Nonlinear

counterpropagating waves

in inhomogeneous materials

Arvi Ravasoo

Centre for Nonlinear Studies, Institute of Cybernetics at
Tallinn University of Technology,
Estonia

Purpose

To use the data about complex phenomena of nonlinear wave-wave, wave-material and wave-prestress interaction for ultrasonic nondestructive characterization of inhomogeneous materials

Problems to discuss

Superposition or interaction

- wave versus wave
- wave versus prestress
- wave versus material properties

Wave interaction for nondestructive testing (NDT)

- characterization of inhomogeneous prestress in nonlinear elastic material
- characterization of inhomogeneous physical properties of functionally graded materials

Conclusions
material is elastic with quadratic nonlinearity
physical and geometrical nonlinearity is considered
deformations are small but finite

Equation of motion

$$
\left[T_{K L}\left(X_{J \prime} t\right)\left(\delta_{k L}+\delta_{k M} U_{M, L}\left(X_{J \prime} t\right)\right)\right]_{I K}-\rho_{0} \delta_{k M} U_{M, t t}\left(X_{j \prime} t\right)=0
$$

$T_{K L}$ - second Piola-Kirchhoff stress tensor
U_{k} - displacement vektor
X_{K} - Lagrangian rectangular coordinates
x_{K} - Eulerian rectangular coordinates
t - time
ρ_{0} - density of the material
$\delta_{k L}$ - Euclidean shifter
$k, K, L, M-1,2,3$

Superposition or interaction

$$
\begin{aligned}
U_{K}^{*}= & U_{K}+U_{K}^{0} \\
& U^{*} \text {-displacement at the present state } \\
& U_{K} \text { - displacement evoked by exitation \# one (wave) } \\
& U_{K}^{0} \text { - displacement evoked by exitation \# two (prestress) } \\
2 E_{K L}= & U_{K, L}+U_{L, K}+U_{M, K} U_{M, L} \\
& E_{K L} \text { - Green-Lagrange strain tensor } \\
T_{K L}= & T_{K L}\left(E_{K K} E_{K L} E_{L K} E_{K L} E_{M L} E_{K M}\right) \\
& K, L, M=1,2,3
\end{aligned}
$$

Superposition or interaction

$$
\begin{aligned}
& T_{K L}=\left(\lambda I_{1}+3 v_{1} I_{1}^{2}+v_{2} I_{2}\right) \boldsymbol{\partial} I_{1} / \boldsymbol{\partial} E_{K L} \\
&+\left(\mu+v_{2} I_{1}\right) \boldsymbol{\partial} I_{2} / \boldsymbol{\partial} E_{K L}+V_{3} \boldsymbol{\partial} I_{3} / \boldsymbol{\partial} E_{K L} \\
& I_{1}=E_{K K} I_{2}=E_{K 1} E_{L K} I_{3}=E_{K L} E_{M L} E_{K M} \quad I_{K} \text {-Green-Lagrange strain tensor invariants } \\
& k, K L, L, M=1,2,3
\end{aligned}
$$

Material properties

\author{

- density
 $1, \mu$ - Lamé constants
 v_{1}, v_{2}, v_{3} - third order elastic constants
}

Superposition or interaction

Wave versus wave (prestress)

- superposition occurs in linear case
- interaction occurs by considering
- physical nonlinearity
- geometrical nonlinearity
- simultaneous impact of physical and geometrical nonlinearity

湔 Wave versus material properties

- interaction occurs in linear and nonlinear case

Wave interaction for NDT

Counter-propagation of waves in inhomogeneously prestressed nonlinear elastic material

- method for qualitative characterization of prestress
- method for quantitative characterization of two-parametric prestress

Counterpropagating waves in functionally graded materials

- method for qualitative characterization of exponentially graded nonlinear elastic material

\square
Prestressed structural element (specimen)

Transducer / Receiver

Transducer / Receiver

Equation of motion

$\left[1+f_{1}\right] U_{1,11}+f_{2} U_{1,1}+f_{3} U_{1,1} U_{1,11}-c^{-2} U_{1, t t}=0$
----- linear terms
----- dispersive linear term
----- nonlinear term

$$
\begin{aligned}
& f_{1}=k_{1} U_{1,1}^{0}+k_{2} U_{2,2}^{0} \\
& f_{2}=k_{1} U_{1,11}^{0}+k_{3} U_{1,22}^{0}+\left(k_{2}+k_{4}\right) U_{2,21}^{0} \\
& f_{3}=k_{1} \quad U^{0} \equiv U^{0}\left(X_{1}, X_{2}\right)
\end{aligned}
$$

Prestress state

Equations of equilibrium

$$
\begin{aligned}
& \left(1+k_{1} U_{I, I}^{0}+k_{2} U_{J, J}^{0}\right) U_{I, I I}^{0}+\left(2 k_{3} U_{I, J}^{0}+2 k_{4} U_{J, I}^{0}\right) U_{I, I J}^{0} \\
& +\left(k_{7}+k_{3} U_{I, I}^{0}+k_{3} U_{J, J}^{0}\right) U_{I, J J}^{0}+\left(k_{4} U_{I, J}^{0}+k_{3} U_{J, I}^{0}\right) U_{J, I I}^{0} \\
& +\left(k_{3} U_{I, J}^{0}+k_{4} U_{J, I}^{0}\right) U_{J, J J}^{0}+\left(k_{6}+k_{5} U_{I, I}^{0}+k_{5} U_{J, J}^{0}\right) U_{J, J I}^{0} \\
& +\rho_{0} B_{I}=0 \\
& \quad k_{5}=k\left[\lambda+\mu+3\left(2 v_{1}+v_{2}+v_{3} / 2\right)\right] \\
& \quad k_{6}=k(\lambda+\mu)_{I} \quad k_{7}=k \mu \\
& I=1, J=2 \text { - first equation } \\
& I=2, J=1 \text { - second equation } \quad U^{0} \equiv U^{0}\left(X_{1}, X_{2}\right)
\end{aligned}
$$

Prestress state

Solution

$$
U_{1}^{0}\left(X_{1}, X_{2}\right)=\sum_{n=1}^{n} f_{n}^{(n)} U_{1}^{(n)}\left(X_{1}, X_{2}\right)
$$

First approximation

$$
\begin{aligned}
& U^{0(1)}{ }_{I, I I}+K_{7} U^{0(1)}{ }_{I, J J}+K_{6} U^{0(1)}{ }_{J, J I}=0 \\
& T^{0(1)}{ }_{11}\left(0, X_{2}\right)=T^{0(1)}{ }_{11}\left(h_{1} X_{2}\right)=T^{0(1)}{ }_{12}\left(0, X_{2}\right)=T^{0(1)}{ }_{12}\left(h_{1} X_{2}\right)=0 \\
& T^{0(1)}{ }_{22}\left(X_{1}, \pm L / 2\right)=\sum^{5} W_{n} X_{1}{ }^{n}, \quad T^{0(1)}{ }_{21}\left(X_{1}, \pm L / 2\right)=0
\end{aligned}
$$

Prestress state

$\mathrm{n}^{\text {th }}$ approximation

$$
\begin{aligned}
& U^{0(n)}{ }_{I, I I}+k_{7} U^{0(n)}{ }_{I, J J}+k_{6} U^{0(n)}{ }_{J, J I}=F\left(U^{0(n-1)}{ }_{I}, U^{\left.0(n-1)_{J}\right)}\right. \\
& T^{0(n)}{ }_{11}\left(0, X_{2}\right)=T^{0(n)}{ }_{11}\left(h, X_{2}\right)=T^{0(n)_{12}\left(0, X_{2}\right)=T^{0(n)}{ }_{12}\left(h, X_{2}\right)=0} \\
& T^{0(n)}{ }_{22}\left(X_{1}, \pm L / 2\right)=T^{0(n)_{21}}\left(X_{1}, \pm L / 2\right)=0, n=2,3, \ldots
\end{aligned}
$$

Final solution

$$
\begin{aligned}
& U_{1}^{0}\left(X_{1}, X_{2}\right)=\mathrm{r} \cdot P_{1}^{5.5}\left(X_{1}, X_{2}\right)+\mathrm{r}^{2} P_{2}^{7.7}\left(X_{1}, X_{2}\right) \\
& U_{2}^{0}\left(X_{1}, X_{2}\right)=r \cdot P_{3}^{5.5}\left(X_{1}, X_{2}\right)+\mathrm{r}^{2} P_{4}^{7.7}\left(X_{1}, X_{2}\right)
\end{aligned}
$$

Loading scheme

Stress

$$
\begin{array}{ccc}
T_{22}=a+b X_{1} & a & b X_{1} \\
\square & =\square
\end{array}
$$

Equation of motion

$\left[1+f_{1}\right] U_{1,11}+f_{2} U_{1,1}+f_{3} U_{1,1} U_{1,11}-c^{-2} U_{1, t t}=0$
----- linear terms
----- dispersive linear term
----- nonlinear term

$$
\begin{aligned}
& f_{1}=k_{1} U_{1,1}^{0}+k_{2} U_{2,2}^{0} \\
& f_{2}=k_{1} U_{1,11}^{0}+k_{3} U_{1,22}^{0}+\left(k_{2}+k_{4}\right) U_{2,21}^{0} \\
& f_{3}=k_{1} \quad U^{0} \equiv U^{0}\left(X_{1}, X_{2}\right)
\end{aligned}
$$

Equation of motion

Initial and boundary conditions

$$
\begin{aligned}
U_{1, t}\left(X_{1}, X_{2}, 0\right) & =U_{1}\left(X_{1}, X_{2}, 0\right)=0 \\
U_{1, t}\left(0, X_{2}, t\right) & =\varepsilon a_{0} \varphi(t) H(t) \\
U_{1, t}\left(h, X_{2}, t\right) & =\varepsilon a_{h} \psi(t) H(t) \\
& |\varepsilon| \ll 1 \\
& a_{0}, a_{h}-\text { constants } \\
& \max |\varphi(t)|=\max |\psi(t)|=1
\end{aligned}
$$

$$
H(t) \text { - Heaviside function }
$$

Perturbative solution

Solution

$$
U_{1}\left(X_{1}, t\right)=\sum_{n=1}^{\infty} \varepsilon^{(n)} U_{1}^{(n)}\left(X_{1}, t\right)
$$

First approximation

$$
\begin{gathered}
U_{1,11}^{(1)}\left(X_{1}, 0\right)-c^{-2} U_{1, t t}^{(1)}\left(X_{1}, 0\right)=0 \\
U_{1}^{(1)}\left(X_{1}, 0\right)=U_{1, t}^{(1)}\left(X_{1,}, 0\right)=0 \\
U_{1, t}^{(1)}(0, t)=a_{0} \varphi(t) H(t) \\
U_{1, t}^{(1)}(h, t)=a_{h} \psi(t) H(t)
\end{gathered}
$$

Perturbative solution

$\mathrm{n}^{\text {th }}$ approximation

$$
\begin{gathered}
U_{1,11}^{(n)}\left(X_{1,0}\right)-c^{-2} U_{1, t t}^{(n)}\left(X_{1,0}\right)=\sum_{j=1}^{m} G_{j}^{(n)}\left(X_{1}\right) F_{j}^{(n)}\left(\zeta_{j}^{(n)}\right) \\
\left.\zeta_{j}^{(n)}=t-g_{j}^{(n)} X_{1}\right), \quad g_{j}^{(n)}\left(X_{1}\right) \geq 0 \\
U_{1}^{(n)}\left(X_{1,0}\right)=U_{1, t}^{(n)}\left(X_{1,} 0\right)=0 \\
U_{1, t}^{(n)}(0, t)=U_{1, t}^{(n)}(h, t)=0, n=2,3, \ldots
\end{gathered}
$$

Harmonic waves

$$
\begin{aligned}
& U_{1, \mathrm{t}}\left(X_{1}, t\right)=\sum \varepsilon^{(n)} U_{1, \mathrm{t}}^{(n)}, \quad U_{1, \mathrm{t}}^{0}\left(X_{1}, X_{2}\right)=\sum h^{(n)} U_{1, \mathrm{t}}^{0(n)} \\
& U_{1, \mathrm{t}}\left(X_{1}, X_{2}, t\right)=A_{0}+A_{1} \sin \left(\omega \zeta+\theta_{1}\right)+A_{2} \sin \left(2 \omega \zeta+\theta_{2}\right)+A_{3} \sin \left(3 \omega \zeta+\theta_{3}\right)
\end{aligned}
$$

$\varepsilon \neg h^{2}$ Weak wave	$\varepsilon U_{1, t}{ }^{(1)}$	$A_{1}{ }^{(1)}$	-	-
	$\varepsilon^{2} U_{1, t}{ }^{(2)}$	$A_{1}{ }^{(2)} \theta_{1}{ }^{(2)}$	-	-
	$\varepsilon^{3} U_{1, t}{ }^{(3)}$	$A_{1}{ }^{(3)} \theta_{1}{ }^{(3)}$	$A_{2}{ }^{(3)}$	-
$\varepsilon \neg h$	$\varepsilon U_{1, t}{ }^{(1)}$	$A_{1}{ }^{(1)}$	-	-
	$\varepsilon^{2} U_{1, t}{ }^{(2)}$	$A_{1}{ }^{(2)} \theta_{1}{ }^{(2)}$	$A_{2}{ }^{(2)}$	-
	$\varepsilon^{3} U_{1, t}{ }^{(3)}$	$A_{1}{ }^{(3)} \theta_{1}{ }^{(3)}$	$A_{2}{ }^{(3)} \theta_{2}{ }^{(3)}$	$A_{3}{ }^{(3)}$
$\varepsilon^{2} \neg h$ Strong wave	$\varepsilon U_{1, t}{ }^{(1)}$	$A_{1}{ }^{(1)}$	-	-
	$\varepsilon^{2} U_{1, t^{(2)}}$	-	$A_{2}{ }^{(2)}$	-
	$\varepsilon^{3} U_{1, t}{ }^{(3)}$	$A_{1}{ }^{(3)} \theta_{1}{ }^{(3)}$	-	$A_{3}{ }^{(3)}$

Numerical simulation

Input data

$$
\begin{array}{ll}
\rho_{0}=2800 \mathrm{~kg} / \mathrm{m}^{3} & h=0.1 \mathrm{~m} \\
\lambda=50 \mathrm{GPa} & \varepsilon=1^{*} 10-4 \\
\mu=27.6 \mathrm{GPa} & \omega=10^{6}, \ldots, 10^{7} \mathrm{rad} / \mathrm{s} \\
\nu_{1}=-136 \mathrm{GPa} & a=-60, \ldots, 60 \mathrm{MPa} \\
\nu_{2}=-197 \mathrm{GPa} & b=-1.2, \ldots, 1.2 \mathrm{GPa} / \mathrm{m} \\
\nu_{3}=-38 \mathrm{GPa} &
\end{array}
$$

© EN (2 Wave interaction

Sine wave propagation

cEN(Wave interaction

Nonlinear effects

Boundary oscillations

Homogeneous prestress-fee material

Boundary oscillations

Homogeneously prestressed material

Boundary oscillations

Inhomogeneously prestressed material

Wave interaction technique

Qualitative prestress characterization
Boundary oscillations permit to distinguish:

- prestress-free material
- homogeneously prestressed material
- material undergoing pure bending
- material undergoing pure bending with
tension or compression

©ENS Wave interaction technique

Quantitative NDE

cENS Wave interaction technique

Instant τ_{1}

cENS Wave interaction technique

Instant τ_{2}

Wave interaction technique

Recoded data

 Quantitative NDE

Prestress evaluation, $a=-30 \mathrm{MPa}, b=1.2 \mathrm{GPa} / \mathrm{m}$

Functionally graded material

Elastic functionally graded materials with smoothly and arbitrarily variable nonlinear properties

Material properties by 1D
$\rho(X)$
$a(X)=\lambda(X)+2 \mu(X)$
$\beta(X)=2\left[v_{1}(X)+v_{2}(X)+v_{3}(X)\right]$

〔EN Functionally graded material

Inhomogeneous FGM

Transducer / Receiver

Equation of motion

$U_{, x x}+f_{1} U_{, x}+f_{2} U_{, x} U_{, x x}+f_{3} U_{, x^{2}}-c^{-2} U_{, t t}=0$
----- linear terms
----- dispersive linear term
----- nonlinear terms

$$
\begin{aligned}
& f_{1}=f_{1}\left(a, a_{1}\right) \\
& f_{2}=f_{2}(a, \beta) \\
& f_{3}=f_{3}\left(a, a_{1,}, \beta_{1}\right) \\
& c^{-2=u} / a
\end{aligned}
$$

Equation of motion

Initial- and boundary conditions

$$
\begin{aligned}
& U_{, t}(X, 0)=U(X, 0)=0 \\
& U_{, X}(0, t)=a_{0} \sin (\omega t) H(t) \\
& U_{, X}(h, t)=a_{0} \sin (\omega t) H(t)
\end{aligned}
$$

a_{0}, ω - constants
$H(t)$ - Heaviside function

Exponentially graded material

Exponentially graded material

$$
\begin{aligned}
& Y(X)=Y_{0}\left[1+\gamma_{11} \exp \left(-\gamma_{12} X\right)+\gamma_{21} \exp \left(\gamma_{22}(X-h)\right)\right] \\
& Y=\rho, a, \beta
\end{aligned}
$$

Example
$\gamma_{11}=\gamma_{21}=0.05, \gamma_{12}=\gamma_{22}=50,100,150,200,250,300, i=1,2$

Case A

Case B
Case C

Numerical simulation

$$
\begin{aligned}
& \text { Input data } \\
& \rho_{0}=6000 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mathrm{a}_{0}=400 \mathrm{GPa} \\
& \beta_{0}=-1000 \mathrm{GPa} \\
& \mathrm{Y}_{\mathrm{i} 1}=1 \\
& \mathrm{Y}_{\mathrm{i} 2}=150 \mathrm{~m}^{-1} \\
& \mathrm{n}=3 \\
& \varepsilon=10^{-4} \\
& \mathrm{~h}=0.1 \mathrm{~m}
\end{aligned}
$$

Wave interaction
Homogeneous nonlinear elastic material (u [m])

Boundary oscillations

Homogeneous nonlinear elastic material
__ oscillations (u [m]) at $\mathrm{X}=0$
----- oscillations (u [m]) at $X=h$

Boundary oscillations

Inhomogeneous nonlinear elastic material
__ oscillations (v [m]) at $\mathrm{X}=0$
----- oscillations (v [m]) at $\mathrm{X}=\mathrm{h}$

Boundary oscillations

Nonlinear constituent in boundary oscillations of homogeneous nonlinear elastic material at $X=0$
v - amplitude of nonlinear oscillations (m)
u - amplitude of linear oscillations (m)

Boundary oscillations

Nonlinear constituent in boundary oscillations of inhomogeneous nonlinear elastic material at $\mathrm{X}=0$
v - amplitude of nonlinear oscillations (m)
u - amplitude of linear oscillations (m)

Boundary oscillations

Inhomogeneous constituent in boundary oscillations of nonlinear elastic material at $\mathrm{X}=0$
v - amplitude of nonlinear oscillations in inhomogeneous material (m)
u - amplitude of nonlinear oscillations in homogeneous material (m)

Boundary oscillations

Oscillations in asymmetrically inhomogeneous material
——oscillations (v [m]) at $\mathrm{X}=0$
----- oscillations (v [m]) at X=h
— abs (v(0)) - abs (v(h))

cโNs
 Oscillations on the axis of symmetry

Oscillations (v [m]) in asymmetrically inhomogeneous material

Boundary oscillations

Case A: abs $[v(h)]-\operatorname{abs}[v(0)]$

a

ρ, a, β

© $\mathrm{ENO}_{\mathrm{NS}}$ Boundary oscillations

Case B: abs $[v(h)]-\operatorname{abs}[v(0)]$

a

β

ρ, a, β

Boundary oscillations

Case C: abs $[v(h)]-\operatorname{abs}[v(0)]$
ρ

a

ρ, a, β

© Ens Boundary oscillations

Scheme A: $\operatorname{abs}(v)-\operatorname{abs}(u)$ at $X=0$ and $X=h$

a
ρ, a, β

Boundary oscillations

Scheme B: $\operatorname{abs}(v)-\operatorname{abs}(u)$ at $X=0$
ρ

a

β

(ase-06s

Boundary oscillations

Scheme B: abs $(v)-\operatorname{abs}(u)$ at $X=h$

β

a
ρ, a, β

© Ens Boundary oscillations

Skeem C: $\operatorname{abs}(v)-\operatorname{abs}(u)$ at $X=0$
ρ

a
ρ, a, β

© $\mathrm{ENS}_{\mathrm{Ns}}$ Boundary oscillations

Scheme C: abs $(v)-\operatorname{abs}(u)$ at $X=h$
ρ

a

β

ρ, a, β

Qualitative characterization of FGM

Boundary oscillations permit to distinguish:
homogeneous material
inhomogeneous material
symmetrically inhomogeneous material asymmetrically inhomogeneous material property responsible for inhomogeneity

Conclusions

Wave interaction data are informative about the properties and states of materials

椾 Proposed NDT techniques are effective provided some preliminary information is available

湔 Extraction of information from ultrasonic wave interaction data enables to enhance the possibilities of NDT

