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There is a draft, but I am rewriting it from scratch.
Some definitions have changed.
Some results I will mention do not hold with the old definitions.
The new version should be out before the end of the month.



Higher categories for all

In homotopy theory, algebraic geometry, ...:

There is a familiar world of spaces/∞-groupoids/homotopy
types in the background.

Everything must be weak. n-categories in this world are
(∞, n)-categories.

Do we really need to work in a specific model?

If we do, it should feel familiar.

 Segal spaces, complicial sets... pick your favourite.
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Higher categories for all

In rewriting, applied category theory, ...:

We work with presented (monoidal, higher, ...) categories.

Diagrammatic reasoning is the tool of the trade.

We need “rigidity” to avoid hidden steps, hidden complexity.

(Up to dimension 2...) Diagrammatic proofs are justified
because Mac Lane bla bla coherence bla bla Joyal Street

(In higher dimensions...) ?
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Bialgebra equation

An interaction of planar (2d) diagrams,

producing a transformation of 3d diagrams

(a 4d diagram)

How do we interpret this?
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Pasting theorems

The foundation of diagrammatic reasoning is a pasting theorem:

the statement that we can univocally interpret
a certain class of diagrams

in a certain model of higher categories.

There is a lack of pasting theorems
for models of weak higher categories.
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The golden age of strict ω-categories

1987: Ross Street’s The algebra of oriented simplexes is out,
sparking an interest in the combinatorics of
higher-dimensional categorical diagrams.

Then several works on the combinatorics of pasting diagrams and
their pasting theorems in strict n-categories:

1988: John Power

1989: Michael Johnson

1991: Ross Street, John Power

1993: Richard Steiner
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Technical interlude #1: Directed complexes

An orientation on a finite poset P is an edge-labelling
o : HP1 → {+,−} of its Hasse diagram.

An oriented graded poset is a finite graded poset with an
orientation.

If U ⊆ P is (downward) closed, α ∈ {+,−}, n ∈ N,

∆α
nU := {x ∈ U |dim(x) = n and if y ∈ U covers x , then o(y → x) = α},
∂αn U := cl(∆α

nU) ∪ {x ∈ U | for all y ∈ U, if x ≤ y , then dim(y) ≤ n},
∆nU := ∆+

n U ∪∆−
n U, ∂nU := ∂+

n U ∪ ∂−n U.
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Technical interlude #1: Directed complexes

If U is a closed subset of P, then U is a molecule if either

U has a greatest element, in which case we call it an atom, or

there exist molecules U1 and U2, both properly contained in U, and
n ∈ N such that U1 ∩ U2 = ∂+

n U1 = ∂−n U2 and U = U1 ∪ U2.

An oriented graded poset P is a directed complex if, for all x ∈ P and
α, β ∈ {+,−}, if n = dim(x),

1 ∂αx is a molecule, and

2 ∂α(∂βx) = ∂αn−2x .
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Directed complexes

Steiner 1993 (rephrased)

Every molecule in a directed complex is the oriented face poset of
a pasting diagram.

Under certain conditions, the pasting diagram can be uniquely
reconstructed from its oriented face poset.

All directed complexes present ω-categories —
fewer present polygraphs,

that is,
ω-categories that are freely generated by some of their cells.
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Directed complexes

Let P,Q be oriented graded posets.
We can take their cartesian product as posets.

We can give it an orientation
as in the tensor product of chain complexes.

The product of two directed complexes is still a directed complex
P ⊗Q, the (lax) Gray product of P and Q.

If P has dim n and Q has dim k , P ⊗Q has dim n + k .

A variant of this was used to define
the Gray product of ω-categories

(Steiner 2004, Ara-Maltsiniotis 2017)
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Around this time, I start seeing Gray products everywhere in
diagrammatic algebra

(Fortunately I was not the only one)
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Gray products and diagrammatic algebra

Example: Biunitary equations

Used by Jamie Vicary and Mike Stay to unify quantum and
encrypted communication protocols. They are models of a Gray
product of 2-categories.
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Gray products and diagrammatic algebra

Example: Distributive laws of monads

They are models in Cat of a Gray product of 2-categories.

µT µS



Gray products and diagrammatic algebra

The original example is not simply a Gray product.

monoidal category  2-category with one 0-cell
PRO  2-cat with one 0-cell, one 1-generator

These are naturally pointed objects in ωCat.
With pointed objects, it is natural to take smash products ∧.

PRO ∧ PRO  4-cat with one 0-cell, one 2-generator

Morally this should be a braided monoidal category.
But in strict ω-categories, it is a commutative monoidal category.
This breaks everything.
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KV’s non-proof...

1991: Mikhail Kapranov and Vladimir Voevodsky publish
∞-groupoids and homotopy types, claiming a proof that strict
higher categories model all homotopy types in the sense of the
homotopy hypothesis.

1998: Carlos Simpson proves that the result is false (without
pointing to a specific mistake).

The core of the argument relies on the fact that “doubly
monoidal” degenerates to “commutative” in strict 3-categories
(strict Eckmann-Hilton).
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...still contained some good ideas

Good takeaway #1 from Kapranov-Voevodsky:

homotopy types may have semistrict algebraic models
with weak units

2006: André Joyal and Joachim Kock in dim 3

2017: Simon Henry and I come up independently with the
regularity constraint as a way of avoiding the pitfall of strict
Eckmann-Hilton

2018: Henry proves the homotopy hypothesis for “regular
ω-groupoids”.
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Diagrams with spherical boundary

Regularity: only n-diagrams with spherical boundary
have a composite

These are the ones whose face poset
is the face poset of a regular CW n-ball

of the appropriate dimension

∼ “are homeomorphic to n-balls”
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Technical interlude #2: Spherical boundary

An n-dimensional molecule U in a directed complex has spherical
boundary if, for all k < n,

∂+
k U ∩ ∂

−
k U = ∂k−1U.

A directed complex is regular if all atoms have spherical boundary.

The geometric realisation∗ of a regular directed complex P is a
regular CW complex with one cell for each atom of P.

∗simplicial nerve of poset + realisation of simplicial sets
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Diagrammatic sets

Kapranov-Voevodsky pass from spaces to ω-categories
through an intermediate notion

of “spaces locally modelled on combinatorial pasting diagrams”,

they call diagrammatic sets.
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Diagrammatic sets

2019: Kapranov-Voevodsky’s equivalence of “Kan
diagrammatic sets” and spaces is “morally correct”

...except they chose the wrong class of combinatorial diagrams, not
closed under most of the operations they perform.

Regular molecules with spherical boundary works.
But we take a more axiomatic approach.
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A map f : P → Q of C-directed complexes is a function that satisfies

∂αn f (x) = f (∂αn x)

for all x ∈ P, n ∈ N, and α ∈ {+,−}.

A map factors essentially uniquely as a surjection followed by an inclusion.

Let f : P → Q be a map. Then f is a closed, order-preserving,
dimension-non-increasing function of the underlying posets.
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A C-functor f : P # Q of C-directed complexes is a function
f : C`(P)→ C`(Q) such that

1 f preserves all unions and binary intersections,

2 ∂αn f (cl{x}) = f (∂αn x), and

3 f (cl{x}) is a C-molecule

for all x ∈ P, n ∈ N, and α ∈ {+,−}.

A class C is algebraic if C-functors compose. We assume that C is
algebraic.

A C-functor factors e.u. as a subdivision followed by an inclusion.
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Technical interlude #3a: Morphisms of directed complexes

A span of inclusions of subcategories:

DCpxC

DCpxCin

DCpxCfun



Technical interlude #3b: Convenient classes

Let C ⊆ S be an algebraic class of molecules with spherical boundary.

We say that C is a convenient if it satisfies the following axioms:

1 C contains •;

2 if U ∈ C and J ⊆ N \ {0}, then DJU ∈ C;

3 if U,V ∈ C and U ⇒ V is defined, then U ⇒ V ∈ C;

4 if U1,U2 ∈ C and the pasting U1 ∪ U2 along V v ∂αU2 is defined,
then U1 ∪ U2 ∈ C;

5 if U ∈ C and V ⊆ ∂U is a closed subset, then O1⊗U/∼V ∈ C;

6 if U,V ∈ C, then U ⊗V ∈ C and U ?V ∈ C.

The class S is convenient!
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Diagrammatic sets

We fix a convenient class of molecules C.

We write for a skeleton of the full subcategory of DCpxC on the
atoms of every dimension.

A diagrammatic set X is a presheaf on .

The Yoneda embedding ↪→ Set extends to an embedding
DCpxC ↪→ Set.

A diagram in X is a morphism x : U → X where U is a
molecule.

It is composable if U ∈ C, and a cell if U is an atom.
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Fixing half of KV’s proof

A Kan diagrammatic set has fillers of all “horns of atoms”.

There is a combinatorial notion of homotopy groups of a
pointed Kan diagrammatic set.

The geometric realisation of DCpxC extends to a realisation
| − | of Set, with a left adjoint S .

For all spaces X , the diagrammatic set SX is Kan.

There is a realisation of Kan diagrammatic sets that is surjective
on homotopy types,
together with natural isomorphisms between the homotopy groups
of a pointed Kan diagrammatic set and those of its realisation.
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The silver age of strict ω-categories

1993: Albert Burroni’s Higher-dimensional word problems
proposes the theory of polygraphs as an arena to
“unify all rewriting theories”

This started the French school of rewriting with polygraphs (Yves
Lafont, Philippe Malbos, Yves Guiraud, Samuel Mimram...)
and related work on ω-categories (François Métayer, Georges
Maltsiniotis, Dimitri Ara...)

which brought me to Paris.
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Many of the core ideas in polygraphic rewriting
rest on an analogy between

polygraphs and CW complexes,
“presented ω-categories” and “presented spaces”.

This analogy is limited by
the fact that strict ω-categories do not model all spaces.



The silver age of strict ω-categories

Many of the core ideas in polygraphic rewriting
rest on an analogy between

polygraphs and CW complexes,
“presented ω-categories” and “presented spaces”.

This analogy is limited by
the fact that strict ω-categories do not model all spaces.



A suggestion: rewriting in diagrammatic sets

A similar feel to working with polygraphs, but:

1 Better combinatorial grip on rewriting operations like
substitution, surgery of diagrams, etc

2 “Essential” separation between diagrams and cells

3 Analogy with CW complexes becomes a functor

4 Diagrams can be interpreted in models of all homotopy types,
for rewriting homotopies

5 Gray products and joins are easily defined and computed
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A suggestion: rewriting in diagrammatic sets

=

The smash product of pointed diagrammatic sets
produces this equation, the way it should.



Equivalences and weak composites

Need a model of weak higher categories as “semantic universe”.

There is a natural coinductive definition of
equivalence diagram in a diagrammatic set.

A diagrammatic set where every composable diagram is
connected by an equivalence to a single cell
— its “weak composite” —
is a reasonable notion of weak ω-category.

If C = S, we can interpret every regular diagram
and compose every diagram with spherical boundary.

“Stuff” a diagram with units and it becomes regular.
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Equivalences and weak composites

If (x1, x2)⇒ bx1, x2c exhibits bx1, x2c as a weak composite:

x1 x2

y '

∀

x1 x2

bx1, x2c

z

∃

And this equivalence should be witnessed by 3-dimensional
equivalence diagrams...

whose definition involves 4-dimensional equivalence diagrams, etc
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A diagrammatic ω-category has a separate “diagrammatic set” and
“non-unital ω-category” structure on the same underlying
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finitary monads on PolC , and all the restriction functors have
left adjoints.

The underlying diagrammatic set of a diagrammatic
ω-category has weak composites.

Idea: take a unit on a composable diagram, and fully compose the
boundary only on one side.
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Higher-dimensional rewriting is packed with
notions suggestive of a directed homotopy theory.

The appearance of smash products in diagrammatic algebra
seems to me another piece of a puzzle.

My hope is that diagrammatic sets can make the link
between rewriting and homotopy theory tighter,

on our way to figuring out what the right notions are.

Work in progress:
a model of computation in diagrammatic sets
based on a “directed homotopy extension property”.
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