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Fig.1. A one-dimensional nonlinear lattice 
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Fig.2 The asymptotic evolution of a train of solitons from an initial sinusoid



Fig.3.  Paths of interacting solitons computed by Zabusky and Kruskal 



Fig.4   The preservation of soliton shape after soliton interaction



The Development of Discontinuous 

Solutions
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A natural starting point for this brief review of discontinuous solutions is the Burgers 

equation 
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t  {.}.Si. Introduce a special smoothing operation for data on a line constant, denoted by

ii. Using the smoothed initial data , find a strict solution

in the layer
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iii. In a second layer , find a strict solution

subject to smoothed initial data such

iv. Continue this layering process to obtain a sectionally continuous 

smoothed layered approximation for 0t 
such that
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v. Then for a suitable smoothing operation, it can be proved that this layered 

approximate 

solution converges to a unique weak solution of (11) subject to the initial condition 

( ,0) ( ).u x U x



The smoothing process contains two steps.  The first involves converting a bounded and 

continuous solution ( )v x { ( )}R v x
into a sequence of step function

that together form a sequence of Riemann problems.  This is achieved by defining
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Nonlinear Superposition and the 

Riccati Equation.
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The Burgers Equation – a 

Dissipative Equation.
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with ( ,0) ( )u x U x

Do solutions u(x, t) approach a limit as   0, and if so does the limit satisfy the 

limiting differential equation, namely,

0
u u

u
t x

 
 

 



 21
2

0,t x
x

u u u  

which may be considered to be a compatibility condition for the existence of a 

function  with the properties that
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The substitution for u in the second equation then leads to the result
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Next, the introduction of what is now called the Hopf-Cole transformation 2 ln   

shows that
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after which the Burger’s Equation is transformed into the linear heat equation.
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We mention in passing that the Burgers equation describes the steady 

traveling wave solution called the Burgers shock wave
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The KdV Equation – A Nonlinear 

Dispersive Equation.
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The IST approach can be represented diagramatically as follows: 
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The soliton property is not confined to the KdV equation and, for example, 

it applies to the equation
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Fig.5 A single loop soliton



Fig.6.  The interaction of two loop 

solitons



Fig.7. The interaction of a loop soliton and an anti-loop soliton



Backlund Transformations
In brief, a Bäcklund transformation for a second-order equation for a dependent variable ( , )  

is best described as the pair of relationships
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where the consistency condition for these two equations provides a new equation for

If it  possible to find such transformations that map into themselves, then any known solution

may be used to find a new solution



Laplace equation Bäcklund transformation

0 Cauchy-Riemann equations

Harmonic conjugate

0

xx yy

x y

xx yy y x

u u

u v

v v u v

 
 

   
 

 
     

One of the simplest examples of a Bäcklund transformation, though not 

related to wave propagation, is provided by the Cauchy-Riemann equations

v
,u

Notice that in this rather special case the conjugate PDE for

happens to be the same as the original PDE for namely the Laplace equation.



Linearity and Nonlinear 

Superposition.
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However, as v and w are solutions of the equation, it will be satisfied if
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The general solution of this equation is
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Now consider the special case when

The semilinear equation (41) then reduces to a linear equation, and the usual linear

superposition becomes possible if 

where    A and B are constants



Asymptotic Methods

Fig.8   Two distant incoming tsunami

Fig.9   The two tsunami about to coalesce


