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Emergence of Solitary Waves in Mindlin-type
Microstructured Solids.
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Outline

e Model equations &P
e Statement of the problem and numerical method

e Results
1. Case 1 - difference between dispersion curves is less than
5%
2. Case 2 - difference between dispersion curves is 10% or
more

e Summary and discussion
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Model equations

Euler — Lagrange equations

<8L> |<8L> BL_O
auttl ou,/), Ou

<8L) I(BL) oL _
Opi)y \Ops/), Op

Lagrangian, kinetic and potential energy

L=K-W, K =0.5pu.+0.5Ip; and W = W(uz, ¥, P).

p — macrodensity, I — microinertia
u — macrodisplacement, ¢ — microdeformation.
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Model equations

Taking corresponding partial derivatives and inserting them into
Euler — Lagrange equations; defining macrostress, microstress and
Interaction force from potential enery W

ow ow ow
O =  —, n=—, T = —0

Ou, 0P, Op
one arrives at equations of motion

PUtt — O,

Ty =1, — 1.
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Model equations

In nonlinear case the simplest potential is

A2+B2+02+D N M

W = —u — — U, —U — .

2 7 2 z 2 Ya z 6 " 6 So‘i
Iine;rrpart nonlir?e;r part

Equations of motion will take form

PU — Auma: + Numuma: + DSO:DQ
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Model equations

For dimensionless form following change of variables is defined

xr tC() lz AO
X=—, T=—, U=—,0= y & =
L, L, AO L? L,

Ao — amplitude of initial exitation, L, — wavelenght of initial
exitation, I — characteristic scale of microstructure.

Application of the slaving principle results in a single hierarchical
equation for displacement U

Urr — bUxx 4 0.5u(U%) x = §(BUrr — vUxx — 0.5V8AU% x) xx;

marc?(scale micr?)gcale
D? N A, ID? C D? D3M A,
b=1———;p= ;0 = Y = A = :
AB AL, pl2 B2 AB?2[? ABS3I3L,
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Statement of the problem
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Statement of the problem

Full system of equations (FSE) in dimensionless form

D Ne
Urr = A—e‘PX + IUXUXX + Uxx
Cp BpL? DpA,L, Mp
PIT = T PXX = T P T T Ux + AILOSOXsOXX-

Hierarchical approximation (HE) in dimensionless form

Urr—bUxx4+0.5u(U%)x = §(BUrr—~yUxx—0.5VoAU2 ) x x,

p — macrodensity, I — microinertia, U — macrodisplacement, ¢ —
microdeformation, ¢, - characteristic speed, € and 6 - geometrical
parameters, [ - characteristic scale of microstructure (I = 1)

e

A \E
S
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Statement of the problem

Main goals

® To solve the hierarchical model equation (HE) (approximation)
and the full system of equations (FSE) under localized initial
conditions (linear and nonlinear cases).

® To compare solutions of HE and FSE for case 1 (linear

dispersion curves apart less than 5%) and case 2 (10% or
more).

® To put special emphasis on effects caused by nonlinearity.

Ap B2 Co p N, M,
W = —u — — Uge + —U —p° .
g = g T ¥ MY T g T g ¥a

A \ . J

Vs IV

linear nonlinear
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Numerical method

DFT based pseudospectral method
e Space — DFT
e Time — Standard ODE (Isoda)

e Boundary conditions (periodic):
U(X +2nw,T) =U(X,T); mn=0,%1,+£2,...
e |nitial conditions
e | ocalized:
U(X,0) =Uy-sech? (k-X/2); 0< X <2kw
* Ur = —c-UxassumingU (X, T) =U(&); &€= X —cT
o Full system ¢(X,0) =0; ¢(X,0)r =0
®* Phase speed initial estimate: ¢ = 0 (peak of interaction)
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Initial conditions
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D? _ pC
AB® 11 = A7

I'=1—71 —va, where -~y =
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Results

e Snaspshots (waveprofiles, phasespace) are taken at T' = 88

e HE is represented by dashed lines (Red for linear, Cyan for
nonlinear)

e FSE Is represented by solid lines (Black for linear, Blue for
nonlinear)

® |Linear case N = 0 (macroscale nonlinearity) and M = 0
(microscale nonlinearity)

®* Nonlinear case N = 1 and M varies so that vy = 0.5
e FSEvs HE plot |[FSE(X,T) — HE(X,T)]
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Case 1-pointl
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[0.0115%] Results - Case 1 v4 = 0.05, v; = 0.90
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Case 1 - point 2
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[0.085%] Results - Case 1 yv4 = 0.15, v; = 0.80
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Case 1 - point 3
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[4.86%)] Results - Case 1 v4 = 0.90, v; = 0.05
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Case 2 - point 1
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(0.91%] Results - Case 2 v4 = 0.40, v; = 0.55
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Case 2 - point 2
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[1.94%] Results - Case 2 v4 = 0.55, v; = 0.40
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Case 2 - point 3
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[3.13%] Results - Case 2 v4 = 0.70, v; = 0.25
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Summary

e Case 1 - difference between dispersion curves is less than 5%

1. Both linear and nonlinear cases have good agreement
between HE and FSE solutions

2. Following the weak normal dispersion line quality of
agreement between solutions of HE and FSE weakens if v 4
Increases.

e Case 2 - difference between dispersion curves is 10% or more

1. Solutions of HE and FSE have good agreement for 'main
parts’ of waveprofiles,

2. Qualitative shift from having wider deviation in waveprofile
propagating in negative coordinate direction to waveprofile
propagating in positive direction having bigger difference
between solutions.
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Summary

e Nonlinearity accelerates the altering of waveprofile shape
* Nonlinearity amplifies assymmetry between waveprofiles
propagating in opposite directions.

® Predictions from dispersion analysis hold also for nonlinear
cases, however nonlinearity introduces additional effects not

taken into account by linear dispersion analysis.

S CNW-09, October 5-7, 2009 — p. 27/28



Summary

THANK Youl!
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