Quasilinear Hyperbolic

 Systems, Nonlinear Superposition and SolitonsAlan Jeffrey
University of Newcastle upon Tyne England
e-mail: Alan.Jeffrey@Newcastle.ac.uk

Fig.1. A one-dimensional nonlinear lattice

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2}\left[1+\alpha(1+p) h^{p}(\partial y / \partial x)^{p}\right] \frac{\partial^{2} y}{\partial x^{2}}
$$

$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\mu \frac{\partial^{3} u}{\partial x^{3}}=0$,

Fig. 2 The asymptotic evolution of a train of solitons from an initial sinusoid

Fig.3. Paths of interacting solitons computed by Zabusky and Kruskal

Fig. 4 The preservation of soliton shape after soliton interaction

The Development of Discontinuous Solutions

A natural starting point for this brief review of discontinuous solutions is the Burgers equation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\mu \frac{\partial^{2} u}{\partial x^{2}} \\
& \frac{\partial u}{\partial t}+\frac{1}{2}\left(u^{2}\right)_{x}=0
\end{aligned}
$$

$$
(\mu>0)
$$

A Weak Solution of Burgers Equation

Let u_{μ} be a solution of Burgers equation, then

$$
\left(u_{\mu}\right)_{t}+u_{\mu}\left(u_{\mu}\right)_{x}+\mu\left(u_{\mu}\right)_{x x}=0 \quad(\mu<0) .
$$

With φ a C^{1} test function with compact support, multiply
Burgers equation by φ and integrate over the half-plane $t>0$
to switch the derivatives from u to φ, giving

$$
\iint\left(\varphi_{1} u_{\mu}+\frac{1}{2} \varphi_{x} u_{\mu}^{2}+\mu \varphi_{x x} u_{\mu}\right) d x d t=0 .
$$

As $\mu \rightarrow 0$ this implies that

$$
\iint\left(\varphi_{t} u_{\mu}+\frac{1}{2} u_{\mu}^{2}\right) d x d t=0 .
$$

This is the condition that Burgers equation is satisfied by u_{μ} in the weak sense. Classical solutions are a special case of weak solutions, and both satisfy the Rankine-Hugoniot jump condition.

$$
\begin{array}{ll}
u_{t}+f(u)_{x} \equiv u_{t}+f^{\prime}(u) u_{x}=0 & \text { (first conservation law) } \\
v(u)_{t}+f^{\prime}(u) v(u)_{x}=0 & \text { (second conservation law) } \\
v(u)_{t}+F(u)_{x}=0 \quad \text { where } \quad F^{\prime}(u)=f^{\prime}(u) v(u)_{x}
\end{array}
$$

Jump condition for first conservation law is
$s_{1}=\left[f\left(u_{+}\right)-f\left(u_{-}\right)\right] /\left(u_{+}-u_{-}\right)$

Jump condition for second conservation law is

$$
s_{2}=\left[F\left(u_{+}\right)-F\left(u_{-}\right)\right] /\left[v\left(u_{+}\right)-v\left(u_{-}\right)\right], \text {so } \quad s_{1} \neq s_{2} .
$$

Layered Solutions

$$
\begin{aligned}
& u_{t}+f_{x}(u)=0, \quad u(x, 0)=U(x) \\
& |U| \leq U_{0}, \quad\left|U^{\prime}\right| \leq U_{1} \\
& f_{1}=\max _{|s| \leq U_{0}}\left|f^{\prime}(s)\right|, \quad f_{2}=\max _{|s| \leq U_{0}}\left|f^{\prime \prime}(s)\right|, \quad|u| \leq U_{0}
\end{aligned}
$$

Time interval to be used

$$
h=1 /\left(2 f_{2} U_{1}\right)
$$

i. Introduce a special smoothing operation for data on a line $t=$ constant, denoted by $S\{$.$\} .$
ii. Using the smoothed initial data $\quad S\{U\}=u_{0}(x, t)$, find a strict solution $u_{1}(x, t)$ in the layer $\quad 0 \leq t \leq h$.
iii. In a second layer $h \leq t \leq 2 h$, find a strict solution $u_{2}(x, t)$

$$
\text { subject to smoothed initial data such } \quad u_{2}(x, h)=S\left\{u_{1}(x, h)\right\} .
$$

iv. Continue this layering process to obtain a sectionally continuous smoothed layered approximation for $t>0$
such that

$$
u(x, t)=\left\{\begin{array}{c}
u_{1}(x, t) \text { for } 0 \leq t<h, \\
u_{2}(x, t) \text { for } h \leq t<2 h, \\
u_{3}(x, t) \text { for } 2 h \leq t<3 h, \\
\vdots
\end{array}\right.
$$

v. Then for a suitable smoothing operation, it can be proved that this layered approximate solution converges to a unique weak solution of (11) subject to the initial condition

$$
u(x, 0)=U(x)
$$

The smoothing process contains two steps. The first involves converting a bounded and continuous solution $v(x)$ into a sequence of step function $R_{\varepsilon}\{v(x)\}$
that together form a sequence of Riemann problems. This is achieved by defining

$$
\begin{gathered}
R_{\varepsilon}\{v(x)\}=\frac{1}{2 \varepsilon} \int_{(i-2) \varepsilon}^{i \varepsilon} v(\xi) d \xi \quad \text { for } \quad(i-2) \varepsilon \leq x<i \varepsilon, \\
A v_{\varepsilon}\left\{R_{\varepsilon}\{v(x)\}\right\}=\frac{1}{2} \int_{-1}^{1} R_{\varepsilon}\{v(x+\varepsilon \tau)\} d \tau . \\
\frac{f\left(u_{+}\right)-f\left(u_{-}\right)}{u_{+}-u_{-}} \leq \frac{f\left(u_{0}\right)-f\left(u_{-}\right)}{u_{0}-u_{-}},
\end{gathered}
$$

Nonlinear Superposition and the Riccati Equation.

$$
y^{\prime}+Q y+R y^{2}=P
$$

The change of variable $y=u^{\prime} / R u$ gives

$$
\begin{gathered}
R u^{\prime \prime}-\left(R^{\prime}-Q R\right) u^{\prime}-P R^{2} u=0 . \\
C=\frac{\left(y_{1}-y_{3}\right)\left(y_{2}-y_{4}\right)}{\left(y_{1}-y_{4}\right)\left(y_{2}-y_{3}\right)}
\end{gathered}
$$

The Burgers Equation - a Dissipative Equation.

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\mu \frac{\partial^{2} u}{\partial x^{2}}, \quad(\mu>0)
$$

with $\quad u(x, 0)=U(x)$

Do solutions $u \mu(x, t)$ approach a limit as $\mu \rightarrow 0$, and if so does the limit satisfy the limiting differential equation, namely,

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0
$$

$$
u_{t}+\left(\frac{1}{2} u^{2}-\mu u_{x}\right)_{x}=0
$$

which may be considered to be a compatibility condition for the existence of a function ψ with the properties that

$$
u=\psi_{x} \quad \text { and } \quad \mu u_{x}-\frac{1}{2} u^{2}=\psi_{t} .
$$

The substitution for \boldsymbol{u} in the second equation then leads to the result

$$
\mu \psi_{x x}-\frac{1}{2} \psi_{x}^{2}=\psi_{t}
$$

Next, the introduction of what is now called the Hopf-Cole transformation $\psi=-2 \mu \ln \theta$ shows that

$$
u=\psi_{x}=-2 \mu \frac{\theta_{x}}{\theta}
$$

after which the Burger's Equation is transformed into the linear heat equation.

$$
\frac{\partial \theta}{\partial t}=\frac{\partial^{2} \theta}{\partial x^{2}} .
$$

We mention in passing that the Burgers equation describes the steady traveling wave solution called the Burgers shock wave

$$
u(\zeta)=\frac{1}{2}\left(u_{\infty}^{-}+u_{\infty}^{+}\right)-\frac{1}{2}\left(u_{\infty}^{-}-u_{\infty}^{+}\right) \tanh \left[\left(u_{\infty}^{-}-u_{\infty}^{+}\right) \zeta /(4 \mu)\right]
$$

$$
\text { with } \quad \zeta=x-c t \quad \text { and } \quad c=\frac{1}{2}\left(u_{\infty}^{-}+u_{\infty}^{+}\right), u_{\infty}^{-}>u_{\infty}^{+}
$$

The KdV Equation - A Nonlinear Dispersive Equation.

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\mu \frac{\partial^{3} u}{\partial x^{3}}=0
$$

The IST approach can be represented diagramatically as follows:

$$
\left[\begin{array}{l}
\text { initial condition } \\
u(x, 0)=u_{0}(x)
\end{array}\right] \rightarrow \text { direct Schrödinger scattering } \rightarrow\left[\begin{array}{c}
\text { scattering data } \\
\text { at } t=0
\end{array}\right]
$$

time evolution in configuration space
\downarrow

$$
\left[\begin{array}{c}
\text { solution } u(x, t) \\
\text { at } t>0
\end{array}\right] \leftarrow \text { inverse Schrödinger scattering } \leftarrow\left[\begin{array}{c}
\text { scatering data } \\
\text { at } t>0
\end{array}\right]
$$

The soliton property is not confined to the KdV equation and, for example, it applies to the equation

$$
y_{x t}+\operatorname{sign}\left(\frac{d x}{d s}\right)\left[\frac{y_{x x}}{\left(1+y_{x}^{2}\right)^{3 / 2}}\right]_{x x}=0
$$

Fig. 5 A single loop soliton

Fig.6. The interaction of two loop solitons

Fig.7. The interaction of a loop soliton and an anti-loop soliton

Backlund Transformations

In brief, a Bäcklund transformation for a second-order equation for a dependent variable $\varphi(\xi, \eta)$ is best described as the pair of relationships

$$
\frac{\partial \varphi^{\prime}}{\partial \xi}=P\left(\varphi^{\prime}, \varphi, \varphi_{\xi}, \varphi_{\eta}, \xi, \eta\right) \quad \text { and } \quad \frac{\partial \varphi^{\prime}}{\partial \eta}=Q\left(\varphi^{\prime}, \varphi, \varphi_{\xi}, \varphi_{\eta}, \xi, \eta\right)
$$

where the consistency condition for these two equations provides a new equation for φ^{\prime}. If it possible to find such transformations that map into themselves, then any known solution Pmay be used to find a new solution $\boldsymbol{\varphi}^{\prime}$.

One of the simplest examples of a Bäcklund transformation, though not related to wave propagation, is provided by the Cauchy-Riemann equations

Notice that in this rather special case the conjugate PDE for \mathcal{V} happens to be the same as the original PDE for u, namely the Laplace equation.

Linearity and Nonlinear Superposition.

$$
\frac{\partial u}{\partial x}+a(x, y) \frac{\partial u}{\partial y}+b(x, y) f(u)=0 .
$$

Now let us seek a superposition law g, such that $\quad u=g(v, w)$,

$$
\begin{aligned}
& \frac{\partial g}{\partial v}\left[\frac{\partial v}{\partial x}+a(x, y) \frac{\partial v}{\partial y}+b(x, y) f(v)\right]+\frac{\partial g}{\partial w}\left[\frac{\partial w}{\partial x}+a(x, y) \frac{\partial w}{\partial y}+b(x, y) f(w)\right] \\
& \quad+b(x, y)\left[f(g)-f(v) \frac{\partial g}{\partial v}-\frac{\partial f}{\partial w} \frac{\partial g}{\partial w}\right]=0
\end{aligned}
$$

However, as v and w are solutions of the equation, it will be satisfied if

$$
f(v) \frac{\partial g}{\partial v}+f(w) \frac{\partial g}{\partial w}=f(g) .
$$

The general solution of this equation is

$$
\int \frac{d g}{f(g)}=\int \frac{d v}{f(v)}+K\left[\int \frac{d v}{f(v)}-\int \frac{d w}{f(w)}\right]
$$

Now consider the special case $f(u)=u$, when

$$
g(v, w)=w K(v / w)
$$

The semilinear equation (41) then reduces to a linear equation, and the usual linear superposition becomes possible if

$$
K(v / w)=A(v / w)+B
$$

where A and B are constants

$$
u=g(v, w)=A v+B w .
$$

Asymptotic Methods

Fig. 8 Two distant incoming tsunami

Fig. 9 The two tsunami about to coalesce

