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Introduction

Motivation: complex dynamics on falling liquid films

@ Regime of surface turbulence or soliton gas, Tailby &
Portalski, Trans. Inst. Chem. Eng. 1960:

@ Other phenomena with localized structures: solitary vortices
in plasma, Rossby waves, magmons in magma segregation in
the Earth’s mantle, localized rolls in nematic crystals



Introduction

Wave interactions on a film coating a fibre
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(e)
(a) experimental set-up: silicon oil v50 (density p = 963 kg/m>, dynamic viscosity
pw =48 x 1073 Pas, surface tension v = 20.8 x 10~ N/m) flows down a Nylon
fiber; (b) spatio—temporal diagram and histogram; (c) repulsion; (d) attraction

Duprat, Giorgiutti-Dauphiné, Tseluiko, Kalliadasis, submitted to Phys. Rev. Lett.
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Prototype: the generalized Kuramoto—Sivashinsky equation

@ 1D generalized Kuramoto—Sivashinsky (gKS) equation:
ht + hhx + hxx + 5hxxx + hxxxx =0 (1)

@ Previous studies: Elphick et al., Phys. Rev. A 1991, Ei &
Ohta, Phys. Rev E 1994, Chang & Demekhin 2002

@ Fluid dynamics: films flowing down inclined or vertical planes.
Inclined plane:

Re = O(1), Re — Re. = O(€?), We = 0(¢72). (2)

Vertical plane:
Re = O(¢), We = O(e!). (3)

Dispersion parameter: § = ’/%m = 0(1)
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Temporal evolution of h

o Sufficiently large § arrests spatio-temporal chaos (Kawahara,

Phys. Rev. Lett. 1983):
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Solltary pulses of the gKS equation

@ ldea: approximate complex wave patterns by a superposition
of interacting, coherent structures

@ Transform the equation to the moving frame of the pulse:
ht - C6hx A hhx A hxx aF 6hxxx =F hxxxx =0 (4)
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X
Stationary solution for § = 0.5 (velocity of he pulse is cs = 1.71)
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Tails of the solitary pulses

o hg ~ Re(Cy2eM2¥) as x — Foo, where A; > 0 and Re \» < 0

@ A1 are the roots of

M-+ A-¢=0 (5)
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Pulse interaction theory

o Consider weak interaction of n pulses, h; = ho(x — x;(t)),
i=1,...,nlocated at x1(t) < --- < xp(t): solitons repel or
attract each other by interacting through their tails

~

h — the overlap function
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Linearized equations for the overlap function

@ Evolution equation for hin the vicinity of the ith pulse:

he — x{(t)hix = L1h — (hyhy)x, =1, (7)
i\7t = X,{(t)h,'x = E,E = (h,'_lh,')x = (h,‘hi+1)x, 1<i< n, (8)
he — X (£)hnx = Lnh — (hp_1hn)x, i=n, (9

where
»Cif = C(Sfx - fxx - 5fxxx - fXXXX - (hlf)X (10)

@ Adjoint of £; with respect to L? inner product:

,C:k =] 7C(5fxf fxx‘f’éfxxx* fxxxx+hifx (11)
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Spectra of the linear operators
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@ Spectrum consists of both a point (crosses) and an essential
(solid line) spectrum
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Structure of the null space

@ On a periodic domain [—L, L], zero is an eigenvalue of
algebraic multiplicity 2 and geometric 1:

Lid] =0,  L;0)=0i, (12)
LiVi=0,  Liv)=vi, (13)
where ' ' _
Of = hy, h=-1, Wi=-1/2L (14)
and
{ 1 wi) =0, ( 1 w§> =1, (15)
(Py, V) =1, (@3, V3) =0 (16)

@ ®) = hj, is associated with translational invariance
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Adjoint zero eigenfunctions

@ Generalized adjoint eigenfunctions:
0.4}

0.2F

Y, 02t
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o As L — oo, ||®5]| — oo, Wi — 0, and LIV, — 0 = zero
becomes an eigenvalue of both algebraic and geometric
multiplicity 1

o Denote lim; o, ®, lim; o, W5 by & and W', respectively

Summary
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Generalized adjoint eigenfunctions W'

@ Generalized adjoint eigenfunctions for 6 = 1, 2, 10:

04f ' ' ' ' : —

0.2
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@ As 6 — oo, the jump at infinity vanishes. This is consistent
with the KdV case

Summary
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Projections onto translational modes

@ Aim: to project dynamics onto translational modes (null
spaces of L;'s)

@ Projections can be made rigorous in a weighted space:
[2={f:e™felZ}, (17)
where 0 < a < —Re A\»
o L;in L2 is equivalent to £2 = e L;(e”®(-)) in L2

@ Zero becomes an isolated eigenvalue with an eigenfunction
and an adjoint eigenfunction given by

Ol =ePd W= >W — lim )W (18)

X——0Q

o Projections are given by P?(f) = (f, Wi\l
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Dynamics of the pulses

@ For the ith pulse, project dynamics onto the null space of £;,
assuming that h is in the null space of the projection:

X = Si(t), (19)
X,{ =S5li—1)+ S1(¢i), 1 <i<n, (20)
X' = Sp(ln_1), (21)

where
Si(0) = — / " ho(x 4+ £/2)ho(x — £/2)W0 (x + £/2) dx, (22)

$(6) = - /Oo ho(x + £/2)ho(x — £/2)Wo(x — £/2) dx (23)

— 00
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Dynamics of two pulses

@ Dynamical system for two pulses: x; = S1(¢1), x5 = S»(¢1)

@ Dependence of the pulse separation distance on time, 6 = 0.5:
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@ The nearest stable bound state separation distance is 14.3



Introduction Problem formulation Interaction of solitary pulses Summary

Dynamics of n pulses

@ Evolution of pulses of the gKS equation for § = 0.5 and
histogram of pulse separation distances:
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Introduction

2-pulse bound states

Formation of bound states: x; = x5 = --- = x],

(]
o For two pulses: x; =x;3 = Si1(¢1) = S2(41)
@ Proposition: S;(¢) ~ Cie™™f, Sy(0) ~ Ge*t as £ — oo
@ Corollary: \; + Re Ao > 0 = an infinite number of 2-pulse
bound states. Otherwise = a finite number of bound states
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Comparison of theory with computations

@ Numerically computed bound states (solid lines) and
theoretical predictions (dashed lines) for ; ~ 6.7, 9.4:
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3-pulse bound states

@ Formation of bound states:
Sl(fl) = 52(61) + 51(62) = 52(52) (24)

6=0.5 =1l
B P B P 2l " " "
36l © ©0 00 00 O0O0GQK KR K NN 18
© 0 00 0000 OOW®MN®XBNS
320 00 00 0o g RRENRXD 16
2800 O o0 00 OO0 X B N X MO
0o 0 00 00 O gf ® R ¥ X% OO 14
240 © © 0 0 0 O ¥ ¥ ® ® O O O O
gz c 0o 00 0o g ®®® MO OO O O €212
206 0o o8 ®MwH ooooo o ° ° ° °
160 o o § ® @ ¥ o 0 000 O 0 O 10f © S )
o o o ¥ ®X O 0 0 O O O O O
2o o § ® % 0 0 0 0 0 0 0 0 0 0O 8
o o ® 0 0 0 0o 000 O0O0OGOO 6 o oXxX o o
89 %% o 0o 0o 0o 0o 000 O OOO o o o o
48 0,09 00 0000000800 4 n N n n
4 8 12 16 20 24 28 32 36 40 4 6 8§ 10 12 14 16 18 20
4
1 1

@ A1 +Re Xy > 0 = an infinite number of 3-pulse bound states.
Otherwise = a finite number of bound states
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Numerical solutions of the gKS equation

@ Solutions for § = 0.5 and § = 1:
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Numerical solutions of the gKS equation

@ Histograms for pulse separation distances based on a series of
computational experiments for § = 0.5 and § = 1:
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Extension to 3D

o Generalized Kuramoto—Sinvashinsky equation in 3D (describes
falling liquid films):

he + hhy 4 by + 6(V2h)x + V*h =0 (25)

@ Solitary pulse solution for 6 = 0.3:
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Summary

@ developed a coherent structures theory for the gKS equation
and derived a system of ODEs describing locations of the
pulses
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Summary

@ developed a coherent structures theory for the gKS equation
and derived a system of ODEs describing locations of the
pulses

@ analysed two-pulse dynamics and found that it can be both
attractive and repulsive if § < 0* ~ 1.3, whilst for § > §* the
dynamics is only repulsive
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Summary

@ developed a coherent structures theory for the gKS equation
and derived a system of ODEs describing locations of the
pulses

@ analysed two-pulse dynamics and found that it can be both
attractive and repulsive if § < 0* ~ 1.3, whilst for § > §* the
dynamics is only repulsive

@ studied in detail 2- and 3-pulse bound states and found that
that :chere is an infinite countable numbNer of bound states if
0 < 0 ~ 0.85 or a finite number if § > §
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Summary

@ developed a coherent structures theory for the gKS equation
and derived a system of ODEs describing locations of the
pulses

@ analysed two-pulse dynamics and found that it can be both
attractive and repulsive if § < 0* ~ 1.3, whilst for § > §* the
dynamics is only repulsive

@ studied in detail 2- and 3-pulse bound states and found that
that :chere is an infinite countable numbNer of bound states if
0 < 0 ~ 0.85 or a finite number if § > §

@ found very good agreement between theory and computations
(the results are submitted to Phys. D 2009)
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Summary

developed a coherent structures theory for the gKS equation
and derived a system of ODEs describing locations of the
pulses

analysed two-pulse dynamics and found that it can be both
attractive and repulsive if § < §* ~ 1.3, whilst for § > 6* the
dynamics is only repulsive

studied in detail 2- and 3-pulse bound states and found that
that Nthere is an infinite countable numbNer of bound states if
0 < 8§ ~0.85 or a finite number if § > §

found very good agreement between theory and computations
(the results are submitted to Phys. D 2009)

for the real system far from criticality, need a model that
takes into account viscous dispersion (e.g. Ruyer-Quil &
Manneville, Eur. Phys. J. B 2000)
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