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Outline of the talk

• Structural essentially nonlinear models for complex
materials

• Governing equations
• Solitary wave solutions
• Nonlinear and dispersive features
• Deviations in the internal structure

• Phenomenological essentially nonlinear models
• Model based on a single governing equation
• Coupled equations: choice of nonlinearity
• Nonlinearity at the macro-level
• Nonlinearity at the micro-level

• Conclusions
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Structural essentially nonlinear model after G. Pouget,

G.A. Maugin and M.K. Sayadi (1984-1991)
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Structural essentially nonlinear model after G. Pouget,

G.A. Maugin and M.K. Sayadi (1984-1991)

Governing equations in the 1D case are

ρUTT − c2
L UXX = αL(1 + cos(φ))X ,

φTT − φXX = (αLUX + χ) sin(φ),

where U(X ,T ) is longitudinal displacement, φ(X ,T ) - rotation in the
plane perpendicular to the direction of the longitudinal wave propagation.
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Structural essentially nonlinear model after E.L. Aero

(2002-2007)
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Structural essentially nonlinear model after E.L. Aero

(2002-2007)

Governing equations in the 1D case are

ρUtt − E Uxx = S(cos(u) − 1)x ,

µutt − κuxx = (SUx − p) sin(u).

where

U =
m1U1 + m2U2

m1 + m2
, u =

U1 − U2

a

a is a period of sub-lattice, U is a macro-displacement and u is a relative
micro-displacement for the pair of atoms with masses m1, m2.
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Travelling strain wave solutions

cos(u) = 1 − ((E − ρV 2)v − σ)/S ,

σ is a constant of integration, v = Uθ, θ = x − V t.

v2
θ = a0 + a1 v + a2 v2 + a3 v3 + a4 v4

ODE of the Gardner equation also arising for large amplitude internal
waves in fluids.
Important feature:

ai = ai(V ).

Expression for ai see in Porubov, Aero, Maugin (2009).
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Solitary wave solutions

v1 =
A

Q cosh(k θ) + 1
, v2 = −

A

Q cosh(k θ) − 1
.

For σ = 0

A =
4 S

ρ(c2
0 + c2

L
− V 2)

,Q± = ±
c2
L
− V 2 − c2

0

c2
L
− V 2 + c2

0

, k = 2

√

p

µ(c2
l
− V 2)

and for σ = − 2S

A =
4 S

ρ(c2
0 + V 2 − c2

L
)
,Q± = ±

V 2 − c2
L
− c2

0

V 2 − c2
L

+ c2
0

, k = 2

√

p

µ (V 2 − c2
l
)

where c2
L

= E/ρ, c2
l

= κ/µ, c2
0 = S2/(p ρ).

• No simultaneous existence of the compression and tensile macro-
strain waves

• Mode with cut-off or optical mode, no acoustical one
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Nonlinear and dispersive features
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Simultaneous existence of tensile Acoustical mode (solid line)
and compression waves. optical mode (dotted line),

and mode with cut-off wave
number (dashed line).
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Deviations in internal structure

Expression for u is obtained depending whether the first derivative uθ

exists or not at θ = 0
bell-shaped wave

u = ± arccos

(

(ρV 2 − E )v

S
+ 1

)

for −∞ < θ < ∞,

or kink

u = ± arccos

(

(ρV 2 − E )v

S
+ 1

)

for θ ≤ 0,

u = ± 2π ∓ arccos

(

(ρV 2 − E )v

S
+ 1

)

for θ > 0,

Symmetric profiles of u for any v !
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Deviations in internal structure

Table: Wave shapes for σ = 0

V 2 (0; c2
L
− c2

0 ) (c2
L
− c2

0 ; c2
L
) (c2

L
; c2

L
+ c2

0 ) > c2
L

+ c2
0

Shape of v Tensile v1 Tensile v1 Compression
v2

Compression
v1

Shape of u Kink Bell-shaped Kink Kink

Choice of
Q±

Q+ Q− Q+ Q+

A.V. Porubov (IPME RAS) Essentially nonlinear strain waves 11 / 29



Deviations in internal structure
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Similar macro-strains v give rise to different kink-shaped variations u of
the internal structure
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Deviations in internal structure
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Similar macro-strains v give rise to different bell-shaped variations u of the
internal structure
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Solitary waves on a pedestal

v3 =
A

Q cosh(k θ) + 1
+ F , v4 = −

A

Q cosh(k θ) − 1
+ F .

The first solution arises for

F =
σ

ρ(c2
L
− V 2)

with parameters given by

A =
4 S(V 2 − c2

L
+ c2

1 )

ρ(V 2 − c2
L
)(c2

0 + c2
L
− c2

1 − V 2)
,Q± = ±

c2
L
− V 2 − c2

0 − c2
1

c2
L
− V 2 + c2

0 − c2
1

,

k = 2

√

p(c2
1 − c2

L
+ V 2)

µ(c2
l
− V 2)(V 2 − c2

L
)

where c2
1 = σS/(pρ).

A.V. Porubov (IPME RAS) Essentially nonlinear strain waves 14 / 29



Solitary waves on a pedestal

Dispersive features

µ k2V 4 + (4p − µk2(c2
l + c2

L))V 2 + 4p c2
1 + c2

L(µk2c2
l − 4p) = 0

The first root of the equation, V1 belongs to the acoustical mode. It tends
to

V 2
1 = c2

L − c2
1

as k → 0. The second root, V2 belongs to the mode with cut-off, it tends
to

V 2
2 = c2

l + c2
1 −

4p

µ k2

as k → 0.
The second solution arises for

F =
σ + 2S

ρ(c2
L
− V 2)
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Need in phenomenological models

• Parameters of the structural models are unknown as a

rule

• How to apply these models to the real media?

• Is it possible to develop another modelling that

describes nonlinear and dispersive features like
structural models but admits estimation of the

parameters?
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Phenomenological model based on a single governing

equation

The Murnghan model for the energy

Π =
λ+ 2µ

2
I 2
1 − 2µ I2 +

l + 2m

3
I 3
1 − 2m I1I2 + n I3 +

ν1 I 4
1 + ν2 I 2

1 I2 + ν3 I1I3 + ν4 I 2
2 ,

or the stress-strain relationship in the 1D case

P = E ∗Ux + C1U
2
x + C2U

3
x

Classic elastic materials: typical elastic strain Ux ∼ 10−3 − 10−5 and
C2U

3
x << C1U

2
x << E ∗Ux ⇒ truncated expansions

Non-classic materials (rocks, soils, some crystals): typical elastic strain
Ux ∼ 10−4 − 10−5 and C2U

3
x ∼ C1U

2
x ∼ E ∗Ux ⇒ exact

representations
Internal structure is introduced via the coefficients and dispersion.
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Phenomenological models: essential nonlinearity

• Tuff with grains: C1/E ∗ ∼ 130, C2/E ∗ ∼ 104

Loam soil: C1/E ∗ ∼ 103, C2/E ∗ ∼ 107 ( Belyaeva
et al. (1993,1994))

• Medium with cracks: C1/E ∗ ∼ 102, C2/E ∗ ∼ 108

(Nazarov, Sutin (1997))

• Crystal V3Si : C1/E ∗ ∼ 86, C2/E ∗ ∼ 104 (Testardi

(1973), Barsch (1974))

• Crystal MgO with paramagnetic ions Fe2+ and Ni 2+

in an external magnetic field: C1/E ∗ ∼ 10−3,
C2/E ∗ ∼ 108 (Bugai, Sazonov(2005))
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Phenomenological models: essential nonlinearity

• There exist materials with abnormal nonlinear
features, e.g., rocks, paramagnetic crystals. Hence

even small amplitude waves should be considered as
non-linear ones.

• There exist materials whose cubic nonlinear features

are equal to the quadratic ones. Hence an improved
description may be developed taking into account

both nonlinearities.
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Phenomenological model based on a single governing

equation

Formal use of the truncated expansions of the weakly nonlinear theory
yields the equation for longitudinal strains

vtt − a vxx − c1 ( v2)xx − c2 ( v3)xx + α3 vxxtt − α4 vxxxx = 0.

where v = Ux , a = E ∗/ρ, c1 = 2C1/ρ, c2 = 3C2/ρ
The equation for travelling wave solution reads

v2
θ =

1

6(α3V 2 − α4)

(

α0 + α1 v + 6(V 2 − a)v2 − 4c1v
3 − 3c2v

4
)

.

where θ = x − V t, α0, α1 are constants of integration.
Similar to that of the structural model!
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Distinctions in the features of the solutions: solitary waves

v1 =
A

Q cosh(k θ) + 1
,

v2 = −
A

Q cosh(k θ) − 1
.

with

A =
3(V 2 − a)

c1
, Q =

√

1 +
9c2

2c2
1

(V 2 − a), k2 =
V 2 − a

α4 − α3V 2
.

• Simultaneous existence of the compression and tensile macro- strain
waves

• Acoustical mode

• Micro-field deviations are not described
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Phenomenological model based on the coupled equations

Linearized coupled governing equations for the macrodispalcement U(x , t)
and microstrain ψ(x , t),

ρ Utt − A Uxx = D ψx ,

I ψtt − C ψxx = − D Ux − B ψ,

where I is the microinertia, possess both acoustical and optical modes, see
Engelbrecht, Berezovski, Pastrone and Braun (2005).
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Phenomenological model based on the coupled equations:

choice of nonlinearity

Previous models: Khustnutdinova (1992), Dragunov, Pavlov, Potapov
(1997), Engelbrecht & Pastrone (2003),Porubov & Pastrone(2004), Janno
& Engelbrecht (2005) etc.

Nonlinearity at the macro-level

ρ Utt − A Uxx = N UxUxx + MU2
x Uxx + D ψx ,

I ψtt − C ψxx = − D Ux − B ψ,

The ODE equation for travelling macro-strain solitary waves v = Uθ is

v2
θ = a0 + a1 v + a2 v2 + a3 v3 + a4 v4,

ai = ai(V ), again similar to that of the structural model!
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Phenomenological model based on the coupled equations:

nonlinearity at the macro-level

ψ = −
N

2
v2 −

M

3
v3 +

ρV 2 − A

D
vθ + G

v1 =
A

Q cosh(k θ) + 1
+ F , v2 = −

A

Q cosh(k θ) − 1
+ F .

Features of the solitary wave solution:

• Both acoustical and optical modes are possible but independent of F !

• Simultaneous existence of compression and tensile waves

• No symmetric profiles for ψ for any v

• Only bell-shaped profiles of ψ are described
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Phenomenological model based on the coupled equations:

choice of nonlinearity

Nonlinearity at the micro-level

Using the power series truncation for trigonometric functions in the
structural model

ρUtt − E Uxx = S(cos(u) − 1)x ,

µutt − κuxx = (SUx − p) sin(u).

one can suggest the phenomenological model

ρ Utt − A Uxx = D ψψx ,

I ψtt − C ψxx = − (D Ux + B) (ψ − ψ3/6),
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Phenomenological model based on the coupled equations:

nonlinearity at the micro-level

Travelling wave solution for v = Uθ, ψ

ψ2 = (2ρ/S)((c2
L − V 2)v − σ1/ρ)

v2
θ = a0 + a1 v + a2 v2 + a3 v3 + a4 v4

Solitary wave solution exists when a0 = 0, a1 = 0:

v1 =
A

Q cosh(k θ) + 1
, v2 = −

A

Q cosh(k θ) − 1
.

A = −
6D

ρ(3c2
0 − c2

L
− V 2)

, k2 =
2B

I (c2
l
− V 2)

,

Q = ±

√

(c2
L
− V 2 − c2

0 )2 + 8c4
0

3c2
0 + c2

L
− V 2

where c2
L

= A/ρ, c2
l

= C/I , c2
0 = − σ1D/(ρB).
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Phenomenological model based on the coupled equations:

nonlinearity at the micro-level

Close to the solution of the structural model

• mode with cut-off

• no simultaneous existence of compression and tensile
waves

• two symmetric profiles of micro-strain waves
correspond to the same macro-strain wave

Far from the solution of the structural model

• only bell-shaped micro-strains are described, not kinks
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Conclusions

• Internal structure provides abnormal or essential nonlinearity and
equal contributions of the quadratic and cubic nonlinearities in the
governing equation for macro-strains.

• Essentially nonlinear models based on phenomenological and
structural approaches give rise to the same governing ODE for the
macro-strain waves.

• Distinctions in the equation coefficients yield different nonlinear and
dispersive features of the solutions for the structural model and
phenomenological model based on a single equation.

• Phenomenological model based on coupled equations allows us to
describe most of nonlinear and dispersion features of the solution
more or less close to the structural model with the exception of
various kinds of micro-strains (kink or bell-shaped) corresponding to
the similar bell-shaped macro-strains.
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Open question

What kind of modelling, structural or phenomenological,

is more suitable for a description of internal structural
deviations in complex materials?
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