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Turbulent mixing — is there any relationship to waves and com-
plexity?

Passive scalar structures (blobs, high dissipation areas etc.) prop-
agate (according to the underlying velocity �eld) and evolve (e.g.
can develop into dissipative fronts — "shock waves"). This can be
considered as a propagation of passive waves.

Process is characterized by self-organization, high intermittency etc
— so, there is a lot of complexity.



The problem of passive scalar turbulence has a wide range of direct
applications, e.g. pollutant, temperature and food (e.g. plankton)
transport in water and atmosphere. There are also less direct appli-
cations, such as the nucleation of the rain droplets in warm clouds.

Further, the problem of passive scalar turbulence can be considered
as a step towards the complete theory of turbulence (which is the
problem of an active vector), the next step being the problem of
passive vector turbulence (which is directly applicable to the prob-
lem of the kinematic magnetic dynamos — phenomenon leading
to the creation of cosmic magnetic �elds).

Finally, advances in understanding the turbulence (including the
passive scalar turbulence) will bene�t the studies in many, seem-
ingly very di�erent, research �elds. For instance, turbulence has
been the origin and a test �eld for the nowadays very popular mul-
tifractal formalism.



Fully developed turbulence is known to be highly intermittent, char-
acterized by non-Gaussian statistics and non-vanishing probabili-
ties of extreme events. This applies both to the turbulent velocity
�eld itself and to the passive tracer �elds (a dye density, tempera-
ture, etc.). Such a behaviour is classically described by anomalous
(nonlinear) structure function scaling exponents. Qualitatively, one
can say that the strength of intermittency should be measured as
the signi�cance of the deviations from Gaussianity. For multifractal
systems, widely adopted such measures are the anomalous scaling
exponents, e.g. µ4 = 2ζ2 − ζ4, where ζp (p = 2, 4) are the p-th order
structure function scaling exponents:

⟨∣θ(r, t) − θ(r + a, t)∣p⟩∝ ∣a∣ζp .



In the case of passive tracers, such nonlinearity is particularly strong,
evidenced by very high values of µ4 (as well as µ6 etc). So, the feed-
back in the case of active vector problem tends to smooth out the
strongest singularities. This makes the passive scalar problem best
suited for studying the origins of intermittency.

The anomalous scaling of the passive scalar structure functions is
caused by the presence of discontinuity fronts. This is why we focus
here on the formation and evolution of these fronts.



We present a simple model for the evolution of passive tracers in
turbulent 	ows. Based on that model, we derive an expression for
the structure function scaling exponent (which is in a good agree-
ment with existing numerical and experimental data), and reveal
the origin of the small-scale anisotropy. We compare these results
with the complementing approach of studying the evolution of ma-
terial lines and show that an important role is played by the recon-
nection of the tracer isodensity lines.



Passive scalar turbulence is described by a simple linear equation,

∂ϕ
∂t

+ v ⋅∇ϕ = κ∇2ϕ + g , (1)

where g is a source of the passive scalar ϕ, v(r, t) is a turbulent (pos-
sibly incompressible) velocity �eld, and κ is a seed di�usivity. Alter-
native description is based on the position r(t) of a passive scalar
particle [ f (t) is a noise term]:

dr
dt

= v(r, t) + f (t), (2)



The problems of passive scalar turbulence are easy to pose, but dif-
�cult to solve. This is because (a) the distribution of a passive scalar
ϕ tends to be highly intermittent, and (b) the behaviour depends
qualitatively on the character of the 	ow and on the initial condi-
tions. For instance, important cases are:

● rough 	ows with Kolmogorov spectrum;

● smooth 	ows (e.g. at the Batchelor scales);

● compressible 	ows (with the subcases of rough and smooth
	ows;

● (quasi)stationary 	ows (e.g. drift wave turbulence);

● stationary mixing;

● decaying tracer;

● tracer from point sources.



[Falkovich,
Gawȩdzki and
Vergassola,
RMP 2001]
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Figure 2. Image of a cloud of particles on the surface of a turbulent body of water.
The particles which are 10µm in diameter appear as white and were initially
dispersed uniformly over the surface. This image was captured 100 ms later. The
scale below the snapshot is in cm.

[17] but the dispersion would differ because the flow is spatially smooth which favours
exponential separation [18].

The clustering effect, which will be discussed here, also leads to the formation of sharp
fronts of particle density as seen in figure 2. As stressed in [19, 20], the evolution of these fronts
is illuminated by tracking the evolution of triplets of particles for the 2D case, as opposed to
pairs alone. In the above-cited works for incompressible systems, it is found that triplets forming
equilateral triangles, flatten with time. Here, as in the evolution of pairs, the experiments and
the direct numerical simulations (DNS) are in qualitative agreement [21]. Nevertheless, there
is not yet a way to obtain any of the results presented here from a theoretical model or from
dimensional arguments.

The outline of the paper is as follows. In the next two sections we will discuss the
experimental arrangement and the numerical method in brief. Afterwards we review the Eulerian
properties of the flow, such as longitudinal structure functions, vorticity structure functions, the
surface flow divergence and the compressibility ratio. In section 5 we turn to the Lagrangian
studies. The particle distribution can be associated with a mass density, so investigations on its
multifractality are presented. We report findings on the dispersion of tracer pairs, triplets and the
particle density. We conclude with a brief summary and an outlook.

New Journal of Physics 6 (2004) 53 (http://www.njp.org/)

G. Bofetta,
J. Davoudi,
B. Eckhardt,
J.Schumacher,
Phys. Rev. Lett.
93, 134501
(2004).





Here we focus on the passive scalars evolving in fully developed
turbulent 	ows, when the scalar �eld becomes everywhere discon-
tinuous: the discontinuity fronts of fractal structure will emerge [A.
Celani et al, Phys. Fluids 13, 1768 (2001)]

These fronts are the very reason for the anomalous scaling of struc-
ture functions. However, little is known about the formation and
statistics of such fronts.



Mixing e�ect of turbulent 	ows is most intuitively characterized by
the growth of the distance between two tracer particles r:

d
dt

⟨ln r⟩∝
d
dt

⟨[ln r]2⟩∝ rξ−2.

So, with a proper time unit, the distance doubling time is estimated
as τ ≈ r2−ξ; the Kolmogorov scaling τ ≈ r2/3 is matched with ξ = 4/3.

Let us decompose the velocity �eld into components of di�erent
characteristic space-scale,

va(r, t) = ∫a≤∣k∣<2a
v(k, t)e ikrdk.

The characteristic time-scale of va is estimated as τa ≈ a2−ξ.



Simpli�ed scheme of the formation of tracer discontinuities. Char-
acteristic time of eddies of size a scales as τ ≈ a2−ξ. Due to the
combined e�ect of large and small eddies, low- and high-density re-
gions (black and white, respectively) are brought into contact within
a �nite time.



We aim to construct a model, which mimics the evolution of the
tracer density pro�le along the x-axis (any 1D cross-section). To be-
gin with, we consider only the e�ect of an “a-	ow”va(r, t) (this cor-
responds to observing the initial tracer �eld evolution with a spa-
tial resolution a: smaller vortices are not resolved, larger ones are
slower and require a longer observation period). In incompressible
velocity �elds, exponential growth of scalar density gradients is due
to exponential stretching of 	uid elements, caused by stretching-
folding motion of the 	uid. Such a stretching-folding motion is pro-
vided by a simple shear 	ow.



The segment AB of the initial pro�le θ(x) evolves into a “kink” of
the �nal pro�le θ′(x), consisting of descending, ascending, and de-
scending segments A′C, CD, and DB′, respectively.



MappingMa,c modelling the e�ect of a single vortex of size a on
the tracer pro�le θ(x). The vortex may be far from the vessel bound-
ary [Case (A)], or close to it, with θ∣x=0 ≡ 1 [Case (B)]



For any non-zero di�usivity κ, the di�usion smoothens the tracer
density 	uctuations at a microscale δ, for which the e�ective Peclet’
number Pδ ≈ 1. From the equality of di�usion and mixing times, τδ ≈

δ2−ξ ≈ δ2/κ, we obtain δ ≈ κ1/ξ. In order to take into account such a
smoothing, the mappingMat ,ct is modi�ed so that apart from the
e�ect depicted in previous Figure, it includes also averaging over a
sliding window of width δ. For numerical simulations, δ serves as a
natural discretisation step.



As a result of the mappingM2a,B, the old value of the mean density
di�erence ∆a(B) de�nes the possible range of new values at trice
smaller scale b = a/3: the smallest value is∆b(F) = 0, and the largest
one ∆b(E) = ∆b(G) = ∆a(B)



As a result of a mapping, PDF is transferred to smaller scales via a
convolution-type re-distribution. Mathematically,

fb(∆) = ∫
1

∆
fa(∆′)

d∆′

∆′
(3)

(assuming that the maximal value of ∆ is 1).



Assumptions: (i) We do not consider the e�ect of those mappings,
the size of which is signi�cantly smaller than a and b, because at
our scale, they preserve the average density θ̄b. This is true, if the
mapping falls entirely into the segment; if it falls at the edge, θ̄b will
be changed, but the change remains relatively small. For very small
values of ξ < ξ0, when small vortices are much more frequent than
the large ones, this assumption will no longer be valid.

(ii) We neglect the e�ect of larger vortices. This is actually not cor-
rect: larger-size mappings compress the pro�le without reducing
the density drop ∆. Such a process corresponds to a direct transfer
fa(∆) → fa/3(∆), without the convolution in Eq (3). So, in average,
the pro�le will be compressed more than trice, before entering the
convolution stage. Hence, the e�ect of larger vortices can be taken
into account by using an e�ective, somewhat increased compres-
sion factor k = a/b > 3.



Large mappings lead to a direct transfer of PDF towards small scales,
matching-size mappings cause a re-distribution (convolution) of it.
For our model, we need to relate the number of convolutions n to
the scale reduction factor a0/a f . E�ective compression factor k is
de�ned via relationship kn = a0/a f .



Bearing in mind boundary conditions θ(0, t) ≡ 1 and θ(1, t) ≡ 0, it is
reasonable to assume that f1(∆) ≡ 1. Then, direct integration results
in fa(∆a) = ∣ ln(∆a)∣n/n!, where n = − logk a.

We expect that ∫ fa(∆)∆pd∆ ∝ aζp; the integral is easily taken, re-
sulting in ζp = logk(p+ 1). Comparing this expression with the clas-
sical result ζ2 = 2 − ξ (which is valid both for tracer turbulence, and
for our 1D model), we obtain k = 31/(2−ξ). So,

fa(∆) = ∣ ln(∆)∣nn!−1, n = (2 − ξ)∣ log3 a∣,
ζp = (2 − ξ) log3(p + 1).

(4)



Now, let us recall that we expected k ≥ 3; this inequality is not sat-
is�ed for ξ < 1. So, we can conclude that ξ0 = 1, i.e. for ξ < 1, the
assumption (i) is not satis�ed. Note that the result ξ0 = 1 is directly
applicable only to our 1D model, when all the compression factors
are equal to 3. In the case of real 2D or 3D turbulence, the individ-
ual (e�ective) mappings are not obtained by simple 3-fold compres-
sion. Hence, the critical value ξ0 may deviate from 1.



(a) — R.A. Antonia et al, 96; (b) — C. Meneveau et al, 90; (c) — G. Ruiz-Chavarria
et al, 96; (d) — L. Mydlarski and Z. Warhaft, 98; (e) — S. Chen and R.H. Kraichnan
98, ( f ) —A. Celani et al, 01; (g) — F. Moisy et al, 01.



Solid line — theoretical curve (2− ξ) log3
9
5 , dotted line — Kraichnan formula (94),

dashed line — perturbation theory [K. Gawȩdzki and A. Kupiainen, 95], open cir-

cles and stars — numerical results of 2D and 3D Lagrangean simulations [U. Frisch

et al, 98 & 99], and �lled circles — our simulations.



Origin of small-scale anisotropy. Experiments have shown that if
one wall is kept warm, and another cold, then the temperature pro-
�le obtains ramp-cli� structure. This is reproduced by our 1D model.
As a result of the mapping, red and blue parts are symmetric to
each other (compensate in S3); violet part remains uncompensated.
Throughout the cascade of mappings, only the largest-∆-part of the
PDF remains non-symmetric.



For the signed-∆-PDF, f̃a(∆) − f̃a(−∆) ≠ 0 only if ∣∆∣ > δ(a). The
function δ(a) can be found, assuming that for ∣∆∣ > δ(a), f̃a(∆) −
f̃a(−∆) ≈ 1

3 fa(∆), and bearing in mind that S1 = a. Appropriate
calculations result in ζ̃3 = 1 + 2(2 − ξ)3−1/(2−ξ)/(e ln 3); for the Kol-
mogorov turbulence (ξ = 4

3), this yields ζ̃3 ≈ 1.1 in a reasonable
agreement with the experimental data (ζ̃3 ≈ 1 ÷ 1.1), and with our
simulations with the 1D triplet map model (ζ̃3 ≈ 1.2).



Another aspect of the tracer �eld is its statistical topography. For
instance, one aspect of it is the fractal dimension of the isoden-
sity lines D. If the tracer �eld were Gaussian, characterized by the
Hurst exponent H = ζ1 = ζ2/2, it would possible to apply the sta-
tistical topography of self-a�ne Gaussian surfaces. In particular,
D ≈ 1.5 − H/2. Since ζ2 = 2 − ξ, we would obtain D ≈ 1 + ξ/4. While
the scalar �eld is far from Gaussian, this expression serves as an es-
timate. According to numerics, D ≈ 1.3 for ξ = 4/3



To clarify the evolution of the isodensity lines, we performed a nu-
merical analysis of the evolution of material lines.





Conclusion

While our 1D model and analytics include several simpli�cations,
and hence cannot pretend to provide exact results, they are, with a
reasonable accuracy, in agreement with previous experiments and
simulations. Therefore, we believe that the model captures the main
mechanisms of passive scalar intermittency. It also reveals the ori-
gin of the small-scale anisotropy.

The reconnection of isodensity lines plays an important role in the
formation of the tracer �eld. For large values of ξ, the dominating
process is the merger of loops, leading to the increase of the fractal
dimension D. In the case of smaller values of ξ, the leading mech-
anism is the smoothing of lines due to the di�usion at the smallest
scales, leading to the decrease of D. The Kolmogorov case ξ = 4/3
corresponds to the crossover between the two cases.


