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Various routes to the understanding of the

propagation of phase-transition fronts in crystalline

substances examined in the light of recent works.

These include lattice dynamics, meso-scopic

considerations, and the fully macroscopic

thermomechanical approach on the material

manifold that combines an engineering interest with

an invariance-theoretical viewpoint.

How would these apply to a problem of mechano-

biology: the growth of long bones?



Introduction

A full understanding of the phenomenon of the propagation of phase-

transition fronts in deformable crystals - metals, alloys - is one of the

essential problems of contemporary materials science and mechanics

at both theoretical and application levels.

This unique problem can be examined at three different scales (cf.

Figures 1-3)



(i) a microscopic scale (lattice dynamics) in the absence of

thermodynamical irreversibility: inspired by the Landau-Ginzburg

theory, although discrete to start with, deals with nonlinear localized

waves (solitonic structures : solitary wave, soliton complexes) where

nonlinearity and dispersion (discreteness) are the main ingredients.

(ii) a mesoscopic scale (exploitation of continuum thermomechanical

equations in a structured front), (involves nonlinearity, dispersion and

dissipation (viscosity)).

(iii) a macroscopic scale, that of engineering applications (the front is

seen as an irreversibly driven singular surface and where

macroscopic thermodynamics ( theory of irreversible processes) and

numerical methods such as finite-element and finite-volume methods

are used in conjunction with a criterion of progress.
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The three scales are reconciled by the fact that all solutions satisfy the

same Hugoniot conditions sufficiently far away from the front,

whether structured as a solitonic or dissipative structure, or without

thickness such as a singular surface.

This multi-level, multi-physics approach gathers the view points of

condensed-matter physicists (micro-scale) , applied mathematicians

(meso-scale) and engineers (macro-scale), and even that of the

theoretical physicist via the inclusive notion of quasi-particles and the

underlying and pervasive invariant-theoretical framework.



Microscopic condensed-matter-physics approach : solitonics

The first approach considered is that dealing with the micro scale of

lattice dynamics in a perfect lattice, so that there is no dissipation and

effects of temperature are not involved, except perhaps in the phase-

transition parameter (Falk, Pouget, Maugin and Cadet).

This allows one to readily obtain a dynamical representation of a

phase boundary (here a kink) as a solitonic structure for a two-

degrees of freedom, but essentially one-dimensional, system. The

reason for this is that, unless one wants to study the lateral stability

of this system, the « theorem of the flea» applies : the « flea » sees

only the first-order geometrical description of the transition layer ,

hence essentially the normal direction to a layer of constant

thickness.



Notice that the continuum model obtained in the long-wave length

limit is that of a nonlinear elastic body with first gradients of strains

taken into account but no dissipation.

This long-wave limit is admissible because the transition layer

between two phases, although thin (perhaps a few lattice spacings), is

nonetheless large enough.

Numerical simulations can be performed directly on the lattice. The

elastic potential is non-convex in general. To exemplify this approach,

we consider a one-dimensional (x), two-degrees of freedom, lattice

with transverse (main effect) and longitudinal (secondary effect)

displacements from the initial position.



In the so-called long-wave limit where the discrete

dependent variables (strains) sn and en vary slowly from one

lattice site to the next and they can be expanded about the

reference configuration (na,O), the discrete equations yield

the following system of two (nondimensionalized) coupled

partial - in (x,t) - differential equations (with an obvious

notation for partial x and t derivatives)
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where s and e are the shear and elongation strains,  is a coupling

coefficient, and  and  are nonlocality parameters. Parameters cT

and cL are the characteristic speeds of the linear elastic system. This

corresponds to stresses and energy density given by

   

 







 

















  

s s e

s

x

x T L x

x
M

s e

s
M

s

s e s c s s s c e s e s

   

 

     








, ,

,

, , .

,

1

2

1

2

1

3
22 2 4 6 2 2 2

2



In other words, eqns.(1)1-2 are none other than the x-

derivatives of the balance of (physical) linear momentum

for a continuum made of a nonlinear, homogeneous elastic

material with strain gradients - with both nonlinearity and

strain gradients relating only to the shear deformation.

Complicated as they look, eqns.(1)1-2 still admit exact 

dynamical solutions of the solitonic type. A thorough 

discussion of the existence of such solutions connecting two 

different or equivalent minimizers (i.e., two phases) of the 

potential energy was given by Maugin and Cadet  to whom 

we refer the reader.



The remarkable fact is that such complicated solutions are shown

(by computation) to satisfy the following (temperature-independent)

HUGONIOT condition between states at infinity :

(3)

where is the shear strain without strain-gradient effect, and

is the elastic energy with such effects similarly neglected.

  Hugo W s e ss: , fixed ,   0

 s
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Obviously, gradient effects play a significant role only within the

rapid transition zone that the kink solution represents, while outside

the state is practically spatially uniform, although different on both

sides of the localized front. Here we have used the following

definitions for the jump and mean value of any quantity a:

(4)

Equation (3) is typical of the absence of dissipation during the

transition, in general a working hypothesis that is not realistic.

Furthermore, it can in fact be rewritten as the celebrated Maxwell’s

rule of equal areas.
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Macroscopic engineering approach : singular surface and

thermodynamic criterion

In this second approach the phase boundary is considered locally and

macroscopically as a discontinuity front  in the first-order derivatives

- hence, like a shock wave, a singular surface of the first order in

Hadamard’s classification - of the basic field (e.g., the physical

placement x = (X,t) of a « particle » X) ;  has no thickness. The

« theorem of the flea» applies again : only the first-order geometrical

description of the singular surface -its normal- is involved unless one

introduces some kind of surface tension. But the front itself is not

necessarily flat. It may curve and even form cusps in the worst

situations.



The local viewpoint refers to the fact that it is assumed at

each instant of time that the thermoelastic solution is known

by any means - analytical, but more than often, numerical -

on both sides of  so that one can compute a driving force

acting on . Further progress of  must not contradict the

second law of thermodynamics. The latter, therefore,

governs the local evolution of  which is generally

dissipative (although no microscopic details are made

explicit to justify the proposed expressions).



The approach is thermodynamical and incremental

(in total analogy with modern plasticity). All physical

mechanisms responsible for the phase transformation

are contained in the phenomenological-macroscopic

relationship given by the local criterion of progress

of . Without entering details which can be found in

papers (Maugin and Trimarco, 1995; Maugin, 1997)

and considering from the outset the finite-strain

framework.



We remind the reader that at any regular point in the body

(i.e., on both side of ) we have the balance of (physical)

linear momentum and the future heat equation written in the

Piola-Kirchhoff form for a heat-conducting thermoelastic

material (W(F,) in general is different on both sides of ,

and generally non-convex in its first argument and concave

in the second one - the thermodynamical temperature ).

But while each phase is materially homogeneous, the

presence of  is a patent mark of a loss of translational

symmetry on the overall body, hence the consideration of a

global material inhomogeneity.



The field equation capturing this breaking of symmetry is

the jump relation associated with the equation of

momentum on the material manifold, i.e, what we called

the balance of pseudo-momentum. This jump equation,

together with that for entropy, governs the phase-transition

phenomenon at . These equations apriori read

(5)

where the last inequality is a statement of the second law of

thermodynamics at .
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N is the unit normal to  oriented from the minus to the plus

side, and we defined the jumps and mean values at  by

(compare to eqns.(4)) :

(6)

where a are the uniform limits of

a in approaching  on its two faces along N. is the material

velocity of  , S is the entropy density,  is the

thermodynamical temperature,
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and the material or pseudo momentum and the Eshelby stress tensor

are defined by

(7)

and

(8)
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The « force » f , just like  , is an unknown

and like other thermodynamical material

forces it acquires a physical meaning only in

the computation of the power it expands here

in the material velocity.
V



On performing this computation (e.g., Maugin, 1997) in the case of a

coherent phase-transition front  for which there holds the continuity

conditions [V]= 0 and [] = 0 (no dislocations at  that is also

homothermal - the transition occurs at a temperature shared by the

two phases), we obtain the compatibility condition between f and

 :

where bS is the quasi-static part of b (although the computation is

made without neglecting inertia).

f V   . ,  f VN   0
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If this inertia is really neglected, then we have following

reduction :

(11)

In this canonical formalism the driving force f happens to

be purely normal but it is constrained to satisfy, together

with the propagation speed the surface dissipation

inequality indicated in the last of (9). In other words, any

relationship between these two quantities must be such that

the inequality (9) be verified. This is the basis of the

formulation of a thermodynamically admissible criterion of

progress for . Indeed, we look for a relationship

which satisfies the last of (9).

  Hugo W trPT   T F. .
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If we « force » the system evolution to be such that there is

effective progress of the front at X   while there is no

dissipation, then we must necessarily enforce the following

condition

(12)

On account of the fact that temperature () is fixed, and

the thickness of the front is taken as zero, so that uniform

states are reached immediately on both sides of , eqn.(12) is

none other than the condition of « Maxwell » (3) in the one-

dimensional pure-shear case. Thus a macroscopic approach dear to

the engineer has allowed us to obtain, in general, a more realistic (in

general, dissipative) progress of the front.
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The case of Section 2 appears then as a « zoom » - in the

nondissipative case - on the situation described in the

present section since the front acquires, through this zoom

magnification (asymptotics), a definite, although small,

thickness and a structure while rejecting the immediate

vicinity of the zero-thickness front to infinities. The next

approach allows one to introduce both a thickness and

dissipation.



Mesoscopic applied-mathematics approach : structured

front

Here the front of phase transformation is looked upon as a 

mixed « viscous-dispersive » structure at a « meso » scale. 

We refer to this as the applied-mathematician approach.

This dialectical approach in which one applies macroscopic 

concepts at a smaller scale to obtain an improved 

phenomenological description is finally fruitful (cf. 

Truskinowsky;, 1994,  to whom we refer



We therefore consider a one-dimensional model (along the normal to

the structured front - « theorem of the flea ») and we envisage a

competition between viscosity (i.e., a simple case of dissipation) and

some weak nonlocality accounted for through a strain-gradient

theory (compare Section 2). The critical nondimensional parameter

which compares these two effects is defined by

(13)

where  is the viscosity and   L2 is the nonlocality parameter (size

effect).

   / .



Progressive-wave solutions u = u( ) of the

continuous system that relate two minimizers

(uniform solutions at infinities that minimize )

over a distance of the order of are discussed

in terms of this parameter. The mathematical

problem reduces to a nonlinear eigenvalue problem

of which the specification of the points of the

discrete spectrum constitutes the looked for kinetic

relation

where plays the role of

driving force.
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As a matter of fact the speed of propagation satisfies the

Rankine-Hugoniot equation

where strain gradients and viscosity play no role and the

jumps are taken between asymptotic values at infinity - cf.

eqns.(4).
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Theoretical-physics Approach : Quasi-particle and transient

motion

The approach of section 3 simply accepts the value of , whatever

its evolution, as it is computed from the full field solution at each

instant of time and each material point X  . In contrast, the

approaches of Sections 2 and 4 provide progressive-wave solutions,

i.e ., waves that are steady in the sense that the propagation speed,

although a property of the solution (and not only of the material as in

linear-wave propagation) does not vary in time along the propagation

path. This is a type of inertial motion.

VN



What about a non-inertial motion ?

To look at such a case, we envisage the problem in

the following way. The localized -but with non-zero

thickness- dynamical solutions of Section 2 are

looked upon as global entities behaving like mass

particles in motion in the appropriate point

mechanics, i.e., as so-called quasi-particles.



All perturbing effects such as dissipation,

inhomogeneities, etc, will then be treated as

perturbing forces on the inertial motion that

becomes thus non-inertial.



To understand this view point, it is sufficient to envisage the

presence of a viscous (more generally, dissipative) contribution in

the right-hand side of the classical balance of linear momentum .

This results in the presence of an additional material force fD
inh = -

fD.F in the right-hand side of the canonical momentum equation. The

latter equation is used, after integration over the path of the wave, to

treat the material force as a perturbation on the solution in the

absence of fD .



The essential problem consists then in identifying the point

mechanics that is associated with a particular system of partial-

differential equations on account of some of its exact integrals. This

point mechanics - that is, a coherent system of relations between

mass, momentum and energy of a point particle - can be completely

new and a priori unforeseeable.

For this viewpoint we refer the reader to published works by

Christov and Maugin. In particular, a perturbative approach of the

canonical, quasi-particle, type (19) was suggested by Fomethe and

Maugin to study the varied motion of a phase-transition front under

the action of a temperature gradient.
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Endochondral ossification in long bones



Growth and ossification in “growth plate”



The modelling aims at explaining the various phases of the

evolution until the end of growth (in the early twenties of

most adult humans) in nonpathological situations as also

with the possibility of some pathological development

(instabilities, untimely arrest of growth).

This problem represents, at the various degrees of

description, a true benchmark for the evolution of such

transition regions with resemblance and difference with

what occurs in inanimate matter (crystals, alloys; see

above).



Some pictures and data concerning

the growth of long bones

(Figures)



Structure of the growth plate



Structure of the growth plate (2)

(Source: G.J.Breur et al, J.Orthopedic Res., 

9, 348-359, 1991)



Gradient elasticity of the growth plate  

(Source: P.Radhakrishnan et al, Annals of 

Biomed.Engng., 32/2, 284-291, 2004)



Influence of a mechanical loading

(afterH.M.Frost, Anat.Rec., 226, 423-432, 1990)



Practically closed plate



Structured transition zone




h

h(t)

Three stages of modelling the 

evolution of the growth plate

(a)                  (b)               ( c)



(a) The first relatively simple model sees the growth plate as a

practically zero-thickness transition zone moving steadily although

slowly (here the time scale is in years) under the action of a driving

force related to the mechanical environment (mechanical loading of

the long bone). This exploits arguments from the theory of

Eshelbian-(configurational) material forces as fruitfully developed in

recent years by the author and co-workers.

An interesting question to be answered here is the stability of this

evolution (i.e., the absence of pathological development; work in co-

operation with A.B. Freidin’s team in St Petersburg))



(b) The second modelling should see the growth plate as a

transition zone with relatively smoothly varying properties

through the small albeit finite thickness. The modelling

inside this transition zone may rely on the gradient theory

of elasticity or a refined microstructured theory such as

that of so-called Cosserat continua.



( c) The third and final modelling views the growth plate

as an evolving dissipative structure with thickness

variation in time until final closing of the plate (end of

growth). The last two modellings will bring into the

picture the evolution of “nonlinear (dissipative

structures” of varying complexity.

Closure of the growth plate

Ultimate behavior : possible fracture at the weak remnant

growth (line)



That is all.

Thank you for your attention.

GAMM


