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Dispersion curves

After Newton, Kelvin, Born

mul = k(ui_l — 2ui + ui+1>

solution form

w; = usin K (x; — ct)

wave number
2T W
K P —

A &

solvability condition
¢ = function(w)
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Finite element method

e Belytschko, T., Mullen, R.: On dispersive properties of finite element solutions,
In: Modern Problems in Elastic Wave Propagation. Wiley 1978.

e Abboud, N.N., Pinsky, P.M.: Finite element dispersion analysis for the three-

dimensional second-order scalar wave equation. Int. J. Num. Meth. Engrg.,
35, pp. 1183-1218, 1992.

wave front

e comer node
o midside node
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Linear versus quadratic elements

linear serendipity

longitudinal

0 0.1 0.2 03 0.4 05
H/A

Accuracy of quadratic finite elements is by far better.
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Numerical test

e Plane strain square domain 100 x 100 serendipity finite elements

e Unit material properties
Young's modulus £/ =1
Poisson’s ratio v = 0.3
density p =1
e Pointwise harmonic loading in the horizontal direction
I3 — Fx sin wt
wH /c; stepped by 0.1 increment

e Newmark's method with small Courant number

time integration effect disabled

Co = qAt/H = 0.01
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frequency wH/c;=0.5

L=

0 01 02 03 04 05

LA - longitudinal
acoustic

TA -transverse
acoustic

LO - longitudinal
optical

TO - transverse
optical

3.4622
31622 damped

1.8516

16903 damped
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frequency wH/c;=4.5

LA - longitudinal
acoustic

TA -transverse
acoustic

LO - longitudinal
optical

TO - transverse
optical

3.4622
31622 damped

1.8516

16903 damped
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Contact-impact problem of two cylinders

Geometry: a = 2.5 mm, [ = 6.25 mm

Material parameters: (
E =21x 10° MPa, v = 0.3, p = 7800 kg/m*

Initial condition: vy =5 [m/s]

Theoretical position of wave fronts in colliding cylinders

cit/a = 0.8 c1t /=2

Colliding face
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Discretization error

Equivalent meshes

analytic

quadratic
linear
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Newmark method

Discrete operator

4 4 2 4
K M t+AL _ Rt+At M/([ — t 2t . S0
( + )u + Atzu + Atu R Atu

Dispersion curves

Co = 0.00-0.25 Co = 0.25-1.00

Newmark method, 6 = 0

Insensitive to time step for Co < 0.25.
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Central difference method

Discrete operator

1 t+At t 2 ¢ 1 t—At
Dispersion curves
Co = 0.001 Co=10.5 =1

Courant number C=1e-3 Courant number C=1

Insensitive to time step for Co < 0.5.
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Mass matrix lumping

Row sum and Hinton-Rock-Zienkiewicz methods used.

linear quadratic

~_ Consistent
mass matrix

consistent Lumped mass
mass matrix . = matrix by HRZ

algorithm

mass matrix

Similar performance—advantage lost.
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General lumping scheme

m = 4mi;+4my >0
m; = xm >0
me = (0.25 —x)m > 0

z € (0;0.25)

Examples:
x=16/76 =0.21 HRZ (3 x 3 rule)
r= 8/36=0.22 HRZ (2 x 2 rule)

r= 1/3 =0.33 row sum method—out of the interval!
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Optimum mass distribution

(central difference method, Co = 0.5)

Courant number C=0.5

consistent ~

Dispersion suppressed as © — (.25.
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Numerical stability

e Fried, |.: Discretization and round-off errors in the finite element analysis of elliptic bound-
ary value problems and eigenproblems. Ph.D thesis, MIT, 1971.

e Dokainish, M.A., Subbaraj, K.: A survey of direct time-integration methods in compu-
tational structural dynamics - |. Explicit methods. Computers and Structures, 32(6), pp
1371-1386, 1989.

Stability condition
At < At = ——

wmax

Estimation of the maximum eigenvalue

sup  wW(H/X) < Wpee < max w%&
H/\€(0;0.5) m=1,nelem
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Critical Courant number

bounding eienvalues lumping optimization

—
—— dispersion analysis
—— eigenfrequencies

consistent mass matrix

Remark 1: Critical Courant number for the consistent mass matrix is 0.25.
Remark 2: Critical Courant number for = 0.23 is 0.21.
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Conclusions

e Threshold values of the time step for bilinear elements:
Co = 0.5 (Newmark, consistent, best accuracy)

Co = 1.0 (CDM, row sum lumping, stability)

e The same for serendipity elements
Co = 0.25 (Newmark, consistent, best accuracy)
Co = 0.25 (CDM, HRZ lumping, stability)
Co = 0.20 (CDM, 2=0.23 lumping, stability)



