables. The second equation arises
from

IDEA 62: if a body collides with something,
then its angular momentum is conserved
with respect to the point of impact.

Indeed, during the impact the body’s
motion is affected by the normal and
frictional forces, but both are applied
through the point of impact: their lever
arm is zero. If a body is moving in a
gravitational or similar field, then in the
longer term the angular momentum with
respect to the point of impact may be-
gin to change, but immediately before
and after the collision it is nonetheless the
same (gravity is not too strong as opposed
to the normal forces that are strong yet
short-lived; even though gravity’s lever
arm is non-zero, it cannot change the an-
gular momentum in an instant).

PROB 45. If one hits something rigid —
e.g. a lamppost — with a bat, the hand
holding the bat may get stung (hurt) as
long as the impact misses the so-called
centre of percussion of the bat (and hits
either below or above such a centre). De-
termine the position of the centre of per-
cussion for a bat of uniform density. You
may assume that during an impact the bat
is rotating around its holding hand.

METHOD 7: Convert a real-life problem into
the formal language of physics and math �
in other words, create a model.

Phrased like that, it may seem that the
method is rather pointless. However,
converting and interpreting real-life scen-
arios — modelling the problem — is one of
the most challenging and interesting as-
pects of physics. It is interesting because
it supplies more creative freedom than
solving an existing model using well-
established ideas. Still, this freedom has
limits: the model has to describe the real-

ity as best as possible, the approxima-
tions have to make sense and it is desir-
able that the model were solvable either
mentally or with aid of a computer. For
a given problem, there is not much free-
dom left and the business is simplified:
there clear hints as to sensible assump-
tions. Let us begin translating: “A rigid
rod of length l and uniform density is ro-
tating around one end with the angular
velocity ω, the rotation axis is perpendic-
ular to the rod. At a distance x from the
axis there is a motionless post that is par-
allel to the axis of rotation. The rod hits
the post.” Now we encounter the first
obstacle: is the impact elastic or inelastic?
This is not brought up in the text of the
problem. Let us leave it for now: maybe
we can get somewhere even without the
corresponding assumption (it turns out
that this is the case). Now we encounter
the central question: what does it mean
for the hand “not to get stung”? We know
it hurts when something hits our hand —
if this something gets an impulse from the
hand during a short period of time (the
impact), as this implies a large force. The
hand is stationary, so the hand-held end
of the bat should come to halt without re-
ceiving any impulse from the hand. Thus
our interpretation of the problem is com-
plete: “Following the impact, the rotation
is reversed, 0 ≥ ω′ ≥ −ω; during the
impact the axis of rotation imparts no im-
pulse on the rod. Find x.” The penultim-
ate sentence hints at the usage of idea 62.

PROB 46. A massive cylinder of radius
R and mass M is lying on the floor. A
narrow groove of depth a has been chis-
elled along the circumference of the cylin-
der. A thread has been wrapped around
the groove and is now being pulled by its
free end, held horizontally, with a force F.
The cylinder is positioned such that the
thread is being freed from below the cyl-

inder. With what acceleration will the cyl-
inder start moving? The friction between
the floor and the cylinder is large enough
for there to be no slipping.

F

M aR

F
⊙

There are multiple ways to tackle this
problem, but let us use the following idea.

IDEA 63: The relation Iε = M is clearly
valid only if the centre of rotation is mo-
tionless; however, it turns out that it also
holds when the instantaneous axis of rota-
tion is moving translationally such that the
distance of the body's centre of mass from
the axis does not change (eg when rolling a
cylindrical or spherical object).

To prove this idea, recall idea 6: kinetic
energy appears when work is done, K =
1
2 Iω2 = Mφ (φ is the angle of rotation of
the body, ω = dφ/dt). If the moment
of inertia with respect to the instantan-
eous axis of rotation I does not depend on
time, then dK/dt = 1

2 Idω2/dt = Iωε =
dMφ/dt = Mω, which gives Iε = M.

PROB 47. A ball is rolling along a hori-
zontal floor in the region x < 0 with ve-
locity v⃗0 = (vx0, vy0). In the region x > 0
there is a conveyor belt that moves with
velocity u⃗ = (0, u) (parallel to its edge x =
0). Find the velocity of the ball v⃗ = (vx, vy)
with respect to the belt after it has rolled
onto the belt. The surface of the conveyor
belt is rough (the ball does not slip) and is
level with the floor.

IDEA 64: For cylindrical or spherical bodies
rolling or slipping on a horizontal surface,
the angular momentum is conserved with re-
spect to an arbitrary axis lying in the plane
of the surface.

Indeed, the points where the normal force
and the gravity are applied are on the
same straight line with the forces them-
selves and their sum is zero, meaning that
their net torque is also zero; the force of
friction is lying in the plane of the surface,
and so its lever arm with respect to an axis
in the same plane is zero.

PROB 48. A “spring-dumbbell” com-
prises two balls of mass m that are con-
nect with a spring of stiffness k. Two such
dumbbells are sliding toward one another,
the velocity of either is v0. At some point
the distance between them is L (see fig.).
After which time is the distance between
them equal to L again? The collisions are
perfectly elastic.

L

v0 v0

IDEA 65: If a system consisting of elastic
bodies, connected by springs, threads etc.,
interacts with other bodies, then the dura-
tion of impact of the elastic bodies is signi-
�cantly smaller than the characteristic times
of other processes. The whole process can
then be divided into simpler stages: an al-
most instantaneous collision of elastic bod-
ies (that could be considered free, as e.g.
the spring exerts an insigni�cant force com-
pared to that exerted in an elastic colli-
sion) and the subsequent (or precedent, or
in between the collisions) slow process: the
oscillations of the spring etc.

Note: this is a rather general idea, division
into simpler steps can be useful if rapid
(almost instantaneous) processes can oc-
cur in a dynamical system; see next prob-
lem for an example (also recall idea 51)

PROB 49. Small grains of sand are slid-
ing without friction along a cylindrical
trough of radius R (see fig.). The inclin-
ation angle of the trough is α. All grains
have initial velocity zero and start near



point A (but not necessarily at the point
A itself). What should be the length of the
trough such that all grains would exit it at
the point B?

L

α

A

B

IDEA 66: If the motion of a spread collec-
tion of particles could be divided into oscilla-
tion in a known direction and an oscillation-
free motion (so motion perpendicular to
the oscillation), then the particles are fo-
cussed at certain points: where the oscilla-
tion phase of all particles is either zero or is
an integer multiple of 2π.

PROB 50. A coat hanger made of wire
with a non-uniform density distribution
is oscillating with a small amplitude in
the plane of the figure. In the first two
cases the longer side of the triangle is ho-
rizontal. In all three cases the periods of
oscillation are equal. Find the position of
the centre of mass and the period of oscil-
lation.

42cm

10cm

Background info: A finite-size rigid
body that oscillates around a fixed axis
is known as the physical pendulum. Its
frequency of small oscillations is easy to
derive from the relation I φ̈ = −mglφ,
where I is the moment of inertia with re-
spect to the axis of oscillation and l is the
distance of the centre of mass from that
axis: ω−2 = I/mgl = I0/mgl + l/g (here
we employ the parallel-axis/Steiner the-

orem, see idea 59). The reduced length
of the physical pendulum is the distance
l̃ = l + I0/ml such that the frequency of
oscillation of a mathematical pendulum
of that length is the same as for the given
physical pendulum.

IDEA 67: If we draw a straight line of length
l̃ such that it passes through the centre of
mass and one of its ends is by the axis of ro-
tation, then if we move the rotation axis to
the other end of the segment (and let the
body reach a stable equilibrium), then the
new frequency of oscillation is the same as
before. Conclusion: the set of points where
the axis of rotation could be placed without
changing the frequency of oscillation, con-
sists of two concentric circles around the
centre of mass.

Proof: the formula above could be rewrit-
ten as a quadratic equation to find the
length l corresponding to the given fre-
quency ω (i.e. to the given reduced length
l̃ = g/ω2): l2 − ll̃ + I0/m = 0. Accord-
ing to Vieta’s formulae, the solutions l1
and l2 satisfy l1 + l2 = l, so that l1 and
l2 = l̃ − l1 result in the same frequency of
oscillations.

PROB 51. A metallic sphere of radius
2 mm and density ρ = 3000 kg/m3 is mov-
ing in water, falling freely with the accel-
eration a0 = 0,57g. The water density is
ρ0 = 1000 kg/m3. With what acceleration
would a spherical bubble of radius 1 mm
rise in the water? Consider the flow to be
laminar in both cases; neglect friction.

IDEA 68: If a body moves in a liquid, the
�uid will also move. (A) If the �ow is lam-
inar (no eddies), only the liquid adjacent to
the body will move; (B) is the �ow is turbu-
lent, there will be a turbulent `tail' behind
the body. In either case the characteristic
velocity of the moving liquid is the same as
the velocity of the body.

Using method 6 we find that in the case
(A) the kinetic energy of the system K =
1
2 v2(m + αρ0V), where the constant α is
a number that characterizes the geometry
of the body that correspond to the extent
of the region of the liquid that will move
(compared to the volume of the body it-
self). If a body is acted on by a force F,
then the power produced by this force is
P = Fv = dK

dt = va(m + αρ0V). Thus
F = a(m + αρ0V): the effective mass of
the body increases by αρ0V. In the prob-
lem above, the constant α for the spherical
body can be found using the conditions
given in the first half of the problem.

In case (B), if we assume that the ve-
locity of the body is constant, we find
K = 1

2 v2ρ0(αSvt), where S is the cross-
sectional area of the body and αS is the
cross-sectional area of the turbulent ‘tail’.
This α, again, characterizes the body.
From here, it is easy to find Fv = dK

dt =
α
2 v3ρ0S, which gives F = α

2 v2ρ0S.

PROB 52. A stream of water falls against
a trough’s bottom with velocity v and
splits into smaller streams going to the left
and to the right. Find the velocities of
both streams if the incoming stream was
inclined at an angle α to the trough (and
the resultant streams). What is the ratio of
amounts of water carried per unit time in
the two outgoing streams?

α

This is a rather hard problem. Let us first
state a few ideas and facts.

IDEA 69: For liquid �ow, Bernoulli's (i.e.
energy conservation) law is often helpful:
p + ρgh + 1

2 ρv2 = Const, where p is the
static pressure, h is the height of the con-

sidered point and v is the velocity of the �ow
at that point.

FACT 16: Inside the liquid close to its free
surface the static pressure is equal to the
external pressure.

To solve the second half of the problem,
the following is needed:

IDEA 70: Idea 44 can be generalized in a
way that would hold for open systems (cer-
tain amounts of matter enter and leave the
system): F⃗ = dP⃗

dt + Φ⃗Pin − Φ⃗Pout, where

Φ⃗Pin and Φ⃗Pout are the entering and the out-
going �uxes of momentum (in other words,
the net momentum of the matter entering
and leaving the system, respectively).

The momentum flux of the flowing liquid
could be calculated as the product of mo-
mentum volume density ρv⃗ with the flow
rate (volume of liquid entering/leaving
the system per unit time).

What is the open system we should be
considering in this case? Clearly, a system
that would allow relating the incoming
flow rate µ (kg/s) to the outgoing fluxes
(µl ja µr) using the formula above: a small
imaginary region of space that would in-
clude the region where the stream splits
into two.

FACT 17: If we can ignore viscosity, the
component of the force exerted by the
stream bed (including the `walls' limiting the
�ow) on the �ow that is parallel to these
walls is zero.

PROB 53. Find the velocity of propaga-
tion of small waves in shallow water.
The water is considered shallow if the
wavelength is considerably larger than
the depth of the water H. Thanks to
this we can assume that along a vertical
cross-section the horizontal velocity of all
particles vh is the same and that the hori-
zontal velocity of water particles is signi-
ficantly smaller than the vertical velocity.



The smallness of the waves means that
their height is significantly smaller than
the depth of the water. This allows us
to assume that the horizontal velocity of
the water particles is significantly smaller
than the wave velocity, u.

IDEA 71: A standard method for �nding
the velocity of propagation (or another char-
acteristic) of a wave (or another structure
with persistent shape) is to choose a ref-
erence system where the wave is at rest.
In this frame, (a) continuity (idea 57) and
(b) energy conservation (e.g. in the form
of Bernoulli's law) hold. In certain cases en-
ergy conservation law can be replaced by the
balance of forces.

(An alternative approach is to linearise
and solve a system of coupled partial dif-
ferential equations.)

PROB 54. A small sphere with mass m =
1 g is moving along a smooth surface, slid-
ing back and forth and colliding elastic-
ally with a wall and a block. The mass of
the rectangular block is M = 1 kg, the ini-
tial velocity of the sphere is v0 = 10 m/s.
What is the velocity of the sphere at the
instant when the distance between the
sphere and the wall has doubled as com-
pared with the initial distance? By how
many times will the average force (aver-
aged over time) exerted by the sphere on
the wall have changed?

IDEA 72: If a similar oscillatory motion
takes place, for which the parameters of
the system change slowly (compared to the
period of oscillation), then the so-called
adiabatic invariant I is conserved: it is the
area enclosed by the closed contour traced
by the trajectory of the system on the so-
called phase diagram (where the coordinates
are the spatial coordinate x and momentum
px).

Let us be more precise here. The closed
contour is produced as a parametric curve
(the so-called phase trajectory) x(t), px(t)
if we trace the motion of the system dur-
ing one full period T. The phase traject-
ory is normally drawn with an arrow that
indicated the direction of motion. The
adiabatic invariant is not exactly and per-
fectly conserved, but the precision with
which it is conserved grows if the ratio
τ/T grows, where τ is the characteristic
time of change of the system’s paramet-
ers.

Adiabatic invariant plays an instru-
mental role in physics: from the adiabatic
law in gases (compare the result of the
previous problem with the adiabatic ex-
pansion law for an ideal gas with one de-
gree of freedom!) and is applicable even
in quantum mechanics (the number of
quanta in the system — e.g. photons —
is conserved if the parameters of the sys-
tem are varied slowly).

REVISION PROBLEMS

PROB 55. A straight homogeneous rod is
being externally supported against a ver-
tical wall such that the angle between the
wall and the rod is α < 90◦. For which
values of α can the rod remain stationary
when thus supported? Consider two scen-
arios: a) the wall is slippery and the floor
is rough with the friction coefficient µ ; b)
the floor is slippery and the wall is rough
with the friction coefficient µ.

PROB 56. A light stick rests with one
end against a vertical wall and another on
a horizontal floor. A bug wants to crawl
down the stick, from top to bottom. How
should the bug’s acceleration depend on
its distance from the top endpoint of the
stick? The bug’s mass is m, the length of
the stick is l, the angle between the floor
and the stick is α and the stick’s mass is

negligible; both the floor and the wall are
slippery (µ = 0). How long will it take the
bug to reach the bottom of the stick having
started at the top (from rest)?

α

l

x

a

PROB 57. A wedge with the angle α at
the tip is lying on the horizontal floor.
There is a hole with smooth walls in the
ceiling. A rod has been inserted snugly
into that hole, and it can move up and
down without friction, while its axis is
fixed to be vertical. The rod is suppor-
ted against the wedge; the only point with
friction is the contact point of the wedge
and the rod: the friction coefficient there is
µ. For which values of µ is it possible to
push the wedge through, behind the rod,
by only applying a sufficiently large hori-
zontal force?

α
µ F

PROB 58. Sometimes a contraption is
used to hang pictures etc. on the wall,
whose model will be presented below.
Against a fixed vertical surface is an im-
movable tilted plane, where the angle
between the surface and the plane is α.
There is a gap between the surface and
the plane, where a thin plate could be fit.
The plate is positioned tightly against the
vertical surface; the coefficient of friction
between them can be considered equal to
zero. In the space between the plate and
the plane a cylinder of mass m can move
freely, its axis being horizontal and paral-
lel to all considered surfaces. The cylin-

der rests on the plate and the plane and
the coefficients of friction on those two
surfaces are, respectively, µ1 and µ2. For
which values of the friction coefficients the
plate will assuredly not fall down regard-
less of its weight?

α

F

µ = 0

µ2

µ1

m

PROB 59. On top of a cylinder with a
horisontal axis a plank is placed, whose
length is l and thickness is h. For which
radius R of the cylinder the horizontal po-
sition of the plank is stable?

R

l

PROB 60. A vessel in the shape of a
cylinder, whose height equals its radius
R and whose cavity is half-spherical, is
filled to the brim with water, turned up-
side down and positioned on a horizontal
surface. The radius of the half-spherical
cavity is also R and there is a little hole in
the vessel’s bottom. From below the edges
of the freely lying vessel some water leaks
out. How high will the remaining layer of
water be, if the mass of the vessel is m and
the water density is ρ? If necessary, use
the formula for the volume of a slice of a
sphere (see Fig.): V = πH2(R − H/3).

h
H V

PROB 61. A vertical cylindrical vessel
with radius R is rotating around its axis



with the angular velocity ω. By how much
does the water surface height at the axis
differ from the height next to the vessel’s
edges?

PROB 62. A block with mass M is on a
slippery horizontal surface. A thread ex-
tends over one of its corners. The thread is
attached to the wall at its one end and to a
little block of mass m, which is inclined by
an angle α with respect to the vertical, at
the other. Initially the thread is stretched
and the blocks are held in place. Then
the blocks are released. For which ratio of
masses will the angle α remain unchanged
throughout the subsequent motion?

α mM

PROB 63. Two slippery (µ = 0) wedge-
shaped inclined surfaces with equal tilt
angles α are positioned such that their
sides are parallel, the inclines are facing
each other and there is a little gap in
between (see fig.). On top of the surfaces
are positioned a cylinder and a wedge-
shaped block, whereas they are resting
one against the other and one of the
block’s sides is horizontal. The masses are,
respectively, m and M. What accelerations
will the cylinder and the block move with?
Find the reaction force between them.

PROB 64. Three little cylinders are con-
nected with weightless rods, where there
is a hinge near the middle cylinder, so that

the angle between the rods can change
freely. Initially this angle is a right angle.
Two of the cylinders have mass m, another
one at the side has the mass 4m. Find
the acceleration of the heavier cylinder im-
mediately after the motion begins. Ignore
friction.

90
o

m

m

4m
a=?

PROB 65. A slippery rod is positioned
at an angle α with respect to the horizon.
A little ring of mass m can slide along the
rod, to which a long thread is attached. A
small sphere of size M is attached to the
thread. Initially the ring is held motion-
less, and the thread hangs vertically. Then
the ring is released. What is the accelera-
tion of the sphere immediately after that?

m

M

PROB 66. A block begins sliding at the
uppermost point of a spherical surface.
Find the height at which it will lose con-
tact with the surface. The sphere is held in
place and its radius is R; there is no fric-
tion.

PROB 67. The length of a weightless rod
is 2l. A small sphere of mass m is fixed at
a distance x = l from its upper end. The
rod rests with its one end against the wall
and the other against the floor. The end
that rests on the floor is being moved with
a constant velocity v away from the wall.
a) Find the force with which the sphere
affects the rod at the moment, when the
angle between the wall and the rod is α =
45◦ ; (b) what is the answer if x ̸= l?

α

v

m

x

2l

PROB 68. A light rod with length l is
connected to the horizontal surface with
a hinge; a small sphere of mass m is con-
nected to the end of the rod. Initially the
rod is vertical and the sphere rests against
the block of mass M. The system is left
to freely move and after a certain time
the block loses contact with the surface of
the block — at the moment when the rod
forms an angle α = π/6 with the hori-
zontal. Find the ratio of masses M/m and
the velocity u of the block at the moment
of separation.

m

l

M

PROB 69. At a distance l from the edge
of the table lies a block that is connected
with a thread to another exact same block.
The length of the thread is 2l and it is
extended around the pulley sitting at the
edge of the table. The other block is held
above the table such that the string is un-
der tension. Then the second block is re-
leased. What happens first: does the first
block reach the pulley or does the second
one hit the table?

l l

PROB 70. A cylindrical ice hockey puck
with a uniform thickness and density is
given an angular velocity ω and a transla-
tional velocity u. What trajectory will the
puck follow if the ice is equally slippery
everywhere? In which case will it slide
farther: when ω = 0 or when ω ̸= 0, as-
suming that in both cases u is the same?

PROB 71. A little sphere of mass M
hangs at the end of a very long thread;
to that sphere is, with a weightless rod,
attached another little sphere of mass m.
The length of the rod is l. Initially the
system is in equilibrium. What horizontal
velocity needs to be given to the bottom
sphere for it to ascend the same height
with the upper sphere? The sizes of the
spheres are negligible compared to the
length of the rod.

M

mv

l

PROB 72. A block of mass m lies on a
slippery horizontal surface. On top of it
lies another block of mass m, and on top of
that — another block of mass m. A thread
that connects the first and the third block
has been extended around a weightless
pulley. The threads are horizontal and the
pulley is being pulled by a force F. What is
the acceleration of the second block? The
coefficient of friction between the blocks is
µ.

F
a=?

m
m
m

PROB 73. A boy with mass m wants
to push another boy standing on the ice,
whose mass M is bigger that his own. To
that end, he speeds up, runs toward the



other boy and pushed him for as long as
they can stand up. What is the maximal
distance by which it is possible to push in
this fashion? The maximal velocity of a
run is v, the coefficient of friction between
both boys and the ice is µ.

PROB 74. A uniform rod with length l is
attached with a weightless thread (whose
length is also l) to the ceiling at point A.
The bottom end of the rod rests on the
slippery floor at point B, which is exactly
below point A. The length of AB is H,
l < H < 2l. The rod begins to slide from
rest; find the maximal acceleration of its
centre during subsequent motion.

l

l

H

A

B

PROB 75. A stick with uniform density
rests with one end against the ground and
with the other against the wall. Initially it
was vertical and began sliding from rest
such that all of the subsequent motion
takes place in a plane that is perpendicu-
lar to the intersection line of the floor and
the wall. What was the angle between the
stick and the wall at the moment when the
stick lost contact with the wall? Ignore
friction.

PROB 76. A log with mass M is sliding
along the ice while rotating. The velocity
of the log’s centre of mass is v, its angu-
lar velocity is ω. At the moment when
the log is perpendicular to the velocity of
its centre of mass, the log hits a station-
ery puck with mass m. For which ratio
of the masses M/m is the situation, where
the log stays in place while the puck slides
away, possible? The collisions are per-
fectly elastic. The log is straight and its

linear density is constant.

v

ωM

m

PROB 77. A ball falls down from height
h, initially the ball’s horizontal velocity
was v0 and it wasn’t rotating. a) Find the
velocity and the angular velocity of the
ball after the following collision against
the floor: the ball’s deformation against
the floor was absolutely elastic, yet there
was friction at the contact surface such
that the part of the ball that was in con-
tact with the floor stopped. b) Answer
the same question with the assumption
that the velocities of the surfaces in contact
never homogenized and that throughout
the collision there was friction with coeffi-
cient µ.

PROB 78. A ball is rolling down an in-
clined plane. Find the ball’s acceleration.
The plane is inclined at an angle α, the
coefficient of friction between the ball and
the plane is µ.

PROB 79. A hoop of mass M and radius
r stands on a slippery horizontal surface.
There is a thin slippery tunnel inside the
hoop, along which a tiny block of mass
m can slide. Initially all the bodies are at
rest and the block is at the hoop’s upper-
most point. Find the velocity and the ac-
celeration of the hoop’s central point at the
moment when the angle between the ima-
ginary line connecting the hoop’s central
point and the block’s position and the ver-
tical is φ.

ϕ

O

A

r

PROB 80. A block with mass m = 10 g is
put on a board that has been made such
that, when sliding to the left, the coef-
ficient of friction µ1 = 0,3, while when
sliding to the right it is µ2 = 0,5. The
board is repeatedly moved left-right ac-
cording to the graph v(t) (see fig.). The
graph is periodic with period T = 0,01 s;
the velocity v of the board is considered

tTT/2

v

1 m/s

positive when directed to the right. Using
the graph, find the average velocity that
the block will move with.

PROB 81. A water turbine consists of
a large number of paddles that could be
considered as light flat boards with length
l, that are at one end attached to a rotat-
ing axis. The paddles’ free ends are po-
sitioned on the surface of an imaginary
cylinder that is coaxial with the turbine’s
axis. A stream of water with velocity v
and flow rate µ (kg/s) is directed on the
turbine such that it only hits the edges of
the paddles. Find the maximum possible
usable power that could be extracted with
such a turbine.

v

l

µ

PROB 82. A flat board is inclined at an
angle α to the vertical. One of its ends is in
the water, the other one is outside the wa-
ter. The board is moving with velocity v
with respect to its normal. What is the ve-
locity of the water stream directed up the
board?

v

u

PROB 83. A motor-driven wagon is used
to transport a load horizontally by a dis-
tance L. The load is attached to the side of
the wagon by a cable of length l. Half of
the time the wagon is uniformly acceler-
ated, the other half — uniformly deceler-
ated. Find the values of the acceleration a
such that, upon reaching the destination,
the load will be hanging down motion-
lessly. You can assume that a ≪ g.

PROB 84. A shockwave could be con-
sidered as a discontinuous jump of the air
pressure from value p0 to p1, propagat-
ing with speed cs. Find the speed which
will be obtained, when influenced by the
shockwave, (a) a wedge-shaped block: a
prism whose height is c, whose base is a
right triangle with legs a and b and which
is made out of material with density ρ; b)
an body of an arbitrary shape with volume
V and density ρ.

cs

cb

x

p
p1

p0

a



PROB 85. A dumbbell consisting of two
elastic spheres connected with a thin steel
rod is moving parallel to its axis with
a velocity v toward another exact same
spheres. Find the velocity of the dumbbell
after a central collision. Is the kinetic en-
ergy of the system conserved?

v0

HINTS

1. Write out the balance of torques for the contact
point O of the hoop and the shaft. What is the angle
that the tangent to the shaft at point O forms with
the horizon (given that the wire slips on the shaft)?

2. Write down the equation for the torques for the
cylinder & block system with respect to the contact
point of the cylinder and the inclined plane. What
angle with respect to the horizon is formed by the
tangent to the cylinder constructed at the position of
the little block?

3. According to the idea 4, consider the system “rod
CD + the mass m” as a whole; there are four forces
acting on it: mg⃗, F⃗, and the tension forces of the rods,
T⃗AC and T⃗BD . The tension forces are the ones which
we don’t know and don’t want to know. Accord-
ing to the idea 2, these will drop out from the bal-
ance of torques acting on the rod CD with respect to
the intersection point of AC and BD. Indeed, due to
the fact 2, the tension force in the rod AC is parallel
to AC; the same applies to the rod BD. Now, what
must be the torque of force F? For what direction of
the force will this torque be achieved with the min-
imum magnitude?

4. The vector sum of the forces F⃗ and mg⃗ has to com-
pensate the sum of the friction and the normal force
f⃗ = N⃗ + F⃗h, i.e. has to be at an angle arctan µ with
respect to the normal to the plane. Let us draw the
force triangle mg⃗ + f⃗ + F⃗ = 0: the vector mg⃗ can be
drawn immediately (its direction and magnitude are
known), the direction of f⃗ can be noted by a straight
line passing through the terminal point of mg⃗. F⃗ has
to connect that straight line to the initial point of mg⃗.
For which direction is its magnitude minimal?

5. Go to the reference frame of the inclined surface
(invoke Ideas 6 and 7) and use the same method as
for problem 4 (⃗a+ g⃗ functions as the effective gravity
g⃗e).

6. Use a rotating reference frame associated with the
cylinder (where the block is at rest, and the centri-
fugal force f⃗t is constant and pointing downwards).
(a) The terminal point of the net force of gravity and
centrifugal force is moving on a circle and has to
be equal to the net force f⃗ of the normal and fric-
tional forces. What is the maximum allowed angle
between the vectors f⃗t and f⃗ so that there be no
slipping? For which direction of mg⃗ is the angle
between the vectors f⃗t and f⃗ maximal? (b) There are
still only three forces; as long as there is an equilib-
rium, these three vectors must form a triangle and
hence, must lay on the same plane. According to the
idea 9, we’ll depict the force balance in this plane,
i.e. in the plane defined by the vectors g⃗ and f⃗t. The
approach used in part (a) can still be used, but the
terminal point of f⃗t + mg⃗ draws only an arc of a full
circle. Determine the central angle of that arc. De-
pending on the arc length, it may happen that the
maximal angle between the surface normal (= the
direction of f⃗t) and f⃗ is achieved at one of the en-
dpoints of the arc.

7. Based on the Fact no. 4, on which line does the
intersection point of the frictional forces have to lie?
What can be said about the two angles formed by
the frictional force vectors and the thread’s direc-
tion. Given the Idea no. 1 (the axis is perpendic-
ular with the tension in the thread)? Now combine
the two conclusions above. Where is the intersection
point of the friction force vectors? What is the direc-
tion of the cylinder’s velocity vectors at the points
where the cylinder rests on the rough band? Where
is the cylinder’s instantaneous rotation axis (see how
to find it in the kinematics brochure)? What is the
velocity vector of the cylinder’s centre point? (b)
Will the equilibrium condition found above be vi-
olated if the surface is uniformly rough?

8. Draw a circle whose diameter is the straight line
connecting the points of support. Use Fact no. 6:
which curve can the ball move along? Where is the
bottom-most point of this curve?

9. Consider the torques acting on the rod with re-
spect to the hinge. For which angle α will the net
force of the normal and frictional forces push the rod
harder against the board?

10. By how much will the block descend if the
thread is extended by δ?

11. Let’s assume that the horizontal component of
the tension in the rope is Tx . What is the vertical
component of the tension next to the ceiling? Next
to the weight? Write down the condition for the bal-
ance of the forces acting on a) the weight and b) the
system of weight & rope (cf. Idea no. 4).

12. Seeing as H ≪ L, clearly the curvature of the
rope is small, and the angle between the tangent
to the rope and horizon remains everywhere small.
From the horizontal force balance for the rope, ex-
press the horizontal component of the tension force
Tx as a function of the length l (note that while Tx

remains constant over the entire hanging segment
of the rope, we’ll need its value at the point P separ-
ating the hanging and lying segments). Write down
the balance of torques acting on the hanging piece of
the rope with respect to the holding hand (according
to what has been mentioned above, the arm of the
gravity force can be approximated as l/2). As a res-
ult, you should obtain a quadratic equation for the
length l.

13. Use Idea 8: change into the reference frame of
the rotating hinge. a) Following the idea 15, write
down the condition of torque balance with respect
to the hinge (Idea no. 2) for a small deviation angle
φ. Which generates a bigger torque, mg⃗ or the centri-
fugal force? (Note that alternatively, the idea 17 can
be also used to approach this problem). b) Follow-
ing the idea 17, express the net potential energy for
the small deviation angles φ1 and φ2 using the en-
ergy of the centrifugal force (which resembles elastic
force!) and the gravitational force; according to the
idea 16, keep only the quadratic terms. You should
obtain a quadratic polynomial of two variables, φ1

and φ2. The equilibrium φ1 = φ2 = 0 is stable if it
corresponds to the potential energy minimum, i,e, if
the polynomial yields positive values for any depar-
ture from the equilibrium point; this condition leads

to two inequalities. First, upon considering φ2 = 0
(with φ2 ̸= 0) we conclude that the multiplier of φ2

1
has to be positive. Second, for any φ2 ̸= 0, the poly-
nomial should be strictly positive, i.e. if we equate
this expression to zero and consider it as a quad-
ratic equation for φ1, there should be no real-valued
roots, which means that the discriminant should be
negative.

14. Apply the ideas 15 ja 18 for such a angular po-
sition of the beam, for which the magnitude of the
buoyant force doesn’t change (i.e. by assuming a
balance of vertical forces). From Idea no. 2, draw
the axis through the centre of mass. While comput-
ing the torque of the buoyant force, use Ideas 19,
20; the cross-section of the underwater part of the
beam could be represented as a superposition of a
rectangle and two narrow triangles (one of them of
negative mass).

15. The container & water system is affected by
the gravity and the normal reaction force of the ho-
rizontal surface on the liquid. Since we know the
pressure of the liquid at the base of the container,
we can express the mass of the container from the
vertical condition for equilibrium.

16. To compute the first correction using the per-
turbation method we use the Fact 49 and the ref-
erence system of the block sliding down uniformly
and rectilinearly: knowing the magnitude and the
direction of the frictional force we can find its com-
ponent in w⃗ and u⃗ direction. The sign of the latter
flips after half a period, and so it cancels out upon
averaging.

17. Let us choose the origin of the vertical x-axis to
be a point on the surface of the ocean very far from
the iron deposit. For the zero reference point of the
Earth’s gravitational potential we shall choose x = 0
(i.e. φearth = gx), for that of the iron deposit we shall
take a point at infinity. Then, for the points on the
ocean’s surface very far from the iron deposit, the
gravitational potential is zero. It remains to find an
expression for the potential above the iron deposit as
a function of x (using the principle of superposition)
and equate it to zero.



18. Let us employ the reference frame of the plat-
form. Let us the consider the balance of torques
with respect to the axis of the small disk (then the
lever arm of the force exerted by that axis is zero).
Let us divide the disk into little pieces of equal size.
The frictional forces acting on the pieces are equal
by magnitude and are directed along the linear ve-
locities of the points of the disk (in the chosen refer-
ence frame). Since the motion of the disk can be rep-
resented as a rotation around an instantaneous axis,
then concentric circles of frictional force vectors are
formed (centred at the instantaneous rotation axis).
Clearly, the net torque of these vectors with respect
to the disk’s axis is the smaller, the smaller is the
circles’ curvature (i.e. the farther the instantaneous
rotation axis is): the torque is zero when the instant-
aneous rotation axis is at infinity and the concent-
ric circles become parallel straight lines. An instant-
aneous rotation axis at infinity means that the mo-
tion is translational, ω3 = 0 (since the linear velocity
v = ω3r of a given point is finite, but r = ∞).

19. The instantaneous axis of rotation is at a dis-
tance r = v/ω from the disk’s axis. Let’s use the
same imaginary slicing as in the previous problem.
Now compute the component of the net force in the
direction of motion. Notice that the frictional forces
on the points that are symmetrical with respect to
the instantaneous rotation axis balance each other
across a whole circular region of radius R − r. The
non-balanced region is unfortunately shaped for cal-
culation. Let us imagine extending the "balanced"
region up to R (the dashed circle in the figure). The
part of this extended balanced region, where there
is no actual rotating disk underneath (the dark gray
crescent in the figure), could be represented as a su-
perposition of the two disks, one rotating clockwise
and the other – anticlockwise. In that case the clock-
wise component partakes in the balancing, whereas
the anticlockwise component remains unbalanced.
To sum up, two thin crescent-shaped regions remain
unbalanced: one corresponds to the the real disk
(light gray in the figure), the other — to a disk ro-
tating anticlockwise (dark gray); normal to v⃗, the
width of these regions is everywhere equal to r. The
net force is the easiest to find by integrating across

the crescent-shaped regions using the polar coordin-
ate φ: |dF⃗| = A · dS, where dS is the area of the
surface element; dFx = A cos φdS = B cos2 φdφ,
Fx =

∫
dFx = B

∫ 2π
0 cos2 φdφ. What are the values

of the constants A and B?

O

r

20. Consider the unit vector τ⃗ directed along the in-
finitesimal displacement vector of the centre of the
mass at the instant when the pencil begins moving.
Let’s express its coordinates in the Cartesian axes
(x, y, z), where x is parallel to the pencil and the
(x, y)-plane is parallel to the inclined slope. Using
the spatial rotations formulae we represent it in the
new coordinates (x′, y′, z), which are rotated with re-
spect to (x, y, z) around the z-axis by an angle φ (so
that the axis x′ is horizontal). Using the spatial rota-
tions formulae we express the vector’s τ⃗ vertical co-
ordinate z′ in the (x′, y′, z′) coordinate axes, which
is obtained from the axes (x′, y′, z) by rotating about
the x′ by the angle α.

21. The string connects the two points with the
shortest distance along the cylinder’s side; when
unfolded, the cylinder is a rectangle. Consider the
vertical plane touching the surface of the cylinder
that includes the hanging portion of the string. This
plane and the cylinder touch along a straight line
s. If you imagine unfolding the cylinder, the angle
between the string and the straight line s is equal
to the cylinder’s inclination angle α. Given this, l is
easy to find. When the weight oscillates, the trace of
the string still stays straight on the unfolded cylin-
der. Therefore the length of the hanging string (and
thus the weight’s potential energy) do not depend
in any oscillatory state on whether the surface of
the cylinder is truly cylindrical or is unfolded into
a planar vertical surface (as long as the spatial ori-
entation of the axis s is preserved).

22. Write down the two equations describing the
balance of force and torques, and then another one
that describes the linear relation between the elong-
ations of the string: T1 − T2 = T2 − T3.

23. Initially only the vertical forces affect the
hanging block, therefore the initial displacement
vector is also vertical. If the acceleration of the large
block is a1, that of the block on top of it — a2 and
that of the hanging block — a3, then a1 + a2 = a3

holds. Now we can write down Newton’s 2nd law
for each body. The fourth and the final unknown is
the tension in the string.

24. Go to the reference frame of the wedge-block. In
the borderline case, the force of inertia’s and grav-
ity’s net force on the ball m is normal to the left
slope (so that the ball stay at rest there). Consider
the net forces acting on the balls. Their compon-
ents normal to the surface they rest on are F⃗⊥1 and
F⃗⊥2. These are equal to the normal forces N⃗1 and N⃗2

acting on the balls and therefore have to have equal
magnitudes (F⊥1 = F⊥2) to ensure that the force bal-
ance is achieved horizontally for the wedge-block.

25. Let’s take the displacement ξ of the wedge as
coordinate describing the system’s position. If the
wedge moves by ξ, then the block moves the same
amount with respect to the wedge, because the rope
is unstretchable, and the kinetic energy changes by
Π = mgξ sin α. The velocity of the wedge is ξ̇ and
that of the block is 2ξ̇ sin α

2 (found by adding velocit-
ies, where the two vectors ξ̇ are at an angle α), there-
fore the net kinetic energy K = 1

2 ξ̇2(M + 4m sin2 α
2 ).

Then we find Π′(ξ) = mg sin α and M = M +

4m sin2 α
2 ; their sum gives the answer.

26. Again, let’s take the wedge’s displacement as
the coordinate ξ; if the displacement of the block
along the surface of the wedge is η, then the centre of
mass being at rest gives η(m1 cos α1 + m2 cos α2) =

(M + m1 + m2)ξ. From here one can extract η as
a function of ξ, but to keep the formulae brief it’s
better not to substitute this expression everywhere.
The kinetic energies of the block can be found as
sums of horizontal [ 1

2 mi(ξ̇ − η̇ cos αi)
2] and vertical

[ 1
2 mi(η̇ sin αi)

2] energies.

27. When writing down energy conservation, note
that the block’s velocity is twice the cylinder’s ve-
locity horizontal component and that the latter is
equal to the vertical component, too (why?). Project
Newton’s 2nd law onto the axis that passes through

the top corner of the step and the cylinder’s centre:
this axis is perpendicular both to the normal force
between the block and the cylinder and to the cylin-
der’s tangential acceleration. Second question: the
ratio of two normal forces is constant (why? what
is it equal to? Hint: compare the horizontal acceler-
ations of the cylinder and the block and remember
Newton’s 2nd law), therefore they will be equal to
zero at the same instant.

28. By projecting Newton’s 2nd law on the axis in
the direction of the normal force we see that the nor-
mal force is the smallest at the bottommost point of
the trajectory’s arch-shaped part. (There, the centri-
petal acceleration is the largest, gravitational force’s
component along the axis is the smallest).

29. The energy of the "pellet & block" system is al-
ways conserved; momentum will only start to be
conserved once the pellet passes the bottommost
point. When it arrives there for the second time, the
block’s velocity is maximal (why?).

30. Let’s apply Idea no. 44 for P⃗: the system’s
net momentum is P = ωlm + 2ωlM, net force F =

(m + M)g − T. The same using rotational consid-
erations: with respect to the leftmost ball’s initial
position, the angular momentum is l(2ωl)M (velo-
city is 2ωl, the velocity’s lever arm — l); net torque
is (T + Mg)l. Now, for the formula given in Idea
no. 44 we need the angular acceleration ε = ω̇.
Let’s find it using Method no. 6: Π = lφ(m + 2M),
K = 1

2 φ̇2l2(m + 4M). Another solution route: the
ratio of accelerations is 1:2; there are four unknowns
(two normal forces, acceleration and string tension);
equations: three force balances (for either ball and
the rod) and one torque balance (wrt the left end-
point of the rod).

31. Method no. 6: for the generalized coordinate
ξ we can use the displacement of the thread’s end-
point. Ideas no. 32,20: the change of the system’s
CM y-coordinate is ξρh/M (h — the difference in
the heights of the thread’s endpoints, M — the net
mass of the system; assume that ξ ≪ h). For the
x-coordinate it’s 2ξρR/M.



32. ⟨T(1 + cos α)⟩ = 2mg, T = ⟨T⟩ + T̃, where
|T̃| ≪ T. Based on the Idea no. 16 we ignore the
tiniest term

⟨
T̃α2⟩ and note that

⟨
α2⟩ > 0.

33. We have to consider two options: either all the
bodies move together, or the rightmost large block
moves separately. Why cannot the situations occur
where (a) all three components move separately, or
(b) the left large block moves separately?

34. After the collision the ball’s trajectories are or-
thogonal crossing straight lines; the angle with re-
spect to the initial trajectory is determined by how
much the collision was off-centre.

35. For slightly non-central motion: what will be
the direction of momentum of the ball that was first
to be hit? Now apply the Idea no. 50 again. Cent-
ral motion: express the velocities after the collision
via the horizontal component of the momentum px

that has been transferred to one of the balls. What is
the transferred vertical component py? Energy con-
servation provides us an equation to find py (it is
convenient to express the energy as p2/2m).

36. The graph looks like n intersecting straight lines;
the intersection point of a pair of straight lines cor-
responds to a collision of two balls (the graph of
either ball’s motion is a jagged line; at a collision
point the angles of the two jagged lines touch one
another so that it looks as if the two straight lines
intersect).

37. Initial velocities in the centre of mass: mv
m+M ,

Mv
m+M , final velocities are zero; friction does work:
µmgL.

38. Based on the figure we immediately obtain
(to within a multiplicative constant) the magnitudes
and directions of the momenta, but not which mo-
mentum is which ball’s. It is necessary to find out
where the ball marked with an arrow will proceed
after the collision. Fact no. 13 will help choose from
the three options.

39. Energy: in time dt the distribution of the liquid
will change: there is still some water at the centre,
but a certain mass dm has been displaced from above
to the level of the tap (and then through the tap),
so the change in the system’s potential energy is

gH · dm. Momentum: the water in the barrel obtains
the total momentum ρgHS · dt from the walls. This
momentum is passed on to the stream of water with
the mass ρSv · dt.

40. Energy is not conserved: the grains of sand
slip and experience friction. In time dt the sand
landing on the conveyor belt receives momentum
dp = v · dm = vµ · dt from the belt: the force between
the freshly fallen sand and the belt is F1 = dp/dt.
The sand already lying on the belt experiences the
gravitational force mg which is compensated by the
component of the friction parallel to the belt, F2 =

mg cos α, where m = σL is the mass of the sand on
the belt and σv = µ. The minimization has to be
done over v.

41. During the collision ∆p⊥ =
√

2gh.

42. Consider a short section of the path along the
hill with length dl. In addition to the change in the
potential energy work is done to overcome friction,
dAh = µmg tan α · dl. WE find dAh = C · dx, where
C is a constant. Summing over all such little path
increments dl we find Ah = C∆x.

43. The kinetic energy K = m
2 ẋ2 + Mẋ2, where x

is the displacement along the slanted surface; Π =

(M + m) sin α. Having found the acceleration a we
change into a reference frame (of the cylinder) mov-
ing with acceleration a (Ideas no. 6 and 7), where the
block is being displaced along the effective accelera-
tion due to gravity — as low as possible.

44. According to the Ideas no. 59 and 60, the
angular momentum of the rod before the collision
is L0 = Mlv − 1

3 Ml2ω; after the collision L1 =

Mlv′ − 1
3 Ml2ω′; L1 = L2. The expression for energy

is K = 1
2 Mv2 + 1

6 Ml2ω2. The condition for being at
the end: v′ + lω′ = 0 (we consider ω to be positive if
the rotation is in the direction marked in the figure).

45. The angular momentum with respect to the
impact point before the collision: mv(x − l

2 )− I0ω,
where v = ω l

2 and I0 = 1
12 ml2.

46. The instantaneous rotation axis passes the con-
tact point of the cylinder and the floor; its distance
from the centre of mass does not change, so we can
use Idea no. 63; I = 3

2 mR2.

47. Let us direct the z axis upward (this will fix the
signs of the angular momenta). The final moment of
inertia with respect to the x-axis is − 7

5 mvyR − muR
and with respect to the y-axis is 7

5 mvxR.

48. Immediately after the first collision the centres
of masses of both dumbbells are at rest, the velocit-
ies of the colliding balls reverse direction, the non-
colliding balls’ velocities don’t change. Both dumb-
bells act like pendula and complete half an oscilla-
tion period, after which the second collision occurs
– analogous to the first one.

49. The grains of sand perform harmonic oscilla-
tions in the plane perpendicular to the cylinder’s
axis — like a mathematical pendulum of length l =
R in the gravitational field g cos α; along the axis
there is uniform acceleration (a = g sin α). Focussing
occurs if the time to cross the trough along its axis is
an integer multiple of the oscillation’s half-period.

50. Observing the equilibrium position we con-
clude that the centre of mass lies on the symmetry
axis of the hanger. The three suspension points must
be located on the two concentric circles mentioned
by Idea no. 67. Therefore one of the circles must
accommodate at least two points out of the three,
while the circles’ centre (the hanger’s centre of mass)
must lie inside the region bounded by the hanger’s
wires on its symmetry axis. There is only one pair of
circles that satisfies all these conditions. Computing
the radii l1 and l2 of the circles using trigonometry
we determine the reduced length of the pendulum
l1 + l2 and, using that, the oscillation period.

51. The effective mass of the moving water can be
found using the acceleration of the falling ball. For
the rising bubble the effective mass is exactly the
same, the mass of the gas, compared to that, is neg-
ligibly small.

52. The water stream could be mentally divided
into two parts: the leftmost stream will turn to the
left upon touching the trough, the rightmost — to
the right. Thus, two imaginary ’water tubes’ form.
In either tube the static pressure is equal to the ex-
ternal pressure (since there is the liquid’s outer sur-
face in the vicinity): according to Bernoulli’s law, the
velocity of the liquid cannot change. Based on the

conservation of momentum horizontally, the mo-
mentum flows of the left- and right-flowing streams
have to add up to the original stream’s momentum
flow’s horizontal component. Note that due to con-
tinuity, µ = µv + µp.

53. Due to continuity (u + v)(H + h) = Hu Const,
where h = h(x) is the height of the water at point
x and v = v(x) is the velocity. We can write down
Bernoulli’s law for an imaginary ’tube’ near the sur-
face (the region between the free surface and the
stream lines not far from the surface): 1

2 ρ(u + v)2 +

ρg(H + h) = 1
2 ρu2 + ρgH = Const. We can ig-

nore that small second order terms (which include
the factors v2 or vh)

54. The phase trajectory is a horizontal rectangle
with sides L and 2mv, where L is the distance from
the block to the wall; the adiabatic invariant is thus
4Lmv.

55. Consider the balance of torques. For the net
force vectors of the normal and frictional forces,
when you extend them, their crossing point must be
above the centre of mass.

56. Let’s write down Newton’s 2nd law for rota-
tional motion with respect to the crossing point of
the normal forces: the angular momentum of the
bug is L = mvl sin α cos α, the speed of change of this
angular momentum will be equal to the torque due
to gravity acting on the bug (the other forces’ lever
arms are zero). When computing the period, note
that the acceleration is negative and proportional to
the distance from the bottom endpoint, i.e. we are
dealing with harmonic oscillations.

57. The blocking occurs if the net force of normal
and frictional forces pulls the rod downwards.

58. Once the blocking occurs we can ignore all
the forces apart from normal and frictional ones.
Suppose it has occurred. Then the net frictional
and normal forces acting from the left and from
the right have to balance each other both as forces
and torques, i.e. lie on the same straight line and
have equal magnitudes. Thus we obtain the angle
between the surface normal and the net force of fric-
tion and normal force.



59. Consider the direction of the torque acting on
the plank with respect to the point of contact, when
the plank has turned by an angle φ: the contact point
shifts by Rφ, the horizontal coordinate of the centre
of mass shifts by the distance h

2 φ from the original
position of the contact point.

60. The only force from the surface on the sys-
tem vessel & water is equal to the hydrostatic pres-
sure ρghπR2; it balances the gravitational force (m+

ρV)g. Note that H = R − h.

61. The gravitational potential of the centrifugal
force is 1

2 ω2r2, where r is the distance from the ro-
tation axis.

62. Assume the reference frame of the large block
(which moves with acceleration a). Where does the
effective gravity (the net force of the gravity and the
force of inertia) have to be directed? What is a?
With which acceleration does the little block fall in
this reference frame? What is the tension T of the
thread? Having answers to these questions we can
write down the equilibrium condition for the large
block ma = T(1 − sin α).

63. Let us use the displacement of the sphere (down
the inclined surface) as the generalized coordinate ξ.
What is the displacement of the sphere (up the other
inclined surface)? Evidently Π = (m − M)gξ sin α.
The normal force between the two bodies can be
found by projecting Newton’s second law onto the
inclined surface’s direction.

64. Let the displacement of the large cylinder be ξ,
the horizontal displacement of the middle and the
leftmost cylinder, respectively, x and y. What is the
relationship between them given that the centre of
mass is at rest? What is the relationship between
them given that the length of the rods does not
change? From the two equations thus obtained we
can express x and y via ξ. If we assume the displace-
ment to be tiny, what is the relationship between the
vertical displacement z of the middle cylinder and
the horizontal projection of the rod’s length, ξ − x?
Knowing these results, applying Method no. 6 is
straightforward.

65. Where is the small displacement ξ of the sphere
directed (see Idea no. 30)? What is the displacement
of the ring expressed via ξ? Use Method no. 6.

66. Use Idea no. 38 along with energy conserva-
tion by projecting the force and the acceleration in
the Newton’s 2nd law radially.

67. Let us use some ideas from kinematics to find
the acceleration of the sphere (K1, K29 and K2: by
changing into the reference frame moving with ve-
locity v we find the component of the sphere’s accel-
eration along the rod and by noticing that the hori-
zontal acceleration of the sphere is zero, we obtain,
using trigonometry, the magnitude of the accelera-
tion). Now use Newton’s 2nd law.

68. Using the velocity v of the sphere we can ex-
press the velocity of the block at the moment being
investigated (bearing in mind that their horizontal
velocities are equal). Using Idea no. 38 we find that
the block’s (and thus the sphere’s) horizontal accel-
eration is zero; by using Newton’s 2nd law for the
sphere and the horizontal direction we conclude that
the tension in the rod is also zero. From the energy
conservation law we express v2 and from Newton’s
2nd law for the sphere and the axis directed along
the rod we obtain an equation wherein hides the
solution.

69. Using Newton’s 2nd law investigate whither the
system’s centre of mass will move — to the left or to
the right (if the centre of mass had not move, then
the both events would have happened at the same
time).

70. To answer the first part: show that the force per-
pendicular to velocity is zero (use Method no. 3 and
Idea no. 26). To answer the second part use Method
no. 3 and idea 54.

71. Due to the length of the thread there are no ho-
rizontal forces, i.e. the horizontal component of mo-
mentum is conserved, and so is the energy. From
the two corresponding equation the limiting velo-
city v = v0 can be found, for which the bottom
sphere ascends exactly to the height of the top one.
Note that at that point its vertical velocity is zero, cf.
Idea no. 42.

72. Use Idea no. 49. Options: all block keep to-
gether; everything slides; the top one slides and and
the bottom two stay together (why is it not possible
that the top two keep together and the bottom one
slides?).

73. Which conservation law acts when the two boys
collide (during a limited time of collision) — do we
consider the collision absolutely elastic or inelastic
(can momentum be lost and where? If it is inelastic,
where does the energy go?), see Idea no. 56? After
the collision: the common acceleration of the two
boys is constant, knowing the initial and final velo-
cities finding the distance becomes an easy kinemat-
ics problem.

74. Prove that for a vertical thread the velocity is
maximal (by applying Idea no. 42 for the rotation
angle of the rod show that its angular velocity is zero
in that position; use Idea no. 59). Then it only re-
mains to apply energy conservation (remember that
ω = 0).

75. Find the instantaneous rotation axis (make sure
that its distance from the centre of mass is 1

2 ). Prove
that the centre of mass moves along a circle centred
at the corned of the wall and the floor, whereas the
polar coordinate of the centre of mass on that circle
is the same as the angle φ between the wall and the
stick. Express the kinetic energy as a function of
the derivative φ̇ of the generalized coordinate φ us-
ing the parallel-axis (Steiner’s) theorem and express
the energy conservation law as ω2 = f (φ); using
Method no. 6 we obtain ε = ω̇ = 1

2 f ′(φ). When
the normal force against the wall reaches zero, the
acceleration of the centre of mass is vertical: present
this condition using the tangential and radial accel-
erations of the centre of mass on its circular orbit ( l

2 ε

and l
2 ω2 respectively) and use it as an equation to

find φ.

76. Based on Idea no. 62 we find that ω = 6v/l. Us-
ing energy and momentum conservation we elimin-
ate the puck’s velocity after the collision and express
the mass ratio.

77. The forces along the normal to the surface are
elastic forces, so the energy in vertical direction is
conserved during the collision: after the collision

the corresponding velocity component is the same
as before. To find the other two unknowns, the ho-
rizontal and angular velocities, we can obtain one
equation using Idea no. 62. The second equation
arises from (a) the condition that the velocity of the
ball’s surface is zero at the contact point (no sliding;
(b) the equation arising from 58).

78. Using the idea 49 we investigate the sliding and
rolling regimes. In the latter case the quickest way
to find the answer is to use Idea no. 63.

79. The velocity can be found from the conservation
laws for energy and momentum (note that the hoop
is moving translationally). To find the acceleration it
is convenient to use the non-inertial reference frame
of the hoop, where the centripetal acceleration of the
block is easily found. The condition for the radial
balance of the block gives the normal force between
the block and the hoop (don’t forget the force of in-
ertia!); the horizontal balance condition for the hoop
provides an equation for finding the acceleration.

80. Let us assume the block’s velocity to be ap-
proximately constant. For a certain time tl the base
slides to the left with respect to the block and the
momentum imparted by the frictional force at that
time is also directed to the left. During the remain-
ing time tr the base slides to the right with respect-
ive momentum directed to the right as well. The
equilibrium condition is that the two momenta have
equal magnitudes; hence we ding the equilibrium
value of tl/tr . From the graph we find the velocity
for which that ratio has the needed value.

81. As the water flows against the paddles it ob-
tain the same vertical velocity u as the paddles them-
selves. This allows to compute the momentum im-
parted to the paddle per unit time (i.e. the force),
which ends up being proportional to the difference:
F ∝ v − u. From there, it is not very hard to find the
maximum of the power Fu.

82. In the reference frame of the board the problem
is equivalent to the problem no. 52.

83. Go into the (accelerated) reference frame of the
wagon, where the effective gravity

√
a2 + g2 is at a

small angle with respect to the vertical. The load will
oscillate yet remain motionless at the end if the cable



is vertical at the stopping moment and the load’s ve-
locity is zero. It is possible when the corresponding
position is the maximal deviation during the oscil-
lation. Therefore the oscillation amplitude has to be
the same both during the acceleration and decelera-
tion, so that even when the deceleration begins the
cable has to be vertical. In that case, how are the ac-
celeration time and the oscillation period related?

84. If the shockwave is at the point where the in-
tersection area of its wavefront and the considered
body is S, then what is the force acting on the body?
Let us assume that the body stays (almost) at the
same place as the shockwave passes it. Then the mo-
mentum imparted during the time dt can be found
using the cross-sectional area S and the distance
dx = cs · dt covered by the wavefront. Note that
S · dx is the volume element. Finally we sum over
all imparted momenta.

85. The rod will act like a spring (since the rod is
thin and made out of steel, while steel is elastic).
After the left sphere has collided with the station-
ary sphere, the latter will acquire velocity v0 and
the former will stay at rest. Then the dumbbell, as
a system of spheres and springs, will begin oscillat-
ing around its centre of mass. What is the velocity of
the centre of mass? Convince yourself that after half
a period the single sphere is already far enough that
the left sphere is not going to collide with it again.
The oscillations of the dumbbell will decay little by
little — so some energy will be lost there.

ANSWERS

1. arcsin Rµ

(R+l)
√

µ2+1
.

2. arcsin m
M+m

µ√
µ2+1

.

3. mg/2.

4. a) µmg/
√

1 + µ2; b) mg sin(arctan µ −
α).

5. µ ≥ |g sin α−a cos α|
g cos α+a sin α , if g + a tan α > 0.

6. a) ω2R ≥ g
√

1 + µ−2;
b) ω2R ≥ g

√
1 + µ−2, if µ < cot α and

ω2R ≥ g(cos α + µ−1 sin α) if µ > cot α

7. v/2.

8. tan 2α = h/a
9. µ1 ≥

√
l2 − h2/h

10. 3mg
11. 2 arctan[(1 + m

M ) cot α]

12.
√

2HLµ + µ2H2 − µH ≈
√

2HLµ −
µH ≈ 7,2 m.

13. a) ω2 < g/l ; b) (2 −
√

2)g/l

14. 1
2 (1 − 3−1/2)ρv ≈ 211 kg/m3

15. π
3 ρR3

16. v/
√

µ2 cot2 α − 1

17. 4
3 πGr3∆ρ/g(r + h) ≈ 0,95 cm

18. −ω

19. µmgv/ωR
20. cos φ tan α < tan 30◦

21. L − πR/2 cos α; 2π
√

L/g

22. 1
12 mg, 1

3 mg, 7
12 mg

23. mg/(2M + m)

24. m < M cos 2α.

25. mg sin α/[M + 2m(1 − cos α)] =
mg sin α/[M + 4m sin2 α

2 ].

26. g (m1 sin α1−m2 sin α2)(m1 cos α1+m2 cos α2)
(m1+m2+M)(m1+m2)−(m1 cos α1+m2 cos α2)2 .

27. mg(5
√

2 − 4)/6); Simultaneously.

28. cos α ≥ 1
3 (2 + v2/gR)

29. 2 m
M+m

√
2gR

30. mMg/(m + 4M)

31. Fx = 2Raρ, Fy = ρ(m + ρL)g −
(L − πR − 2l)a, where a = ρg(L − πR −
2l)/(m + ρL).
32. The one that had not been pushed.

33. If F ≤ 2µmg m+M
2m+M : a1 = a2 = 1

2
F

M+m ;
otherwise a1 = F

M − µg m
M , a2 = µg m

2m+M .

34. On a half-circle.

35. (a) v/5; (b) v/4.

36. n(n − 1)/2

37.
√

2µgL(1 + m
M )

38. 3,5; was coming from below right.

39. A:
√

2gh ;
√

gh.

40. 2Rµ
√

gl sin α,
√

gl sin α.

41. u − µ
√

2gh.

42. mg(h + µa).

43. arctan 2
5 ≈ 21◦48′.

44. (a) (ωl + 3v)/4; (b) (ωl + v)/2.

45. At a distance 2l/3 from the holding
hand, where l is the length of the bat.

46. 2
3

F
M

a
R

47. (vx0, vy0 − 5
7 u)

48. L/v0 + π
√

m/2k
49. 1

2 π2(n + 1
2 )

2R tan α

50. 1,03 s

51. 2,0 g

52. v1 = v2 = v; cot2 α
2

53.
√

gH.

54. 5 m/s.

55. (a) tan ≤ 2µ ; (a) impossible.

56. g(1 − x
l ) sin−1 α; π

2

√
l sin α/g

57. µ < cot α.

58. µ1 < tan α
2 and µ2 < tan α

2 .

59. R > h/2

60. 3
√

3m/πρ

61. ω2R2/2g
62. M/m = cot α − 1.

63. 2mM
M+m g tan α

64. g/9.

65. g m+M
m+M sin2 α

sin2 α.

66. 2/3R

67. m[g − v2(2l − x)/
√

2l2]

68. M/m = 4, u =
√

gl/8.

69. The first one arrives first

70. A straight line; if ω ̸= 0

71.
√

2gl(1 + m/M)

72. F
3m , if F

mµg < 6; F
4m + 1

2 µg, if

6 < F
mµg < 10; 3µg, if F

mµg > 10

73. m2v2/2(M2 − m2)µg

74.
√
(l − H

2 )g

75. arccos 2
3 ≈ 48◦12′

76. M/m = 4.

77. (a) ω = 5v0/7R, vx = 5v0/7, vy =√
2gh;

(b) vy =
√

2gh, vx = v0 − 2µvy,
ω = 5

√
2ghµ/R.

78. 5
7 g sin α, if µ > 2

7 tan α, otherwise
g sin α − µg cos α

79.
√

2gr
m+M

1+cos φ

m sin2 φ+M
m cos φ;

gm sin 2φ

m sin2 φ+M
[ 1

2 + m2 cos φ(1+cos φ)

(m sin2 φ+M)(m+M)
]

80. 0,6 m/s

81. 1
4 µv2

82. v/ cos α

83. n−2Lg/4π2l, n = 1, 2, . . .

84. (a),(b) (p1 − p0)V/mcs.

85. 1
2 v0; no, a fraction goes into the longit-

udinal oscillations of the rod and then (as
the oscillations die) into heat


