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Fig.1. A one-dimensional nonlinear lattice
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Fig.2 The asymptotic evolution of a train of solitons from an initial sinusoid
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Fig.3. Paths of interacting solitons computed by Zabusky and Kruskal
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Fig.4 The preservation of soliton shape after soliton interaction



The Development of Discontinuous

Solutions
A natural starting point for this brief review of discontinuous solutions is the Burgers
equation .
ou ol o°u
U— = u—, (12> 0)
ot OX OX




A Weak Solution of Burgers Equation

Let Uy be a solution of Burgers equation, then

(w,), +u,u,), +pu(u,), =0 (1 <0).
With ¢ a C' test function with compact support, multiply
Burgers equation by ¢ and integrate over the half-plane 7 >0
to switch the derivatives from « to ¢, giving

[[(pu, + 1010 + uop u, ) dxdt =0.

As 1 — 0 this implies that
1,2\ 7 7s —
H((/)f”,u +5u, )a’xdt =0.
This is the condition that Burgers equation is satisfied by Uy,

in the weak sense. Classical solutions are a special case of
weak solutions, and both satisfy the Rankine-Hugoniot

jump condition.



u +f(u), =u + f(w)u, =0 (first conservation law)
v(u), + f(w)v(u), =0 (second conservation law)
v(u), + F(u), =0 where  F'(u)= f'(u)v(u),

J ump condition for first conservation law 1s

s =)~ f@))/ (u, —u)

Jump condition for second conservation law is

S5 :[F(u+)——F(u_)]/[v(u+)—v(u_)], SO §; #S,.



Layered Solutions

u,+ f(u)=0, u(x,0)=U(x)

Ul<U,, |U=T,
1:‘1'22(1}( 17'(s), :!niaxo (), |u|£UO

Time interval to be used

h=1/Q2£U))



I.  Introduce a special smoothing operation for data on a line { = constant, denoted by S{}.

ii.  Using the smoothed initial data S{U}= u, (X,1) . find a strict solution u, (x,t)

inthelayer (Q<t<h.

ii. Inasecondlayer h<t<2h find a strict solution U, (X,1t)

subject to smoothed initial data such u, (X, h) =S{u,(x,h)}.

Iv. Continue this layering process to obtain a sectionally continuous
smoothed layered approximation for t > ()

such that

[ u,(x,t) for 0<t<h,
u,(x,t) for h <t < 2h,

u(x,t) =< :
U, (Xx,t) for 2h <t < 3h,

v. Then for a suitable smoothing operétion, it can be proved that this layered
approximate
solution converges to a unique weak solution of (11) subject to the initial condition

u(x,0) =U (X).



The smoothing process contains two steps. The first involves converting a bounded and
continuous solution V(X) into a sequence of step function R_{v(X)}

that together form a sequence of Riemann problems. This is achieved by defining

R {V(X)}_Z_g e v(i&)dE  or (1—2)e<X<leg,

Av_{R {V()} = j R {v(x+&7)}d7.
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u, —u_ U, —Uu_



Nonlinear Superposition and the
Riccati Equation.

y'+Qy+Ry* =P

The change of variable Yy =U'/RuU gives

Ru”—(R'—QR)u’—PR*u =0.

C = (yl B y3)(y2 — y4)
(Y. = Y)Y, = Ys)




The Burgers Equation — a
Dissipative Equation.

ou  ou o°u
Uu—=u——:-1, >0
o ox o (#>0)

with ~ U(X, 0) =U (X)

Do solutions uu(x, t) approach a limit as ¢ — 0, and if so does the limit satisfy the
limiting differential equation, namely,

cou ou
ru—— =20
ot OX




U, +(%u2 —yux)X =0,

which may be considered to be a compatibility condition for the existence of a
function yw with the properties that

U=y, and uu —iu® =y,

The substitution for U in the second equation then leads to the result

1Y —3y; =y,

Next, the introduction of what is now called the Hopf-Cole transformation  =-2uIné
shows that 6

U=1y, :_Zlugx’

after which the Burger’s Equation is transformed into the linear heat equation.
2
o0 06
—=—.
ot  OX



We mention in passing that the Burgers equation describes the steady
traveling wave solution called the Burgers shock wave

u(l) = (u +U ) (;—u;)tanh[(u;—u;)§/(4y)]

with =X —ct and C:%(u;+u;),u;>u;



The KdV Equation — A Nonlinear
Dispersive Equation.

ou ou o°u
—+ U —-|‘IU—3 = O,
ot OX OX

The IST approach can be represented diagramatically as follows:

S " scattering data
{'n't'al condltlon} _» direct Schrodinger scattering —{ ° }

u(x, 0) =u, (x) att=0
1 1
time evolution in time evolution in
configuration space spectral space
1 1

scatering data}

{solutlon U(X,t)} <« inverse Schrédinger scattering < { att>0

att>0



The soliton property is not confined to the KdV equation and, for example,
it applies to the equation

_ dx Yxx
Yyt + SIgN & ) 377 =0
(1+ yx)
L 1XX
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Fig.5 A single loop soliton
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Fig.6. The interaction of two loop
solitons
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Fig.7. The interaction of a loop soliton and an anti-loop soliton



Backlund Transformations

In brief, a Backlund transformation for a second-order equation for a dependent variable @(&,7)

Is best described as the pair of relationships
a /
%9 _p
05

where the consistency condition for these two equations provides a new equation for gp'.

((0”@%1%15’77) and Z_(Z:Q((ﬁ’i(ﬂ%’%vf’ﬂ)

If it possible to find such transformations that map into themselves, then any known solution

¢/ Pmay be used to find a new solution @'_



One of the simplest examples of a Backlund transformation, though not
related to wave propagation, is provided by the Cauchy-Riemann equations

Laplace equation | [ Backlund transformation
u,+u, =0 e Cauchy-Riemann equations
Harmonic conjugate u,=v,
VetV =0 \ u, =-v,

Notice that in this rather special case the conjugate PDE for \/
happens to be the same as the original PDE for U, namely the Laplace equation.



Linearity and Nonlinear
Superposition.

a—u+a(x, y)a—u+b(x, y) f(u) =0.

OX oy

Now let us seek a superposition law g, such that u=49g (V, W),

og | ov oV og | ow OW
E{&w(x, y)5+b(x, y)t (V)}%{&w(x, V)E+b(x, y)f (W)}

+b(x,y)[f(g>—f(v)ag—af ag}

N  OW OW

However, as v and w are solutions of the equation, it will be satisfied if

f(v)(%g+ f(W)%JI f(g).



The general solution of this equation is
J‘ dg :J‘ dv "‘KD‘ dv _J‘ dW}
f(g) °f() f(v) 7 f(w)]

Now consider the special case f(u) =u, when

g(v, w) =wK (v/w).

The semilinear equation (41) then reduces to a linear equation, and the usual linear
superposition becomes possible if

K (v/w)=A(v/w)+B,

where A and B are constants

u=g(v,w)=Av+Bw.



Asymptotic Methods

Fig.8 Two distant incoming tsunami

Fig.9 The two tsunami about to coalesce



