The smash product of monoidal theories

Amar Hadzihasanovic
Tallinn University of Technology

Higher Homotopical Structures

"Barcelona", 23 February 2021

- The smash product of monoidal theories, arXiv:2101.10361
- The smash product of monoidal theories, arXiv:2101.10361

■ Diagrammatic sets and rewriting in weak higher categories, arXiv:2007.14505

Props

A (coloured) prop is a

Props

A (coloured) prop is a

- symmetric strict (small) monoidal category T

Props

A (coloured) prop is a
■ symmetric strict (small) monoidal category T
■ whose objects are freely generated from a set \mathscr{T} of sorts.

Props

A (coloured) prop is a
■ symmetric strict (small) monoidal category T
■ whose objects are freely generated from a set \mathscr{T} of sorts.

Morphisms $\varphi:\left(a_{1}, \ldots, a_{n}\right) \Rightarrow\left(b_{1}, \ldots, b_{m}\right)$
Operations with n inputs and m outputs

Props

A (coloured) prop is a
■ symmetric strict (small) monoidal category T
■ whose objects are freely generated from a set \mathscr{T} of sorts.

Morphisms $\varphi:\left(a_{1}, \ldots, a_{n}\right) \Rightarrow\left(b_{1}, \ldots, b_{m}\right)$

Operations with n inputs and m outputs

Props

A (coloured) prop is a
■ symmetric strict (small) monoidal category T
■ whose objects are freely generated from a set \mathscr{T} of sorts.

Morphisms $\varphi:\left(a_{1}, \ldots, a_{n}\right) \Rightarrow\left(b_{1}, \ldots, b_{m}\right)$

Operations with n inputs and m outputs

Props

A (coloured) prop is a
■ symmetric strict (small) monoidal category T
■ whose objects are freely generated from a set \mathscr{T} of sorts.

Morphisms $\varphi:\left(a_{1}, \ldots, a_{n}\right) \Rightarrow\left(b_{1}, \ldots, b_{m}\right)$

Operations with n inputs and m outputs

We can identify

- symmetric, coloured (Set-)operads with
- props whose operations decompose into single-output operations + symmetric braidings

We can identify
■ symmetric, coloured (Set-)operads with

- props whose operations decompose into single-output operations + symmetric braidings
and
- multi-sorted algebraic theories (à la Lawvere) with
- cartesian props.

We can identify

- symmetric, coloured (Set-)operads with
- props whose operations decompose into single-output operations + symmetric braidings
and
- multi-sorted algebraic theories (à la Lawvere) with
- cartesian props.
\leadsto
Full subcategories of Prop, the category of props and symmetric monoidal functors that send sorts to sorts or the unit

Props

A model of (T, \mathscr{T}) in a symmetric monoidal category \mathbf{M} is a symmetric monoidal functor $T \rightarrow \mathbf{M}$.

Props

A model of (T, \mathscr{T}) in a symmetric monoidal category \mathbf{M} is a symmetric monoidal functor $T \rightarrow \mathbf{M}$.

Models of (T, \mathscr{T}) in \mathbf{M} form a category $\operatorname{Mod}_{\mathbf{M}}(T, \mathscr{T})$ with monoidal natural transformations as morphisms.

Props

A model of (T, \mathscr{T}) in a symmetric monoidal category \mathbf{M} is a symmetric monoidal functor $T \rightarrow \mathbf{M}$.

Models of (T, \mathscr{T}) in \mathbf{M} form a category $\operatorname{Mod}_{\mathbf{M}}(T, \mathscr{T})$ with monoidal natural transformations as morphisms.

This category admits a symmetric monoidal structure.
(Idea: "run operations in parallel", use symmetry to redistribute inputs and outputs as needed)

The tensor product of props

We can consider models of (S, \mathscr{S}) in $\operatorname{Mod}_{\mathbf{M}}(T, \mathscr{T})$.

The tensor product of props

We can consider models of (S, \mathscr{S}) in $\operatorname{Mod}_{\mathbf{M}}(T, \mathscr{T})$.
The tensor product $(T, \mathscr{T}) \otimes_{\mathbb{S}}(S, \mathscr{S})$ is determined universally by the requirement that

- models of $(T, \mathscr{T}) \otimes_{\mathbb{S}}(S, \mathscr{S})$ in \mathbf{M} correspond naturally to

■ models of (S, \mathscr{S}) in $\operatorname{Mod}_{M}(T, \mathscr{T})$.

The tensor product of props

The tensor product is part of a symmetric monoidal structure on Prop (Hackney-Robertson). The monoidal unit is the single-sorted prop \mathbb{S} of permutations.

The tensor product of props

The tensor product is part of a symmetric monoidal structure on Prop (Hackney-Robertson). The monoidal unit is the single-sorted prop \mathbb{S} of permutations.

Restricting this monoidal structure to
■ symmetric operads, we recover the Boardman-Vogt product;

The tensor product of props

The tensor product is part of a symmetric monoidal structure on Prop (Hackney-Robertson). The monoidal unit is the single-sorted prop \mathbb{S} of permutations.

Restricting this monoidal structure to
■ symmetric operads, we recover the Boardman-Vogt product;

- cartesian props, we recover the "tensor product of algebraic theories".

The tensor product of props

There is a single-sorted prop Mon whose models are monoids*. Models of its dual Mon ${ }^{\text {co }}$ are comonoids.
*Also a symmetric operad.

The tensor product of props

There is a single-sorted prop Mon whose models are monoids*. Models of its dual Mon ${ }^{\text {co }}$ are comonoids.
*Also a symmetric operad.

CMon $:=$ Mon $\otimes_{\mathbb{S}}$ Mon is the theory of commutative monoids.

The tensor product of props

There is a single-sorted prop Mon whose models are monoids*. Models of its dual Mon ${ }^{\text {co }}$ are comonoids.
*Also a symmetric operad.

CMon $:=$ Mon $\otimes_{\mathbb{S}}$ Mon is the theory of commutative monoids.

Mon $\otimes_{\mathbb{S}} M o n^{\text {co }}$ is the theory of bialgebras or bimonoids.

The tensor product of props

There is a single-sorted prop Mon whose models are monoids*. Models of its dual Mon ${ }^{\text {co }}$ are comonoids.
*Also a symmetric operad.

CMon $:=$ Mon $\otimes_{\mathbb{S}}$ Mon is the theory of commutative monoids.

Mon $\otimes_{\mathbb{S}} M o n^{\text {co }}$ is the theory of bialgebras or bimonoids.

In general, $(T, \mathscr{T}) \otimes_{\mathbb{S}} C M o n^{\mathrm{co}}$ is the free cartesian prop on (T, \mathscr{T}).

The smash product of pointed spaces

Let $\left(X, \bullet_{X}\right)$ and $\left(Y, \bullet_{Y}\right)$ be (nice*) pointed topological spaces.
*A standard choice is compactly generated Hausdorff

The smash product of pointed spaces

Let $\left(X, \bullet_{X}\right)$ and $\left(Y, \bullet_{Y}\right)$ be (nice*) pointed topological spaces.
*A standard choice is compactly generated Hausdorff

The smash product $(X, \bullet X) \wedge\left(Y, \bullet_{Y}\right)$ is obtained from $X \times Y$ by quotienting the fibres of \bullet_{X}, \bullet_{Y} down to a point.

The smash product of pointed spaces

Let $\left(X, \bullet_{X}\right)$ and $\left(Y, \bullet_{Y}\right)$ be (nice*) pointed topological spaces. *A standard choice is compactly generated Hausdorff

The smash product $\left(X, \bullet_{X}\right) \wedge\left(Y, \bullet_{Y}\right)$ is obtained from $X \times Y$ by quotienting the fibres of \bullet_{X}, \bullet_{Y} down to a point.

It is part of a symmetric monoidal closed structure on cgHaus. The monoidal unit is the coproduct $1+1$ pointed with one of the coproduct inclusions.

The smash product of pointed spaces

Let $\left(X, \bullet_{X}\right)$ and $\left(Y, \bullet_{Y}\right)$ be (nice*) pointed topological spaces.
*A standard choice is compactly generated Hausdorff

The smash product $\left(X, \bullet_{X}\right) \wedge\left(Y, \bullet_{Y}\right)$ is obtained from $X \times Y$ by quotienting the fibres of \bullet_{X}, \bullet_{Y} down to a point.

It is part of a symmetric monoidal closed structure on cgHaus. The monoidal unit is the coproduct $1+1$ pointed with one of the coproduct inclusions.
$X \wedge S^{1}$ is the reduced suspension ΣX for each pointed space X.

Why on earth should these two be related?

A mystery about symmetry

Beyond props (symmetric monoidal theories), we may consider

A mystery about symmetry

Beyond props (symmetric monoidal theories), we may consider

- pros ("planar" monoidal theories), and
- probs (braided monoidal theories).

A mystery about symmetry

Beyond props (symmetric monoidal theories), we may consider
■ pros ("planar" monoidal theories), and

- probs (braided monoidal theories).

There is
■ an embedding Prop \hookrightarrow Prob, and
■ a forgetful functor U: Prob \rightarrow Pro,
with left adjoints r: Prob \rightarrow Prop and F: Pro \rightarrow Prob.

A mystery about symmetry

The theories of monoids and comonoids are naturally planar:

A mystery about symmetry

The theories of monoids and comonoids are naturally planar:

But their tensor product is not: in the theory of bialgebras,

(No "internal" tensor product on Pro!)

A mystery about symmetry

A mystery about symmetry

\Rightarrow

The external product of pros

Baez-Dolan "periodic table of n-categories":

- monoidal category

The external product of pros

Baez-Dolan "periodic table of n-categories":

- monoidal category ~ (loop space of a) bicategory with one 0-cell

The external product of pros

Baez-Dolan "periodic table of n-categories":

- monoidal category ~ (loop space of a) bicategory with one 0-cell
- braided monoidal category

The external product of pros

Baez-Dolan "periodic table of n-categories":

- monoidal category ~ (loop space of a) bicategory with one 0-cell
- braided monoidal category ~ (2-fold loop space of a) tricategory with one 0-cell, no non-degenerate 1-cells

The external product of pros

Baez-Dolan "periodic table of n-categories":

- monoidal category ~ (loop space of a) bicategory with one 0-cell
- braided monoidal category ~ (2-fold loop space of a) tricategory with one 0-cell, no non-degenerate 1-cells

The "sliding surfaces" picture produces equations of diagrams in a tricategory (4d objects) from
diagrams in a pair of bicategories (2d objects).

The external product of pros

There is an external tensor product $-\otimes-:$ Pro \times Pro \rightarrow Prob

$$
\begin{aligned}
& \text { Pro } \times \text { Pro } \xrightarrow{\otimes} \text { Prob } \\
& r \mathrm{rF} \times \mathrm{rF} \downarrow \\
& \text { Prop } \times \text { Prop } \xrightarrow[\theta_{s}]{\left.\right|_{\mathrm{s}}} \text { Prop }
\end{aligned}
$$

The external product of pros

There is an external tensor product $-\otimes-:$ Pro \times Pro \rightarrow Prob

We recover the tensor product of props from the external product of their underlying pros, by imposing that a natural family of inclusions of the factors into their product preserve braidings.

From monoidal theories to pointed directed spaces

A stricter periodic table:

From monoidal theories to pointed directed spaces

A stricter periodic table:

- pro $\rightsquigarrow 2$-category with one 0 -cell;

From monoidal theories to pointed directed spaces

A stricter periodic table:

- pro $\rightsquigarrow 2$-category with one 0 -cell;
- prob \rightsquigarrow Gray-category with one 0 -cell, no non-degenerate 1-cells.

From monoidal theories to pointed directed spaces

A stricter periodic table:

- pro $\rightsquigarrow 2$-category with one 0 -cell;

■ prob \rightsquigarrow Gray-category with one 0 -cell, no non-degenerate 1-cells.

These objects are naturally pointed with their unique 0 -cell.

From monoidal theories to pointed directed spaces

A stricter periodic table:

- pro $\rightsquigarrow 2$-category with one 0 -cell;
- prob \rightsquigarrow Gray-category with one 0 -cell, no non-degenerate 1-cells.

These objects are naturally pointed with their unique 0 -cell.

If higher categories are "spaces of directed cells", we may see - a pro as the loop space of a pointed directed 2-type,

■ a prob as the 2-fold loop space of a pointed directed 3-type.

From monoidal theories to pointed directed spaces

What about the freely generated objects?

From monoidal theories to pointed directed spaces

What about the freely generated objects?
(A. Burroni) A freely generated strict ω-category (polygraph, aka computad) is a "formal CW complex" in ω Cat:

From monoidal theories to pointed directed spaces

What about the freely generated objects?
(A. Burroni) A freely generated strict ω-category (polygraph, aka computad) is a "formal CW complex" in ω Cat:

- the topological n-ball D^{n} is modelled by the n-globe O^{n},

From monoidal theories to pointed directed spaces

What about the freely generated objects?
(A. Burroni) A freely generated strict ω-category (polygraph, aka computad) is a "formal CW complex" in ω Cat:

- the topological n-ball D^{n} is modelled by the n-globe O^{n},
- gluing maps are modelled by arbitrary functors from ∂O^{n}.

From monoidal theories to pointed directed spaces

What about the freely generated objects?
(A. Burroni) A freely generated strict ω-category (polygraph, aka computad) is a "formal CW complex" in ω Cat:

- the topological n-ball D^{n} is modelled by the n-globe O^{n},
- gluing maps are modelled by arbitrary functors from ∂O^{n}.

In the directed space picture, the set of sorts should become

- a 1-dimensional cell complex structure for pros,
- a 2-dimensional cell complex structure for probs.

From monoidal theories to pointed directed spaces

Recapping the chain of analogies:

From monoidal theories to pointed directed spaces

Recapping the chain of analogies:
a monoidal theory is like
(the loop space of) a pointed directed space which is a 2-type and is equipped with a 1-dimensional cell complex structure on a subspace;

From monoidal theories to pointed directed spaces

Recapping the chain of analogies:
a monoidal theory is like
(the loop space of) a pointed directed space which is a 2-type and is equipped with a 1-dimensional cell complex structure on a subspace;
a braided monoidal theory is like
(the 2-fold loop space) of a pointed directed space which is a 3-type
and is equipped with a 2-dimensional cell complex structure on a subspace.

From monoidal theories to pointed directed spaces

Recapping the chain of analogies:
a monoidal theory is like
(the loop space of) a pointed directed space which is a 2-type and is equipped with a 1-dimensional cell complex structure on a subspace;
a braided monoidal theory is like
(the 2-fold loop space) of a pointed directed space which is a 3-type
and is equipped with a 2-dimensional cell complex structure on a subspace.

The connection with smash products seems more plausible...

From monoidal theories to pointed directed spaces

To make the connection precise we want:
1 A category of directed spaces,

From monoidal theories to pointed directed spaces

To make the connection precise we want:
1 A category of directed spaces,
2 with a monoidal structure inducing a smash product on the category of pointed directed spaces,

From monoidal theories to pointed directed spaces

To make the connection precise we want:
1 A category of directed spaces,
2 with a monoidal structure inducing a smash product on the category of pointed directed spaces,
3 into which the categories of pros and probs embed faithfully,

From monoidal theories to pointed directed spaces

To make the connection precise we want:
1 A category of directed spaces,
2 with a monoidal structure inducing a smash product on the category of pointed directed spaces,
3 into which the categories of pros and probs embed faithfully,
4 in such a way that the external product of pros factors through the smash product;

From monoidal theories to pointed directed spaces

To make the connection precise we want:
1 A category of directed spaces,
2 with a monoidal structure inducing a smash product on the category of pointed directed spaces,
3 into which the categories of pros and probs embed faithfully,
4 in such a way that the external product of pros factors through the smash product;
5 and a "direction-forgetting" functor to pointed spaces

From monoidal theories to pointed directed spaces

To make the connection precise we want:
1 A category of directed spaces,
2 with a monoidal structure inducing a smash product on the category of pointed directed spaces,
3 into which the categories of pros and probs embed faithfully,
4 in such a way that the external product of pros factors through the smash product;
5 and a "direction-forgetting" functor to pointed spaces
6 that sends smash products to smash products.

From monoidal theories to pointed directed spaces

The category ω Cat with the (lax) Gray product has some of these features,

From monoidal theories to pointed directed spaces

The category ω Cat with the (lax) Gray product has some of these features, but

■ the "Gray smash product" of two monoidal categories (as pointed 2-categories) is not a braided monoidal category, but a highly degenerate commutative monoidal category;

From monoidal theories to pointed directed spaces

The category ω Cat with the (lax) Gray product has some of these features, but

■ the "Gray smash product" of two monoidal categories (as pointed 2-categories) is not a braided monoidal category, but a highly degenerate commutative monoidal category;

- there is no functor from ω Cat to a category of spaces that works in the intended way.

Diagrammatic sets

A diagrammatic set (after Kapranov-Voevodsky) is

Diagrammatic sets

A diagrammatic set (after Kapranov-Voevodsky) is

- a presheaf on a rich category of shapes of higher-categorical diagrams (which includes globes, oriented simplices, cubes, positive opetopes, and more);

Diagrammatic sets

A diagrammatic set (after Kapranov-Voevodsky) is

- a presheaf on a rich category of shapes of higher-categorical diagrams (which includes globes, oriented simplices, cubes, positive opetopes, and more);
- a context for higher-dimensional rewriting, similar to a polygraph, but "homotopically sound";

Diagrammatic sets

A diagrammatic set (after Kapranov-Voevodsky) is

- a presheaf on a rich category of shapes of higher-categorical diagrams (which includes globes, oriented simplices, cubes, positive opetopes, and more);
- a context for higher-dimensional rewriting, similar to a polygraph, but "homotopically sound";
- a notion of directed space with a combinatorial model of directed cells.

Diagrammatic sets

We can associate to a cell complex its face poset...

Diagrammatic sets

We can associate to a cell complex its face poset...

and to a higher-categorical diagram its oriented face poset.

Regular directed complexes

(After R. Steiner, The algebra of directed complexes, 1993)

- An orientation on a finite poset P is an edge-labelling $o: \mathscr{H} P_{1} \rightarrow\{+,-\}$ of its Hasse diagram.

Regular directed complexes

(After R. Steiner, The algebra of directed complexes, 1993)

- An orientation on a finite poset P is an edge-labelling $o: \mathscr{H} P_{1} \rightarrow\{+,-\}$ of its Hasse diagram.
- An oriented graded poset is a finite graded poset with an orientation.

Regular directed complexes

(After R. Steiner, The algebra of directed complexes, 1993)

- An orientation on a finite poset P is an edge-labelling $o: \mathscr{H} P_{1} \rightarrow\{+,-\}$ of its Hasse diagram.
- An oriented graded poset is a finite graded poset with an orientation.
- If $U \subseteq P$ is (downward) closed, $\alpha \in\{+,-\}, n \in \mathbb{N}$,
$\Delta_{n}^{\alpha} U:=\{x \in U \mid \operatorname{dim}(x)=n$ and if $y \in U$ covers x, then $o(y \rightarrow x)=\alpha\}$, $\partial_{n}^{\alpha} U:=\operatorname{cl}\left(\Delta_{n}^{\alpha} U\right) \cup\{x \in U \mid$ for all $y \in U$, if $x \leq y$, then $\operatorname{dim}(y) \leq n\}$,

$$
\Delta_{n} U:=\Delta_{n}^{+} U \cup \Delta_{n}^{-} U, \quad \partial_{n} U:=\partial_{n}^{+} U \cup \partial_{n}^{-} U .
$$

Regular directed complexes

If U is a closed subset of P, then U is a molecule if either

- U has a greatest element, in which case we call it an atom, or
- there exist molecules U_{1} and U_{2}, both properly contained in U, and $n \in \mathbb{N}$ such that $U_{1} \cap U_{2}=\partial_{n}^{+} U_{1}=\partial_{n}^{-} U_{2}$ and $U=U_{1} \cup U_{2}$.

Regular directed complexes

If U is a closed subset of P, then U is a molecule if either

- U has a greatest element, in which case we call it an atom, or

■ there exist molecules U_{1} and U_{2}, both properly contained in U, and $n \in \mathbb{N}$ such that $U_{1} \cap U_{2}=\partial_{n}^{+} U_{1}=\partial_{n}^{-} U_{2}$ and $U=U_{1} \cup U_{2}$.

A molecule U has spherical boundary if, for all $k<n$,

$$
\partial_{k}^{+} U \cap \partial_{k}^{-} U=\partial_{k-1} U
$$

Regular directed complexes

but not

Regular directed complexes

An oriented graded poset P is a regular directed complex if, for all $x \in P$ and $\alpha, \beta \in\{+,-\}$,
$1 \operatorname{cl}\{x\}$ has spherical boundary,
$2 \partial^{\alpha} x$ is a molecule, and
3 $\partial^{\alpha}\left(\partial^{\beta} x\right)=\partial_{n-2}^{\alpha} x$ if $n:=\operatorname{dim}(x)>1$.

Regular directed complexes

An oriented graded poset P is a regular directed complex if, for all $x \in P$ and $\alpha, \beta \in\{+,-\}$,
$1 \operatorname{cl}\{x\}$ has spherical boundary,
$2 \partial^{\alpha} x$ is a molecule, and
$3 \partial^{\alpha}\left(\partial^{\beta} x\right)=\partial_{n-2}^{\alpha} x$ if $n:=\operatorname{dim}(x)>1$.

A map $f: P \rightarrow Q$ of regular directed complexes is a function that satisfies

$$
\partial_{n}^{\alpha} f(x)=f\left(\partial_{n}^{\alpha} x\right)
$$

for all $x \in P, n \in \mathbb{N}$, and $\alpha \in\{+,-\}$. Regular directed complexes and maps form a category $\mathbf{D C p x}{ }^{\mathcal{R}}$.

Regular directed complexes

An oriented graded poset P is a regular directed complex if, for all $x \in P$ and $\alpha, \beta \in\{+,-\}$,
$1 \operatorname{cl}\{x\}$ has spherical boundary,
$2 \partial^{\alpha} x$ is a molecule, and
$3 \partial^{\alpha}\left(\partial^{\beta} x\right)=\partial_{n-2}^{\alpha} x$ if $n:=\operatorname{dim}(x)>1$.

A map $f: P \rightarrow Q$ of regular directed complexes is a function that satisfies

$$
\partial_{n}^{\alpha} f(x)=f\left(\partial_{n}^{\alpha} x\right)
$$

for all $x \in P, n \in \mathbb{N}$, and $\alpha \in\{+,-\}$. Regular directed complexes and maps form a category $\mathbf{D C p x}{ }^{\mathcal{R}}$.

A map factors essentially uniquely as a surjection followed by an inclusion.

Regular directed complexes

Proposition

The underlying poset of a regular directed complex is the face poset of a regular CW complex.

Regular directed complexes

Proposition

The underlying poset of a regular directed complex is the face poset of a regular CW complex.
(...and a regular CW complex structure is determined up to cellular homeomorphism by its face poset.)

Regular directed complexes

Proposition

The underlying poset of a regular directed complex is the face poset of a regular CW complex.
(...and a regular CW complex structure is determined up to cellular homeomorphism by its face poset.)

In particular, the underlying poset of a regular n-dimensional atom is the face poset of a regular CW n-ball.

Regular directed complexes

Proposition

The underlying poset of a regular directed complex is the face poset of a regular CW complex.
(...and a regular CW complex structure is determined up to cellular homeomorphism by its face poset.)

In particular, the underlying poset of a regular n-dimensional atom is the face poset of a regular CW n-ball.

- Let \odot be (a skeleton of) the full subcategory of $\mathbf{D C p x}{ }^{\mathcal{R}}$ on the atoms. A diagrammatic set is a presheaf on \odot.

Gray product and smash product

Let P, Q be oriented graded posets.
We take their cartesian product as posets.

Gray product and smash product

Let P, Q be oriented graded posets.
We take their cartesian product as posets.
We give it an orientation as in the tensor product of chain complexes.

Gray product and smash product

Let P, Q be oriented graded posets.
We take their cartesian product as posets.
We give it an orientation as in the tensor product of chain complexes.

If P and Q are regular directed complexes we obtain a regular directed complex $P \otimes Q$, the Gray product of P and Q.

Gray product and smash product

Let P, Q be oriented graded posets.
We take their cartesian product as posets.
We give it an orientation as in the tensor product of chain complexes.

If P and Q are regular directed complexes we obtain a regular directed complex $P \otimes Q$, the Gray product of P and Q.

This is part of a monoidal structure on $\mathbf{D C p x}{ }^{\mathcal{R}}$, which restricts to \odot, then extends to a monoidal biclosed structure on \odot Set.

Gray product and smash product

The Gray product is semicartesian on \odot Set (the unit is terminal), so $X \otimes Y$ is fibred over X and Y.

Gray product and smash product

The Gray product is semicartesian on \odot Set (the unit is terminal), so $X \otimes Y$ is fibred over X and Y.

This allows us to define a (Gray) smash product $(X, \bullet X) \otimes(Y, \bullet Y)$ of pointed diagrammatic sets, part of a monoidal biclosed structure on \odot Set.

Gray product and smash product

There is a nerve-realisation pair relating \odot Set and cgHaus, which lifts to a nerve-realisation pair relating \odot Set. and cgHaus.

Gray product and smash product

There is a nerve-realisation pair relating \odot Set and cgHaus, which lifts to a nerve-realisation pair relating \odot Set. and cgHaus.

Theorem

1 The realisation $|-|: \odot$ Set \rightarrow cgHaus sends Gray products to cartesian products.

Gray product and smash product

There is a nerve-realisation pair relating \odot Set and cgHaus, which lifts to a nerve-realisation pair relating \odot Set. and cgHaus.

Theorem

1 The realisation $|-|: \odot$ Set $\rightarrow \mathbf{c g H a u s}$ sends Gray products to cartesian products.
2 The realisation $|-|: \odot$ Set. \rightarrow cgHaus. sends smash products to smash products.

The main theorem

The bulk of the article is the definition of adjunctions relating
1 diagrammatic sets and pros (easy), and
2 diagrammatic sets and Gray-categories (hard).

The main theorem

The bulk of the article is the definition of adjunctions relating
1 diagrammatic sets and pros (easy), and
2 diagrammatic sets and Gray-categories (hard).

The main theorem

Theorem

The diagram of functors

commutes up to natural isomorphism.

Picturing Gray products

Let X, Y be diagrammatic sets.

Picturing Gray products

Let X, Y be diagrammatic sets.

$$
a: x^{-} \Rightarrow x^{+} 1 \text {-cell in } X, \quad c: y^{-} \Rightarrow y^{+} \text {1-cell in } Y
$$

Picturing Gray products

$$
\begin{array}{r}
\varphi:\left(a_{1}, \ldots, a_{n}\right) \Rightarrow\left(b_{1}, \ldots, b_{m}\right) 2 \text {-cell in } X, \\
c: y^{-} \Rightarrow y^{+} 1 \text {-cell in } Y
\end{array}
$$

Picturing Gray products

$$
\begin{aligned}
& a: x^{-} \Rightarrow x^{+} \text {1-cell in } X, \\
& \qquad:\left(c_{1}, \ldots, c_{p}\right) \Rightarrow\left(d_{1}, \ldots, d_{q}\right) 2 \text {-cell in } Y
\end{aligned}
$$

Picturing Gray products

$\varphi:\left(a_{1}, \ldots, a_{n}\right) \Rightarrow\left(b_{1}, \ldots, b_{m}\right) 2$-cell in X, $\psi:\left(c_{1}, \ldots, c_{p}\right) \Rightarrow\left(d_{1}, \ldots, d_{q}\right)$ 2-cell in Y

Picturing smash products

In $X \otimes Y$, any cell of $X \otimes Y$ in the fibre of $\bullet X$ or \bullet_{Y} becomes the unique degenerate cell over

Picturing smash products

In $X \otimes Y$, any cell of $X \otimes Y$ in the fibre of $\bullet x$ or $\bullet Y$ becomes the unique degenerate cell over
$\varphi:\left(a_{1}, \ldots, a_{n}\right) \Rightarrow\left(b_{1}, \ldots, b_{m}\right) 2$-cell in X,

$$
c: \bullet Y \Rightarrow \bullet_{Y} \text { 1-cell in } Y
$$

- $b_{m} c$
, $a_{n} c \quad \stackrel{\varphi c}{ } \quad b_{1} c \cdot \in b_{2} c$

$$
a_{1} c \quad a_{2} c
$$

Picturing smash products

In $X \otimes Y$, any cell of $X \otimes Y$ in the fibre of $\bullet x$ or \bullet_{Y} becomes the unique degenerate cell over \bullet
$a: \bullet x \Rightarrow \bullet 1$-cell in X,

$$
\psi:\left(c_{1}, \ldots, c_{p}\right) \Rightarrow\left(d_{1}, \ldots, d_{q}\right) 2 \text {-cell in } Y
$$

Picturing smash products

We compute some cells in the smash product of the theories of monoids and comonoids

$$
X:=\mathrm{N}(\text { Mon }),
$$

$$
Y:=\mathrm{N}\left(M o n^{\mathrm{co}}\right)^{\circ}
$$

Picturing smash products

We compute some cells in the smash product of the theories of monoids and comonoids

$$
X:=\mathrm{N}(\text { Mon }),
$$

$$
Y:=\mathrm{N}\left(M o n^{\mathrm{co}}\right)^{\circ}
$$

■ $1:=$ single sort $\rightsquigarrow 1$-cell in X, Y

Picturing smash products

We compute some cells in the smash product of the theories of monoids and comonoids

$$
X:=\mathrm{N}(\text { Mon }), \quad Y:=\mathrm{N}\left(M o{ }^{\mathrm{co}}\right)^{\circ}
$$

■ $1:=$ single sort $\rightsquigarrow 1$-cell in X, Y

- $\mu:=$ monoid multiplication $\rightsquigarrow 2$-cell $(1,1) \Rightarrow(1)$ in X

Picturing smash products

We compute some cells in the smash product of the theories of monoids and comonoids

$$
X:=\mathrm{N}(\text { Mon }), \quad Y:=\mathrm{N}\left(M o n^{\mathrm{co}}\right)^{\circ}
$$

■ $1:=$ single sort $\rightsquigarrow 1$-cell in X, Y

- $\mu:=$ monoid multiplication $\rightsquigarrow 2$-cell $(1,1) \Rightarrow(1)$ in X
- $\delta:=$ comonoid comultiplication $\rightsquigarrow 2$-cell $(1,1) \Rightarrow(1)$ in Y

Picturing smash products

We compute some cells in the smash product of the theories of monoids and comonoids

$$
X:=\mathrm{N}(\text { Mon }),
$$

$$
Y:=\mathrm{N}\left(M o n^{\mathrm{co}}\right)^{\circ}
$$

■ $1:=$ single sort $\rightsquigarrow 1$-cell in X, Y

- $\mu:=$ monoid multiplication $\rightsquigarrow 2$-cell $(1,1) \Rightarrow(1)$ in X
- $\delta:=$ comonoid comultiplication $\rightsquigarrow 2$-cell $(1,1) \Rightarrow(1)$ in Y
$1 \otimes 1$ is the only non-degenerate 2-cell in $X \otimes Y$

Picturing smash products

We picture 3-cells as 3-dimensional string diagrams tracing the history of copies of $1 \otimes 1$

Picturing smash products

We picture 3-cells as 3-dimensional string diagrams tracing the history of copies of $1 \otimes 1$

Picturing smash products

We picture 3-cells as 3-dimensional string diagrams tracing the history of copies of $1 \otimes 1$

Picturing smash products

Picturing smash products

Higher-dimensional cells

Some observations:

Higher-dimensional cells

Some observations:

- The realisation as probs loses information: $\mu \otimes \delta$ is an oriented 4-cell, but becomes an equation in the tensor product of pros.

Higher-dimensional cells

Some observations:

- The realisation as probs loses information: $\mu \otimes \delta$ is an oriented 4-cell, but becomes an equation in the tensor product of pros.
- Because N is full and faithful, we can replace $\mathrm{N}(T, \mathscr{T})$ with any other X such that $\mathrm{PX} \simeq(T, \mathscr{T})$.
For example X could be a presentation with oriented 3-cells with nice computational properties.

Higher-dimensional cells

Some observations:
■ The realisation as probs loses information: $\mu \otimes \delta$ is an oriented 4 -cell, but becomes an equation in the tensor product of pros.

- Because N is full and faithful, we can replace $\mathrm{N}(T, \mathscr{T})$ with any other X such that $\mathrm{P} X \simeq(T, \mathscr{T})$. For example X could be a presentation with oriented 3 -cells with nice computational properties.

■ If X and Y have interesting oriented n-cells, then $X \otimes Y$ has interesting oriented k-cells up to $k=2 n$!

Higher-dimensional cells

Idea: Given presentations X of (T, \mathscr{T}) and Y of (S, \mathscr{S}), the smash product $X \otimes Y^{\circ}$ produces

Higher-dimensional cells

Idea: Given presentations X of (T, \mathscr{T}) and Y of (S, \mathscr{S}), the smash product $X \otimes Y^{\circ}$ produces

1 a presentation (with oriented equations) of $(T, \mathscr{T}) \otimes(S, \mathscr{S})$,

2 plus higher-dimensional coherence cells, or oriented syzygies, for this presentation.

Towards compositional higher rewriting

Let X be a presentation of Mon with the 3-cells

Towards compositional higher rewriting

Let X be a presentation of Mon with the 3-cells

Then $X \otimes X$ is a presentation of $\operatorname{Mon} \otimes M o n^{\mathrm{co}}$.

Towards compositional higher rewriting

Let X be a presentation of Mon with the 3-cells

Then $X \otimes X$ is a presentation of $\operatorname{Mon} \otimes M_{o n}{ }^{\mathrm{co}}$. It has the following "new" critical branching:

Towards compositional higher rewriting

The 5-cell $\alpha \otimes \mu$ in $X \otimes X$ exhibits confluence at this critical branching:

Towards compositional higher rewriting

The 5-cell $\alpha \otimes \mu$ in $X \otimes X$ exhibits confluence at this critical branching:

Towards compositional higher rewriting

The 5-cell $\alpha \otimes \mu$ in $X \otimes X$ exhibits confluence at this critical branching:

6 -cells such as $\alpha \otimes \alpha$ are higher syzygies exhibiting confluence at critical branchings of syzygies

Towards compositional higher rewriting

Question:

If we start from presentations with nice computational properties or nice homotopical properties,
do we obtain nice presentations of their tensor product?

Outlook

Pros and probs are low-dimensional objects.

Outlook

Pros and probs are low-dimensional objects.
Diagrammatic sets can be a (homotopically sound) context for presentations of higher-algebraic theories with oriented generators in arbitrary dimension.

Outlook

Pros and probs are low-dimensional objects.
Diagrammatic sets can be a (homotopically sound) context for presentations of higher-algebraic theories with oriented generators in arbitrary dimension.

■ k-tuply monoidal n-dimensional theories \sim k-fold directed loop spaces

$$
(k=1: \text { monoidal, } k=2: \text { braided monoidal })
$$

Outlook

$$
n \text {-tuply monoidal } \otimes k \text {-tuply monoidal }=(n+k) \text {-tuply monoidal }
$$

Outlook

n-tuply monoidal $\otimes k$-tuply monoidal $=(n+k)$-tuply monoidal
Symmetric monoidal $=$ stable $(k$-tuply monoidal for each k)
...which is why props are closed under tensor products, but pros and probs are not!

Outlook

n-tuply monoidal $\otimes k$-tuply monoidal $=(n+k)$-tuply monoidal
Symmetric monoidal $=$ stable $(k$-tuply monoidal for each k)
...which is why props are closed under tensor products, but pros and probs are not!

Thank you for listening!

