**Quasilinear Hyperbolic** Systems, Nonlinear **Superposition** and Solitons **Alan Jeffrey** University of Newcastle upon Tyne England e-mail: Alan.Jeffrey@Newcastle.ac.uk



Fig.1. A one-dimensional nonlinear lattice

$$\frac{\partial^2 y}{\partial t^2} = c^2 \left[ 1 + \alpha (1+p) h^p \left( \frac{\partial y}{\partial x} \right)^p \right] \frac{\partial^2 y}{\partial x^2},$$

 $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \mu \frac{\partial^3 u}{\partial x^3} = 0,$ 



Fig.2 The asymptotic evolution of a train of solitons from an initial sinusoid



Fig.3. Paths of interacting solitons computed by Zabusky and Kruskal



Fig.4 The preservation of soliton shape after soliton interaction

# The Development of Discontinuous Solutions

A natural starting point for this brief review of discontinuous solutions is the Burgers equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \mu \frac{\partial^2 u}{\partial x^2}, \qquad (\mu >$$

$$\frac{\partial u}{\partial t} + \frac{1}{2} \left( u^2 \right)_x = 0.$$

#### A Weak Solution of Burgers Equation

Let  $u_{\mu}$  be a solution of Burgers equation, then

 $(u_{\mu})_{t} + u_{\mu}(u_{\mu})_{x} + \mu(u_{\mu})_{xx} = 0 \qquad (\mu < 0).$ 

With  $\varphi$  a  $C^1$  test function with compact support, multiply

Burgers equation by  $\varphi$  and integrate over the half-plane t > 0

to switch the derivatives from u to  $\varphi$ , giving

 $\iint \left(\varphi_t u_{\mu} + \frac{1}{2}\varphi_X u_{\mu}^2 + \mu \varphi_{xx} u_{\mu}\right) dx dt = 0.$ 

As  $\mu \rightarrow 0$  this implies that

$$\iint \left(\varphi_t u_{\mu} + \frac{1}{2}u_{\mu}^2\right) dx dt = 0.$$

This is the condition that Burgers equation is satisfied by  $u_{\mu}$ in the weak sense. Classical solutions are a special case of weak solutions, and both satisfy the Rankine-Hugoniot jump condition.

$$u_t + f(u)_x \equiv u_t + f'(u)u_x = 0$$
 (first conservation law)

 $v(u)_t + f'(u)v(u)_x = 0$  (second conservation law)

 $v(u)_t + F(u)_x = 0$  where  $F'(u) = f'(u)v(u)_x$ 

Jump condition for first conservation law is

$$s_1 = \left[ f(u_+) - f(u_-) \right] / (u_+ - u_-)$$

Jump condition for second conservation law is

$$s_2 = [F(u_+) - F(u_-)] / [v(u_+) - v(u_-)], \text{ so } s_1 \neq s_2.$$

#### **Layered Solutions**

$$\begin{split} & u_t + f_x(u) = 0, \qquad u(x,0) = U(x) \\ & |U| \le U_0, \quad |U'| \le U_1 \\ & f_1 = \max_{|s| \le U_0} |f'(s)|, \quad f_2 = \max_{|s| \le U_0} |f''(s)|, \quad |u| \le U_0 \end{split}$$

Time interval to be used

$$h = 1/(2f_2U_1)$$

- i. Introduce a special smoothing operation for data on a line t = constant, denoted by  $S_{\{.\}}$ .
- ii. Using the smoothed initial data  $S\{U\} = u_0(x,t)$ , find a strict solution  $u_1(x,t)$ in the layer  $0 \le t \le h$ .
- iii. In a second layer  $h \le t \le 2h$ , find a strict solution  $u_2(x,t)$

subject to smoothed initial data such  $u_2(x,h) = S\{u_1(x,h)\}.$ 

iv. Continue this layering process to obtain a sectionally continuous smoothed layered approximation for t > 0

such that

$$u(x,t) = \begin{cases} u_1(x,t) & \text{for } 0 \le t < h, \\ u_2(x,t) & \text{for } h \le t < 2h, \\ u_3(x,t) & \text{for } 2h \le t < 3h, \end{cases}$$

v. Then for a suitable smoothing operation, it can be proved that this layered approximate

solution converges to a **unique weak solution** of (11) subject to the initial condition

$$u(x,0) = U(x).$$

The smoothing process contains two steps. The first involves converting a bounded and continuous solution v(x) into a sequence of step function  $R_{\varepsilon}\{v(x)\}$ 

that together form a sequence of Riemann problems. This is achieved by defining

$$R_{\varepsilon}\{v(x)\} = \frac{1}{2\varepsilon} \int_{(i-2)\varepsilon}^{i\varepsilon} v(\xi) d\xi \quad \text{for} \quad (i-2)\varepsilon \le x < i\varepsilon,$$

$$Av_{\varepsilon}\left\{R_{\varepsilon}\left\{v(x)\right\}\right\} = \frac{1}{2}\int_{-1}^{1}R_{\varepsilon}\left\{v(x+\varepsilon\tau)\right\}d\tau.$$

$$\frac{f(u_{+}) - f(u_{-})}{u_{+} - u_{-}} \le \frac{f(u_{0}) - f(u_{-})}{u_{0} - u_{-}},$$

# Nonlinear Superposition and the Riccati Equation.

 $y' + Qy + Ry^2 = P$ 

The change of variable y = u'/Ru gives

 $Ru'' - (R' - QR)u' - PR^2u = 0.$ 

$$C = \frac{(y_1 - y_3)(y_2 - y_4)}{(y_1 - y_4)(y_2 - y_3)}$$

#### The Burgers Equation – a Dissipative Equation.

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \mu \frac{\partial^2 u}{\partial x^2}, \qquad (\mu > 0)$$

with 
$$u(x,0) = U(x)$$

Do solutions  $u\mu(x, t)$  approach a limit as  $\mu \rightarrow 0$ , and if so does the limit satisfy the limiting differential equation, namely,

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

$$u_t + \left(\frac{1}{2}u^2 - \mu u_x\right)_x = 0,$$

which may be considered to be a compatibility condition for the existence of a function  $\psi$  with the properties that

$$u = \psi_x$$
 and  $\mu u_x - \frac{1}{2}u^2 = \psi_t$ .

The substitution for  $\mathcal{U}$  in the second equation then leads to the result

$$\mu \psi_{xx} - \frac{1}{2} \psi_x^2 = \psi_t.$$

Next, the introduction of what is now called the Hopf-Cole transformation  $\psi = -2\mu \ln \theta$ shows that  $\mu = \mu \mu = -2\mu \frac{\theta_x}{2}$ 

$$u=\psi_x=-2\mu\frac{\sigma_x}{\theta},$$

after which the Burger's Equation is transformed into the linear heat equation.

$$\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial x^2}.$$

We mention in passing that the Burgers equation describes the steady traveling wave solution called the **Burgers shock wave** 

$$u(\zeta) = \frac{1}{2} \left( u_{\infty}^{-} + u_{\infty}^{+} \right) - \frac{1}{2} \left( u_{\infty}^{-} - u_{\infty}^{+} \right) \tanh \left[ \left( u_{\infty}^{-} - u_{\infty}^{+} \right) \zeta / (4\mu) \right],$$

with 
$$\zeta = x - ct$$
 and  $c = \frac{1}{2} \left( u_{\infty}^{-} + u_{\infty}^{+} \right), u_{\infty}^{-} > u_{\infty}^{+}$ 

## The KdV Equation – A Nonlinear Dispersive Equation.

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \mu \frac{\partial^3 u}{\partial x^3} = 0,$$

The IST approach can be represented diagramatically as follows:

The soliton property is not confined to the KdV equation and, for example, it applies to the equation

$$y_{xt} + \operatorname{sign}\left(\frac{dx}{ds}\right) \left[\frac{y_{xx}}{\left(1 + y_x^2\right)^{3/2}}\right]_{xx} = 0$$



Fig.5 A single loop soliton



Fig.6. The interaction of two loop solitons



Fig.7. The interaction of a loop soliton and an anti-loop soliton

## **Backlund Transformations**

In brief, a Bäcklund transformation for a second-order equation for a dependent variable  $\varphi(\xi,\eta)$  is best described as the pair of relationships

$$\frac{\partial \varphi'}{\partial \xi} = P(\varphi', \varphi, \varphi_{\xi}, \varphi_{\eta}, \xi, \eta) \quad \text{and} \quad \frac{\partial \varphi'}{\partial \eta} = Q(\varphi', \varphi, \varphi_{\xi}, \varphi_{\eta}, \xi, \eta)$$

where the consistency condition for these two equations provides a new equation for  $\varphi'$ . If it possible to find such transformations that map into themselves, then any known solution  $\varphi'$ . One of the simplest examples of a Bäcklund transformation, though not related to wave propagation, is provided by the Cauchy-Riemann equations

Laplace equation  

$$u_{xx} + u_{yy} = 0$$
  
Harmonic conjugate  
 $v_{xx} + v_{yy} = 0$   
 $\downarrow \Leftrightarrow$   
 $\begin{cases} \text{Bäcklund transformation} \\ \text{Cauchy-Riemann equations} \\ u_x = v_y \\ u_y = -v_x \end{cases}$ 

Notice that in this rather special case the conjugate PDE for V happens to be the same as the original PDE for u, namely the Laplace equation.

## Linearity and Nonlinear Superposition.

$$\frac{\partial u}{\partial x} + a(x, y)\frac{\partial u}{\partial y} + b(x, y)f(u) = 0.$$

Now let us seek a superposition law g, such that  $\mathcal{U} = g(\mathcal{V}, \mathcal{W})$ ,

$$\frac{\partial g}{\partial v} \left[ \frac{\partial v}{\partial x} + a(x, y) \frac{\partial v}{\partial y} + b(x, y) f(v) \right] + \frac{\partial g}{\partial w} \left[ \frac{\partial w}{\partial x} + a(x, y) \frac{\partial w}{\partial y} + b(x, y) f(w) \right]$$
$$+ b(x, y) \left[ f(g) - f(v) \frac{\partial g}{\partial v} - \frac{\partial f}{\partial w} \frac{\partial g}{\partial w} \right] = 0.$$

However, as v and w are solutions of the equation, it will be satisfied if

$$f(v)\frac{\partial g}{\partial v} + f(w)\frac{\partial g}{\partial w} = f(g).$$

The general solution of this equation is

$$\int \frac{dg}{f(g)} = \int \frac{dv}{f(v)} + K \left[ \int \frac{dv}{f(v)} - \int \frac{dw}{f(w)} \right],$$

Now consider the special case f(u) = u, when

$$g(v,w) = wK(v/w).$$

The semilinear equation (41) then reduces to a **linear equation**, and the usual linear superposition becomes possible if

$$K(v/w) = A(v/w) + B,$$

where A and B are constants

$$u = g(v, w) = Av + Bw.$$

## **Asymptotic Methods**



#### Fig.8 Two distant incoming tsunami



#### Fig.9 The two tsunami about to coalesce