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Overview

1. Complex materials and mesoscopic theory

2. Application to material damage

3. Application to ferrofluids

Definition of internal variables from the mesoscopic

background and equations of motion for them

Different possibilites to define internal variables from

mesoscopic theory

→ Questions:

relevant variables?

Equation of motion?
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Material damage in brittle materials

Deviation from ideal-elastic behavior, reduction of

material strength

Hysteresis in cyclic loading experiments
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Ferrofluids

∙ Viscose liquid,

Non-Newtonian flow behavior

∙ Anisotropic properties, f.i. anisotropic viscosity

∙ properties can be influenced by an applied mag-

netic field
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Common feature of these materials?

Complex internal structure which can change under

external influence

→ complex material behavior
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Internal structure of ferrofluids

Suspension of magnetic nano-particles

Orientational order of magnetic moments of par-

ticles → magnetization

microscopic
dipoles in a
volume element
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∙ reorientation in flow field + formation of chains

→ Non-Newtonian flow behavior

∙ interaction of particles with external

magnetic field → influence on viscosity



Internal structure of damaged
brittle material

Microcracks in a volume element

Model: Penny shaped cracks

completely described by the orientation of the sur-

face and the diameter

cracks of different size and orientation
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Mesoscopic concept

ℳ: set of additional mesoscopic variables

(⋅) := (x, t,m) ∈ ℝ3
x × ℝt ×ℳ mesoscopic space

%(⋅), v(⋅), e(⋅), . . . : mesoscopic fields
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Mesoscopic balance equations

∂

∂t
X(⋅)

︸ ︷︷ ︸
change in time

+ ∇x ⋅ (v(⋅)X(⋅)− S(⋅))︸ ︷︷ ︸
flux over boundary in position space

+ ∇m ⋅ [u(⋅)X(⋅)−R(⋅)]︸ ︷︷ ︸
flux over boundary in ℳ

= Σ(⋅)︸ ︷︷ ︸
production and supply

u: mesoscopic change velocity

(x, t,m) →∆t→0 (x+ v∆t, t+∆t,m+ u∆t)
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Mesoscopic variable in the examples

Material internal structure ℳ

Liquid crystals orientation of S2

of rotation particle =
symmetric particles microscopic director

Ferrofluids orientation of S2

magnetic
moments

Material orientation of S2×
damage and diameter [0,∞]

of cracks
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Distribution function

Definition:

f(⋅) =
%(⋅)∫

ℳ %(⋅)dm
Fraction of particles with the value m of the meso-

scopic variable

Macroscopic quantities = averages, f.e.

A(x, t) =
∫

ℳ
A(⋅) f(⋅)︸ ︷︷ ︸

Probability density

dm
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Application to material damage

Assumption: relevant process is the growth of mi-

crocracks

1. Penny shaped crack: flat, rotation symmetric

surface

2. Much smaller than the linear dimension of the

continuum element → a whole distribution of

crack sizes and orientations in the volume ele-

ment.

3. The cracks are fixed to the material, their mo-

tion is coupled to the motion of the volume el-

ement and cracks cannot rotate independently

of the material.
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4. The number of cracks is fixed, no production

of cracks.

5. The cracks cannot decrease area, but can only

enlarge, meaning that cracks cannot heal. A

special growth law for a single crack under ex-

ternal load will be assumed.

variables in the mesoscopic theory: (l,n,x, t)

f.i. N(l,n,x, t): number density of cracks of length

l and orientation n.

→ mesoscopic crack number balance

∂

∂t
N(⋅) + ∇x ⋅ {N(⋅)v(x, t)}

+∇n ⋅ {N(⋅)u(x, t)}+
1

l2
∂

∂l

(
l2l̇N(⋅)

)
= 0



Definition of the distribution function

f(l,n,x, t) =
N(l,n,x, t)

N(x, t)

Mesoscopic balance of crack number

⇒ Differential equation for the distribution function

Cracks rotate with the volume element

⇒ orientation distribution rotates with the element

⇒ dynamics of size distribution is the most inter-

esting:

f(l,x, t) =
∫

S2
f(l,n,x, t)d2n

df(l,x, t)

dt
+

1

l2
∂

∂l

(
l2l̇f(l,x, t)

)
= 0

Crack growth velocity l̇ as a function of crack size

l and tension is needed.
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Model: Rice-Griffith-dynamics for a single crack

1. Cracks can grow under tension, but not heal

2. Only tension applied normal to the crack sur-

face leads to growth:

relevant component for 1 crack:

n ⋅ t ⋅ n
average over all orientations:

¾eff = t :
∫
S2 nnf(l,n,x, t)d2n

Influence of orientational order
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3. Only cracks exceeding the critical size are grow-

ing:

lc =
K

¾2eff

with constitutive constant K: Griffith-condition

4. Growth velocity

l̇ = −®′ + ¯′l¾2eff für l > lc

in analogy to the growth law by

Rice for macroscopic cracks

⇒ Closed differential equation for the length dis-

tribution f(l,x, t)



Solutions for the length distribution

tension growing linearly with time: ¾eff = v¾t

Stepwise initial condition

f(l,0) =

⎧
⎨
⎩
l−2

lf
if l < lf

0 else.

Time evolution for the length distribution
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Definition of a scalar damage parame-
ter D

Macroscopic quantity containing information on the

crack growth: Average crack length

D(t) =< l >=
∫ ∞
0

lf(l, t)l2dl =
∫ ∞
0

l3f(l, t)dl

∙ Can be calculated from the solution for the dis-

tribution function

∙ or as a solution of a macroscopic differential

equation for D:

Ḋ(t) = −®′ + ¯′¾2effD(t)

+
∫ ®′

¯′¾2
eff

0
l2

(
®′ − ¯′¾2eff l

)
f(l, t = 0)dl

Remarks:

∙ Dynamics of the damage parameter depends

explicitly on the initial length distribution .
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∙ Only the initial distribution is needed, it need

not to be calculated f(l,x, t) at later times.

∙ Stress-strain relation can be obtained with the

model



Definition of a tensorial damage pa-
rameter D

Accounts for the orientational order

D(t) =< lnn >=
∫ ∞
0

∫

S2
lnnf(l, t)l2dld2n

Dynamics: growth of D =< l >

+ rigid rotation of orientations
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Definition of other scalar damage pa-
rameters

D̃(t) =< l2 >=
∫ ∞
0

l2f(l, t)l2dl

. . .

D̂(t) =< lk >=
∫ ∞
0

lkf(l, t)l2dl

Questions:

1. Equations of motion? Derived from differential

equation for the distribution function

2. Relevance in constitutive theory?

3. Infinite number of moments, eliminate higher

order ones later? → higher order differential

equations
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Summary of the damage model

∙ Crack sizes and orientations are the additional

variables in the mesoscopic theory

∙ Growth model for the single crack → differential

equations for the length distribution and the

damage parameter

∙ Definition of the damage parameter in terms of

the size or size + orientation distribution.

∙ Growth of the damage parameter → non-linear

stress-strain relation and hysteresis under cyclic

load.

∙ Different possibilities to define damage param-

eters, or even include several ones.
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Application to ferrofluids

microscopic
dipoles in a
volume element

Single particle with a magnetic moment

Orientational order of magnetic moments

⇒ macroscopic magnetization
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Mesoscopic variable: (x, t,n),

n ∈ S2︸ ︷︷ ︸
Orientation of particle moments

Orientation distribution function (ODF) = fraction

of particles of orientation n

f(n,x, t) =
%(n,x, t)

%(x, t)

∙ Analogy to mesoscopic theory of liquid crystals

∙ Difference: no head-tail-symmetry ⇒ uneven

moments of the distribution function
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Magnetization

Magnetic moment of a particle: ®n

average over all orientations ⇒ Magnetization

M(x, t) = ®
∫

S2
nf(n,x, t)d2n

→ 1st moment a(1) of the ODF
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Equation of motion for the distribution
function

ODF:

f(n,x, t) =
%(n,x, t)

%(x, t)

differential equation for %(n,x, t): mesoscopic bal-

ance of mass

differential equation for %(x, t): continuity equation

⇓

differential equation for the ODF:

∂f(x,n, t)

∂t
+∇ ⋅ (v(x,n, t)f(x,n, t))

+∇n ⋅ (u(x,n, t)f(x,n, t)) = 0

Orientation change velocity u of particles is needed

Solution of balance of spin ⇒ u

(Angular velocity ! = n× u and s = Θ!)
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Example: Determination of angular ve-
locity

Exploitation of the balance of spin

Assumption: the spin is stationary, ds
dt = 0. ⇒

Equation, determining the orientation change ve-

locity u as a constitutive function

Constitutive assumption

set of variables = state space:

Z = { %, T︸︷︷︸
equilibrium variables

, B, ∇v︸ ︷︷ ︸
magnetic field and flow field

,

a︸︷︷︸
influence of the mean field of oriented particles

,

n︸︷︷︸
mesoscopic variable

}

Inserting into the differential equation for the ODF

⇒ equation for the ODF.

⇒ first moment of the equation + closure relation

for the second moment
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Differential equation of the magneti-
zation

Here without ∇v:

dM

dt
= ¯1®%B + ¯2®%Ḃ

+¯4M − ¯1
1

®%
MM ⋅B

−¯2
1

®%
MM ⋅ Ḃ − ¯4

1

®2%2
MM ⋅M

with constitutive coefficients ¯i.

Generalized Debye-equation

Linear limit:

dM

dt
= ¯1®%B + ¯2®%Ḃ + ¯4M
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A second order differential equation for
the magnetization

Consider first and second moment of the ODF:

M ∝ a(1) =
∫

S2
nf(n,x, t)d2n

a(2) =
∫

S2
nnf(n,x, t)d2n

ȧ(1) = F
(
a(1),B, Ḃ,a(2)

)
(1)

ȧ(2) = G

⎛
⎝a(1),B, Ḃ,a(2), a(3)︸ ︷︷ ︸

closure relation

⎞
⎠

d
dt (1), assume symmetry a(1) = Sd, a(2) = S(2)dd

eliminate a(2) ⇒

ä(1) = H
(
a(1), ȧ(1),B, Ḃ, B̈

)

Differential equation of second order in time
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Summary ferrofluids

∙ Set of variables and balance equations analo-

gous to liquid crystals

∙ No head-tail-symmetry

∙ Magnetic interaction relevant

∙ Exploitation of balance equations ⇒ differen-

tial equation for the magnetization: generalized

Debye-equation

∙ Higher order moments relevant?

Hierarchy of internal variables?

∙ Differential equation for the ODF of first or-

der, but eliminating higher order moments can

lead to second order differential equation for

the magnetization
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∙ Future work: include gradients in the state

space (weakly nonlocal) ⇒ partial differential

equation for the magnetization

∙ Constitutive theory, f.i. anisotropic viscosity

can be treated analogously to liquid crystals

Thank you very much for your atten-
tion!


