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Motivation: complex dynamics on falling liquid films

Regime of surface turbulence or soliton gas, Tailby &
Portalski, Trans. Inst. Chem. Eng. 1960:

Other phenomena with localized structures: solitary vortices
in plasma, Rossby waves, magmons in magma segregation in
the Earth’s mantle, localized rolls in nematic crystals
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Wave interactions on a film coating a fibre
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(a) experimental set-up: silicon oil v50 (density ρ = 963 kg/m3, dynamic viscosity
µ = 48× 10

−3 Pa s, surface tension γ = 20.8 × 10
−3 N/m) flows down a Nylon

fiber; (b) spatio–temporal diagram and histogram; (c) repulsion; (d) attraction

Duprat, Giorgiutti-Dauphiné, Tseluiko, Kalliadasis, submitted to Phys. Rev. Lett.
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Prototype: the generalized Kuramoto–Sivashinsky equation

1D generalized Kuramoto–Sivashinsky (gKS) equation:

ht + hhx + hxx + δhxxx + hxxxx = 0 (1)

Previous studies: Elphick et al., Phys. Rev. A 1991, Ei &
Ohta, Phys. Rev E 1994, Chang & Demekhin 2002

Fluid dynamics: films flowing down inclined or vertical planes.
Inclined plane:

Re = O(1), Re − Rec = O(ǫ2), We = O(ǫ−2). (2)

Vertical plane:
Re = O(ǫ), We = O(ǫ−1). (3)

Dispersion parameter: δ =
√

15
2

1
(Re−Rec )We

= O(1)
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Temporal evolution of h

Sufficiently large δ arrests spatio-temporal chaos (Kawahara,
Phys. Rev. Lett. 1983):
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Solitary pulses of the gKS equation

Idea: approximate complex wave patterns by a superposition
of interacting, coherent structures

Transform the equation to the moving frame of the pulse:

ht − cδhx + hhx + hxx + δhxxx + hxxxx = 0 (4)
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Stationary solution for δ = 0.5 (velocity of he pulse is cδ ≈ 1.71)
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Tails of the solitary pulses

h0 ∼ Re(C1,2e
λ1,2x) as x → ∓∞, where λ1 > 0 and Re λ2 < 0

λ1,2 are the roots of

λ3 − δλ2 + λ − cδ = 0 (5)
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Pulse interaction theory

Consider weak interaction of n pulses, hi = h0(x − xi (t)),
i = 1, . . . , n located at x1(t) < · · · < xn(t): solitons repel or
attract each other by interacting through their tails

...l1 l2 l3 l
n-2

l
n-1

x1 x2 x3 x4 x
n-2 x

n-1 x
n

x

Represent the solution as

h =
n

∑

i=1

hi + ĥ, (6)

ĥ – the overlap function
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Linearized equations for the overlap function

Evolution equation for ĥ in the vicinity of the ith pulse:

ĥt − x ′

1(t)h1x = L1ĥ − (h1h2)x , i = 1, (7)

ĥt − x ′

i (t)hix = Li ĥ − (hi−1hi)x − (hihi+1)x , 1 < i < n, (8)

ĥt − x ′

n(t)hnx = Lnĥ − (hn−1hn)x , i = n, (9)

where
Li f ≡ cδfx − fxx − δfxxx − fxxxx − (hi f )x (10)

Adjoint of Li with respect to L2 inner product:

L∗

i f ≡ −cδfx − fxx + δfxxx − fxxxx + hi fx (11)
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Spectra of the linear operators

Spectrum of Li for δ = 0.5:
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Structure of the null space

On a periodic domain [−L, L], zero is an eigenvalue of
algebraic multiplicity 2 and geometric 1:

LiΦ
i

1 = 0, LiΦ
i

2 = Φi

1, (12)

L∗

i Ψ
i

1 = 0, L∗

i Ψ
i

2 = Ψi

1, (13)

where
Φi

1 = hix , Φi

2 = −1, Ψi

1 = −1/2L (14)

and

〈Φi

1, Ψi

1〉 = 0, 〈Φi

1, Ψi

2〉 = 1, (15)

〈Φi

2, Ψi

1〉 = 1, 〈Φi

2, Ψi

2〉 = 0 (16)

Φi
1 = hix is associated with translational invariance
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Adjoint zero eigenfunctions

Generalized adjoint eigenfunctions:

L = 40
L = 80
L = 160
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2‖ → ∞, Ψi

1 → 0, and L∗
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2 → 0 ⇒ zero
becomes an eigenvalue of both algebraic and geometric
multiplicity 1

Denote limL→∞ Φi

1, limL→∞ Ψi

2 by Φi and Ψi , respectively
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Generalized adjoint eigenfunctions Ψi

Generalized adjoint eigenfunctions for δ = 1, 2, 10:
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As δ → ∞, the jump at infinity vanishes. This is consistent
with the KdV case
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Projections onto translational modes

Aim: to project dynamics onto translational modes (null
spaces of Li ’s)

Projections can be made rigorous in a weighted space:

L2
a = {f : e

ax f ∈ L2
C}, (17)

where 0 < a < −Re λ2

Li in L2
a is equivalent to La

i
≡ e

axLi(e
−ax(·)) in L2

C

Zero becomes an isolated eigenvalue with an eigenfunction
and an adjoint eigenfunction given by

Φi

a = e
axΦi , Ψi

a = e
−ax(Ψi − lim

x→−∞

)Ψi (18)

Projections are given by Pa

i
(f ) = 〈f , Ψi

a〉Φ
i
a
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Dynamics of the pulses

For the ith pulse, project dynamics onto the null space of Li ,
assuming that ĥ is in the null space of the projection:

x ′

1 = S1(ℓ1), (19)

x ′

i = S2(ℓi−1) + S1(ℓi ), 1 < i < n, (20)

x ′

n = S2(ℓn−1), (21)

where

S1(ℓ) ≡ −

∫

∞

−∞

h0(x + ℓ/2)h0(x − ℓ/2)Ψ0
x (x + ℓ/2) dx , (22)

S2(ℓ) ≡ −

∫

∞

−∞

h0(x + ℓ/2)h0(x − ℓ/2)Ψ0
x(x − ℓ/2) dx (23)



Introduction Problem formulation Interaction of solitary pulses Summary

Dynamics of two pulses

Dynamical system for two pulses: x ′

1 = S1(ℓ1), x ′

2 = S2(ℓ1)

Dependence of the pulse separation distance on time, δ = 0.5:
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Dynamics of n pulses

Evolution of pulses of the gKS equation for δ = 0.5 and
histogram of pulse separation distances:
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2-pulse bound states

Formation of bound states: x ′

1 = x ′

2 = · · · = x ′

n

For two pulses: x ′

1 = x ′

2 ⇒ S1(ℓ1) = S2(ℓ1)

Proposition: S1(ℓ) ∼ C1e
−λ1ℓ, S2(ℓ) ∼ C2e

λ2ℓ as ℓ → ∞

Corollary: λ1 + Re λ2 > 0 ⇒ an infinite number of 2-pulse
bound states. Otherwise ⇒ a finite number of bound states
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Comparison of theory with computations

Numerically computed bound states (solid lines) and
theoretical predictions (dashed lines) for l1 ≈ 6.7, 9.4:
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3-pulse bound states

Formation of bound states:

S1(ℓ1) = S2(ℓ1) + S1(ℓ2) = S2(ℓ2) (24)
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Numerical solutions of the gKS equation

Solutions for δ = 0.5 and δ = 1:
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Numerical solutions of the gKS equation

Histograms for pulse separation distances based on a series of
computational experiments for δ = 0.5 and δ = 1:
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Extension to 3D

Generalized Kuramoto–Sinvashinsky equation in 3D (describes
falling liquid films):

ht + hhx + hxx + δ(∇2h)x + ∇4h = 0 (25)

Solitary pulse solution for δ = 0.3:
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Summary

developed a coherent structures theory for the gKS equation
and derived a system of ODEs describing locations of the
pulses
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Summary

developed a coherent structures theory for the gKS equation
and derived a system of ODEs describing locations of the
pulses

analysed two-pulse dynamics and found that it can be both
attractive and repulsive if δ < δ∗ ≈ 1.3, whilst for δ > δ∗ the
dynamics is only repulsive
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Summary

developed a coherent structures theory for the gKS equation
and derived a system of ODEs describing locations of the
pulses

analysed two-pulse dynamics and found that it can be both
attractive and repulsive if δ < δ∗ ≈ 1.3, whilst for δ > δ∗ the
dynamics is only repulsive

studied in detail 2- and 3-pulse bound states and found that
that there is an infinite countable number of bound states if
δ < δ̃ ≈ 0.85 or a finite number if δ > δ̃
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Summary

developed a coherent structures theory for the gKS equation
and derived a system of ODEs describing locations of the
pulses

analysed two-pulse dynamics and found that it can be both
attractive and repulsive if δ < δ∗ ≈ 1.3, whilst for δ > δ∗ the
dynamics is only repulsive

studied in detail 2- and 3-pulse bound states and found that
that there is an infinite countable number of bound states if
δ < δ̃ ≈ 0.85 or a finite number if δ > δ̃

found very good agreement between theory and computations
(the results are submitted to Phys. D 2009)
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Summary

developed a coherent structures theory for the gKS equation
and derived a system of ODEs describing locations of the
pulses

analysed two-pulse dynamics and found that it can be both
attractive and repulsive if δ < δ∗ ≈ 1.3, whilst for δ > δ∗ the
dynamics is only repulsive

studied in detail 2- and 3-pulse bound states and found that
that there is an infinite countable number of bound states if
δ < δ̃ ≈ 0.85 or a finite number if δ > δ̃

found very good agreement between theory and computations
(the results are submitted to Phys. D 2009)

for the real system far from criticality, need a model that
takes into account viscous dispersion (e.g. Ruyer-Quil &
Manneville, Eur. Phys. J. B 2000)
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