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1. Weakly nonlinear waves

Nariboli (1970) and Ostrovskii and Sutin (1977): the KdV equation
Sorensen, Chritiansen et al (1984): the improved Boussinesqu equation
Samsonov (1988): the double dispersive equations
Samsonov & Sokurinskaya (1988): experiments
Cohen and Dai (1993): two coupled nonlinear equations

Porubov et al (1993): the double dispersive equation (refined)

Dai (1998a,b) and Dai & Huo (2000): a new type of nonlinear dispersive
equation which takes into account the coupling effect of material
nonlinearity and the geometrical size. It is found that this equation
admits peakons, compactons and other singular waves.

Dai and Huo (2002): analytical descriptions for the solitary wave with a
shelf and fissions of solitons



@'_ 2. Strongly nonlinear waves or finite-
; amplitude waves

" Wright (1984, 1985) pointed out that the

possibility that a variety of traveling
waves can arise in incompressible

hyperelastic rods, including solitary
shock waves:
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. ~ % Coleman and Newman (1990) showed that
only periodic and solitary waves can arise Iin

an incompressible neo-Hookean rod and
gave their explicit solutions.

& = Dai (2001) showed that a number of traveling
. waves, Including solitary shock waves, can
arise in an incompressible Mooney-Rivlin rod,

the existence conditions and explicit solutions
were given.

Here, we shall consider finite-amplitude
. waves In a compressible Mooney-Rivlin
i material. A major difference is that the

problem Is governed by two partial
differential equations
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The rod equations for a compressible Mooney-
Rivlin material

# The strain energy function of a
compressible Mooney-Rivlin material

O =1u(3+0)(L = 3)+ 303 - f)(Lh - 3)+ quk(l = 1) = Ip(k+ 2 - B) InTs,

[ts motion, under the approximation of the Navier-Bernoulli hypothesis (the
planar section remains planar and normal to the rod axis; cf. Alwis ef al. 1994)

. is described by




By further considering the kinetic energy one
can obtain the Lagrangian. Then, the variational
principle yields the rod equations:
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There are two very complicated nonlinear PDE’s. Not
much can be done analytically on the
Initial/boundary-value problems. Next, we turn our
attention on traveling waves only.



% Governing equations for traveling waves

o Here, we are interested in travelling waves. Denote A as the axial stretch

2. For travelling waves, we have

.....

I.. }'_
§ by

;1 : A=AE), r=r(E), =24 —cT, (3.1)

where ¢ is the propagating wave velocity. Noting that 2 = ¢\, an integra-

A

tion of (2.6) with respect to £ yields that

(5(1+25) - r_-'_;l A——=(2k 43 —23) Y +(1 =28 A +krth =g, (3.2)
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The first equation becomes an algebraic
one for the two unknowns!
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The second equation becomes

a?(1428)  a®(1-28)

4

———

B 4

Using the algebraic relation, we obtain

(by = byr®)r, — byrre 4 B(r) =0,




() |
b(r) = -, for r#r,.
2rn3(r) |

o=

W(r) = 2(r)n(r)C(r) + ab(r)] + g*8(r) + g 6(r)VA.

lr) = Ford 4+ (1 — 2377 — aq.

Cr)y=1(1—23*+ (1 + 237 — 2a,.




We rewrite the equation for the traveling waves
as a first-order system

{ Ir .!! J|' |'1.-'-:__| T |||' 2 — ‘:IZ' I I |

A very important feature is that the

denominator term, which implies that there IS
a singular line in the phase plane. In fact, it is
the reason why some exotic waves can arise.




This singularity causes considerable
Inconvenience for direct analysis. So, we
Introduce a topologically equivalent system:

- L T Fon
2har=y nt(r) — 0(r).

Then, we shall relate these two systems.

Actually, in the second system a hetroclinic
orbit connecting two saddle points together
corresponding to the singular line of the
first system.
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Positive Equilibrium Points

Case 2 |'1]-_| — |'1.-'-_'__|j"E I 1,

() (Clrnlr) +agflr)) + ‘.:..rz il .r":]]j = — ur“h'“ (r)A.




» ' * To determine the types of equilibrium points, we
& can calculate the Jacobain Determinant:
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The sign of 7 can be used to determine the type of an equilibrium. In fact, since

(3.17) is integrable, by the theory of planar dynamical systems, when o = 0

the equilibrium point (r,. 0) is a center; when o < 0t is a saddle point; if o = 0

S and (r..0) has index zero, then it is a cusp. Therefore, if by — byr= > 0(< 0},
then when ¢'(r,) > 0(< 0).{rc,0) is a center; when ¢'(r,) < 0(> 0}, it is a

saddle point. The case of ¢/'(u,) = 0 will be discussed below,




. Bifurcation analysis of equilibrium points in
*¢ °  Case2:

%‘ 2n(r)(C(r)n(r) + asb(r)) + ¢°0(r)]* = —g*6*(r)A.

dé % This equation contains four parameters: two
material constants, the speed of the traveling
& waves and an integration constant.

We need to find out, as these four parameters vary,
the number of roots of the above equations and
the types of each equilibrium point, i.e., a global

K bifurcation analysis.

The analysis is very technical and tedious. Here, we
just summarize the results.



For such a dynamical system, if no centre point, then
there is no bounded traveling wave solution; see Dal

(2001).

S0, we only interested in the parameters domain in
which there exists at least one centre point

" Theorem

There exists a lower bound c. (shear-wave
speed for linear waves) for bounded traveling
waves, i.e., no traveling waves with a speed
less than ¢, can arise.




The cases (in total twelve cases) in which there exists
at least a centre point are given below

Proposition 5.2 For the case a; = 0,4 > 0,
(i) if g =10, then (3.17) has one saddle point at (r2,0), where 1g(rs) = 0;

) if 0 < g <g,, then (3.17) has one center point at (ry,0) and one saddle

point at (7. U];
(iii) if g =g,,, then (3.17) has a cusp point at (rq,0):

(iv) if g > g,,, then (3.17) has no equilibrium point.




Proposition 5.3 For the case a; > 0,¢ > 0 and r > r,. we have

(i) if () = 0 and g = 0, then the equilibrium point (7, 0) of (3.17) is a cusp

point;

(ii) if (@) < 0 and 0 < g < g,,, then when ry < ry < ry the equilibrium

Y
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point (ry,0) is a center point, (r,0) is a saddle point; when ry < ry < ro both

A W ) " W
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of (r1,0) and (rq,0) are saddle points; when ry < ry < rg, (ry,0) is a saddle

"
i

point, (r9,0) is a center point;

(iii) if wg(u) < 0 and g = g,,, then the equilibrium point (rqg,0) is a cusp

point.




Proposition 6.4 Assume that the condition (6.19) holds.

(i) If () = 0, then there exists a g = gy = 0 such that when g = g, system

(3.17) has one equilibrium point at (ry,0), which is a cusp point. If ¢g(@) < 0,

then when g =0 (3.17) has two equilibrium points (see (ii) below).

(ii) When g, < g < g,, system (3.17) has two equilibrium points at (ry, 0}, (ra, 0),
satistving r, < ry < ro < r; when g, < ¢ < g, < go, system (3.17) also has
two equilibrium points with rq < r, < rg < 7 if 11 < rg < rg, then (r1,0) is a
saddle point and (ro,0) is a center point; if ry < rg < r9, then both of (ry,0)

and (o, 0) are saddle points; if rg < ry < ro, then (ry,0) is a center point and

(r,0) is a saddle point.

(ili) When g > g,,, system (3.17) has only one equilibrium point at (rs, 0]
with r, < ry < r. If rg < 1, then (ry,0) is a center point; if rg < ry, then

(r9,0) is a saddle point.




Proposition 6.5 Assume that the condition (6.20) holds.

(i) When g = g,, system (3.17) has only one equilibrium point (r,,0), which

is a cusp point.

(ii) When ¢, < g < gm < go, system (3.17) has two equilibrium points at

(r1,0), (re,0) satisfying ry < r. < ro < r. The equilibrium point (ry,0) is a

saddle point and (ro,0) is a center (saddle) point if ry < rg(ry = ry).

(iii) When g = g,,, system (3.17) has only one equilibrium point (ry, 0) with

F=l

r, < 1o < 7, which is a center (saddle) point if ry < ry(ry = ry).




Proposition 6.6 Assume that the condition (6.21) holds.

(i) There exists a g, > 0 such that when g = g, system (3.17) has a cusp

point at (ry, 0).

(ii) When g, < g < g, system (3.17) has two equilibrium points at (ry,0) and

(r,0) satisfying ry < ry < ry; (r1,0) is a saddle point and (rq,0) is a center

point.

(iii) When g, < g < g, < go, system (3.17) has two equilibrium points at
(r1,0) and (ra, 0) with rq < r. < r9;(r1,0) is a saddle point, (r2.0) is a center

(saddle) point if rg < re(ry = 1y

(iv) When ¢ = g, system (3.17) has only one equilibrium point at (re, 0)

with r, < ry < 77 (r9.0) is a center (saddle) point if ry < re(ry = ry).
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Proposition 6.7 Suppose that the parameter condition {6.22) holds.
(i) If g =gy < gm < go. then system (3.17) has a cusp point.

(ii) If gp < g < gm < go. then system (3.17) has a saddle point at (r1.0), a

center point at (ry,0), where r; = | /u;, i = 1, 2.

(iii) If g = gy,. then system (3.17) has only a center point at (rg, 0).




Phase Planes

%

(i) If @y = 0, then when g = 0 there is a saddle point at (r9,0); when
0 < g < g,, there is a periodic annulus of the center {rq,0) which is enclosed
by the homoclinic orbit to the saddle point (rs,0); when g = g,, there is a

cusp point at (rqo,0) (see Fig. 7.1 (1)-(2)).

(1) g = 0.215 = Gax- (2) H =

Fig.7.1 The phase portraits of (3.22), when aq = 0.

(parameters: &L =4, a; =0, F = 0.25)



(a) If for g = 0 there is a periodic annulus of the center (ry,0) which is
enclosed by the heteroclinic orbits to two saddle points (r,, yF), then, there
exists a g = g,, such that when 0 < g < g, the same periodic annulus
keeps up; when g = g,, the periodic annulus is enclosed by three heteroclinic
orbits to three saddle points (r2,0) and (re,yF); when g,, < g < g,, there is

a periodic annulus enclosed by a homoclinic orbit to the saddle point (rq, 0);

when g = g,, there is a cusp point (see Fig. 7.2 (1)-(4)).

Sz

I:.S::I [P = g = Goax- l:.-_]::l b = Gar-

Fig.7.2 The phase portraits of (3.22), when a1 = 0,r, = 0.

(parameters: & = 19, a; = 0.25, F = —0.25, g,, = 0.04969, g,, = 0.09634.)




0 for @ < u and the zeros of the function
[dvﬁlml by (6.1)) satisfy g < ry < 1o for g = 0. If for g = 0 there is

a [}{‘I‘iﬂdi{: annulus of the center (r1,0) which is enclosed by the homoclinic

orhit to the saddle point (ry,0), then there exists a g = g, such that when

0 < g < g,, the same annulus keep up; when g = g, the periodic annulus
is enclosed b}-’ three heteroclinic orbits connecting to three equilibrium points
(r9,0) and (rs,u;"); when g, < g < g5, the periodic annulus is enclosed by
two heteroclinic orbits connecting to two saddle points (r,, =), where at g =

(5,71 = Tg; When g > g, there is no center point ( see Fig. 7.3 (1)-(3)).




(1) 0<g< Y

Fig.7.3 The phase portraits of (3.22) in Proposition 7.1 (i) .

(parameters: k = 19, 3 = 0.25, a1 = 0.05, g, = 0.002937. )
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(iv) Suppose that a; > 0, (%) > 0 and the conditions (6.14) and (6.19)
hold. If for ¢ = gy two zeros of the function ¥(r) defined by (6.1) satisty
ry < ry < T, then there exists a g = ¢,, such that when gy < g < gg < gp there
is a periodic annulus of the center (ra, 0) which is enclosed by a homoclinic
orbit to the saddle point (ry,0); when g = g,, the periodic annulus keeps up

which is enclosed by three heteroclinic orbits connecting three saddle points

(r,0) and (ry,y¥); when g, < g < g, the periodic annulus keeps up which

is enclosed by two heteroclinic orbits connecting two saddle points (r, y=):

when g > g, the periodic annulus disappears, where at ¢ = g,,rp = r, (see

Fig. 7.4 (1)-(4)).







(v) Suppose that a; = 0 and the condition (6.2

2) holds. Then, when g, < g <

Im = go there exists a periodic annulus of the center (r9,0) which is enclosed

by a homoclonic orbit to the saddle point (rq,

periodic annulus of the center

the straight line r =0 (see Fig.

LM
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(1) 9= g»

BEA

(2) gy < ¢

0); when g > g, there exists a

(r2,0) in which periodic orbits can expand to

f The phase portraits of (3.22) in Proposition 7.1 (v) .

(parameters: k =4, 7 = —0.25, 0y = 31.11, g5, = 19.74625, g,,, = 26.749.)
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Bounded Traveling Waves

To consider these trajectories in contact
with the singular line, we first can prove
the following result:

Lemma 8.1 The boundary curves of a periodic annulus are the limit curves of
closed orbits inside the annulus, If these boundary curves contain a segment of

the singular straight line r = r, of (3.17), then along this segment, the “time’

iterval is zero (i.e., there is a jump in y =7, ).




% |. Solitary waves of radial
expansion

We first consider the homoclinic orbits as shown in Figs. 7.1 (1), 7.2 (3) and
7.3 (1). It is easy to see that these orbits have the left abscissa at (r,,0)
satisfying r, < ry < ry and on these orbits r approaches r; as £ — +00. Thus,
corresponding to these homoclinic orbits, these are solitary wave solutions. We
note that  is just the ratio of the radial cylindrical coordinate of a material
point in the reference configuration to that in the reference configuration. For
these solutions, comparing with the radial stretch at infinity, the radial stretch

at a fixed point is smaller, thus we call them to be solitary waves of radial

eXpansion,




% Il. Solitary waves of radial
* contraction

We consider the homoclinic orbits as shown in Fig. 7.4 (2) and Fig. 7.5 (2).

ﬁ . [n contrast to the first case, now these orbits have the right abscissa at (r, 0]

:Hi-'!.tihf}'illgif; rn<ry<ry and on these arbits 7 appr aches I as L — 4. S0

that these orbits represent solitary waves of radial contraction.




Ill. Solitary shock waves of radial
expansion

For the periodic annuluses shown as Figures 7.2 ' , their boundary

curves contain a segment of the singular straight line r = r,, respectively.

(1) Solitary shock wave (2) Smooth periodic wave (3) Periodic shock wave

Fig.8.1 The profiles of travelling waves of radial-expansion type.




V. Solitary shock waves of radial
contraction

(1) Solitary shock wave (2) Smooth periodic wave (3) Periodic shock wave.

Fig.8.2 The profiles of travelling waves of radial-contraction type.




V. Periodic Waves

VI. Two Types of Periodi
shock waves




Conclusions

# By using the techniques of dynamical
systems, we show that

1. the traveling waves in a compressible
Mooney-Rivlin rod have a lower bound,

2. There seven types of bounded traveling
waves, including solitary shock waves and
periodic shock waves;

| 3. The parameters domain for these waves
% are also established,;

4. The solution profiles are plotted from the
phase plane trajectories.










Figure 4.8: Sirain solitons in the interval of P8 rod of 40-90 mm from the input tip.




