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Background

1. Weakly nonlinear waves

Nariboli (1970) and Ostrovskii and Sutin (1977): the KdV equation

Sorensen, Chritiansen et al (1984): the improved Boussinesqu equation

Samsonov (1988): the double dispersive equations 

Samsonov & Sokurinskaya (1988): experiments

Cohen and Dai (1993): two coupled nonlinear equations

Porubov et al (1993): the double dispersive equation (refined)

Dai (1998a,b) and Dai & Huo (2000): a new type of nonlinear dispersive 
equation which takes into account the coupling effect of material 
nonlinearity and the geometrical size. It is found that this equation 
admits peakons, compactons and other singular waves.

Dai and Huo (2002): analytical descriptions for the solitary wave with a 
shelf and fissions of solitons



2. Strongly nonlinear waves or finite-
amplitude waves

Wright (1984, 1985) pointed out that the 
possibility that a variety of traveling 
waves can arise in incompressible 
hyperelastic rods, including solitary 
shock waves:



Note: Actually, the last two cannot arise



Here, we shall consider finite-amplitude 

waves in a compressible Mooney-Rivlin 

material. A major difference is that the 

problem is governed by two partial 

differential equations

 Coleman and Newman (1990) showed that 
only periodic and solitary waves can arise in 
an incompressible neo-Hookean rod and 
gave their explicit solutions.

 Dai (2001) showed that a number of traveling 
waves, including solitary shock waves, can 
arise in an incompressible Mooney-Rivlin rod, 
the existence conditions and explicit solutions 
were given.



The rod equations for a compressible Mooney-

Rivlin material

 The strain energy function of a 

compressible Mooney-Rivlin material



By further considering the kinetic energy one 

can obtain the Lagrangian. Then, the variational 

principle yields the rod equations:

There are two very complicated nonlinear PDE’s. Not 

much can be done analytically on the 

initial/boundary-value problems. Next, we turn our 

attention on traveling waves only. 



Governing equations for traveling waves

The first equation becomes an algebraic 

one for the two unknowns!



The second equation becomes

Using the algebraic relation, we obtain





We rewrite the equation for the traveling waves 

as a first-order system

A very important feature is that the 
denominator term, which implies that there is 
a singular line in the phase plane. In fact, it is 
the reason why some exotic waves can arise.



This singularity causes considerable 

inconvenience for direct analysis. So, we 

introduce a topologically equivalent system:

Then, we shall relate these two systems. 

Actually, in the second system a hetroclinic 
orbit connecting two saddle points together  
corresponding to the singular line of the 
first system.



Positive Equilibrium Points

Case 1

Case 2



To determine the types of equilibrium points, we 

can calculate the Jacobain Determinant:



Bifurcation analysis of equilibrium points in 

Case 2:

This equation contains  four parameters: two 
material constants, the speed of the traveling 
waves and an integration constant. 

We need to find out, as these four parameters vary, 
the number of roots of the above equations and 
the types of each equilibrium point, i.e., a global 
bifurcation analysis.

The analysis is very technical and tedious. Here, we 
just summarize the results.



For such a dynamical system, if no centre point, then 

there is no bounded traveling wave solution; see Dai 

(2001).

So, we only interested in the parameters domain in 

which there exists at least one centre point

Theorem

There exists a lower bound c0 (shear-wave 

speed for linear waves) for bounded traveling 

waves, i.e., no traveling waves with a speed 

less than c0 can arise.



The cases (in total twelve cases) in which there exists 

at least a centre point are given below













Phase Planes















Bounded Traveling Waves

To consider these trajectories in contact 

with the singular line, we first can prove 

the following result:



I. Solitary waves of radial 

expansion



II. Solitary waves of radial 

contraction



III. Solitary shock waves of radial 

expansion



IV. Solitary shock waves of radial 

contraction



V. Periodic Waves

VI. Two Types of Periodic 
shock waves



Conclusions

 By using the techniques of dynamical 

systems, we show that

1. the traveling waves in a compressible 

Mooney-Rivlin rod have a lower bound;

2. There seven types of bounded traveling 

waves, including solitary shock waves and 

periodic shock waves;

3. The parameters domain for these waves 

are also established;

4. The solution profiles are plotted from the 

phase plane trajectories.








