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Props

We can identify

symmetric, coloured (Set-)operads with

props whose operations decompose into single-output
operations + symmetric braidings

and

multi-sorted algebraic theories (à la Lawvere) with

cartesian props.

 
Full subcategories of Prop, the category of props and symmetric
monoidal functors that send sorts to sorts or the unit
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Props

A model of (T ,T ) in a symmetric monoidal category M is a
symmetric monoidal functor T →M.

Models of (T ,T ) in M form a category ModM(T ,T ) with
monoidal natural transformations as morphisms.

This category admits a symmetric monoidal structure.

(Idea: “run operations in parallel”, use symmetry

to redistribute inputs and outputs as needed)
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We can consider models of (S ,S ) in ModM(T ,T ).

The tensor product (T ,T )⊗S (S ,S ) is determined universally by
the requirement that

models of (T ,T )⊗S (S ,S ) in M

correspond naturally to

models of (S ,S ) in ModM(T ,T ).
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The tensor product of props

The tensor product is part of a symmetric monoidal structure on
Prop (Hackney–Robertson). The monoidal unit is the single-sorted
prop S of permutations.

Restricting this monoidal structure to

symmetric operads, we recover the Boardman–Vogt product;

cartesian props, we recover the “tensor product of algebraic
theories”.
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There is a single-sorted prop Mon whose models are monoids*.
Models of its dual Monco are comonoids.

*Also a symmetric operad.

CMon := Mon⊗SMon is the theory of commutative monoids.

Mon⊗SMonco is the theory of bialgebras or bimonoids.

In general, (T ,T )⊗S CMonco is the free cartesian prop on (T ,T ).
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The smash product of pointed spaces

Let (X , •X ) and (Y , •Y ) be (nice*) pointed topological spaces.
*A standard choice is compactly generated Hausdorff

The smash product (X , •X ) ∧ (Y , •Y ) is obtained from X × Y by
quotienting the fibres of •X , •Y down to a point.

It is part of a symmetric monoidal closed structure on cgHaus•.
The monoidal unit is the coproduct 1 + 1 pointed with one of the
coproduct inclusions.

X ∧ S1 is the reduced suspension ΣX for each pointed space X .
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Why on earth should these two be related?
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Beyond props (symmetric monoidal theories), we may consider

pros (“planar” monoidal theories), and

probs (braided monoidal theories).

There is

an embedding Prop ↪→ Prob, and

a forgetful functor U: Prob→ Pro,

with left adjoints r : Prob→ Prop and F: Pro→ Prob.
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The external product of pros

Baez–Dolan “periodic table of n-categories”:

monoidal category

∼
(loop space of a) bicategory with one 0-cell

braided monoidal category ∼
(2-fold loop space of a) tricategory with one 0-cell, no
non-degenerate 1-cells

The “sliding surfaces” picture produces

equations of diagrams in a tricategory (4d objects)

from

diagrams in a pair of bicategories (2d objects).
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There is an external tensor product −⊗− : Pro× Pro→ Prob
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⊗
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We recover the tensor product of props from the external product
of their underlying pros, by imposing that a natural family of
inclusions of the factors into their product preserve braidings.
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From monoidal theories to pointed directed spaces

A stricter periodic table:

pro  2-category with one 0-cell;

prob  Gray-category with one 0-cell,
no non-degenerate 1-cells.

These objects are naturally pointed with their unique 0-cell.

If higher categories are “spaces of directed cells”, we may see

a pro as the loop space of a pointed directed 2-type,

a prob as the 2-fold loop space of a pointed directed 3-type.



From monoidal theories to pointed directed spaces

A stricter periodic table:

pro  2-category with one 0-cell;

prob  Gray-category with one 0-cell,
no non-degenerate 1-cells.

These objects are naturally pointed with their unique 0-cell.

If higher categories are “spaces of directed cells”, we may see

a pro as the loop space of a pointed directed 2-type,

a prob as the 2-fold loop space of a pointed directed 3-type.



From monoidal theories to pointed directed spaces

A stricter periodic table:

pro  2-category with one 0-cell;

prob  Gray-category with one 0-cell,
no non-degenerate 1-cells.

These objects are naturally pointed with their unique 0-cell.

If higher categories are “spaces of directed cells”, we may see

a pro as the loop space of a pointed directed 2-type,

a prob as the 2-fold loop space of a pointed directed 3-type.



From monoidal theories to pointed directed spaces

A stricter periodic table:

pro  2-category with one 0-cell;

prob  Gray-category with one 0-cell,
no non-degenerate 1-cells.

These objects are naturally pointed with their unique 0-cell.

If higher categories are “spaces of directed cells”, we may see

a pro as the loop space of a pointed directed 2-type,

a prob as the 2-fold loop space of a pointed directed 3-type.



From monoidal theories to pointed directed spaces

A stricter periodic table:

pro  2-category with one 0-cell;

prob  Gray-category with one 0-cell,
no non-degenerate 1-cells.

These objects are naturally pointed with their unique 0-cell.

If higher categories are “spaces of directed cells”, we may see

a pro as the loop space of a pointed directed 2-type,

a prob as the 2-fold loop space of a pointed directed 3-type.



From monoidal theories to pointed directed spaces

What about the freely generated objects?

(A. Burroni) A freely generated strict ω-category (polygraph, aka
computad) is a “formal CW complex” in ωCat:

the topological n-ball Dn is modelled by the n-globe On,

gluing maps are modelled by arbitrary functors from ∂On.

In the directed space picture, the set of sorts should become

a 1-dimensional cell complex structure for pros,

a 2-dimensional cell complex structure for probs.
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From monoidal theories to pointed directed spaces

To make the connection precise we want:

1 A category of directed spaces,

2 with a monoidal structure inducing a smash product on the
category of pointed directed spaces,

3 into which the categories of pros and probs embed faithfully,

4 in such a way that the external product of pros factors
through the smash product;

5 and a “direction-forgetting” functor to pointed spaces

6 that sends smash products to smash products.
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From monoidal theories to pointed directed spaces

The category ωCat with the (lax) Gray product has some of these
features,

but

the “Gray smash product” of two monoidal categories (as
pointed 2-categories) is not a braided monoidal category, but
a highly degenerate commutative monoidal category;

there is no functor from ωCat to a category of spaces that
works in the intended way.
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Diagrammatic sets

A diagrammatic set (after Kapranov–Voevodsky) is

a presheaf on a rich category of shapes of higher-categorical
diagrams (which includes globes, oriented simplices, cubes,
positive opetopes, and more);

a context for higher-dimensional rewriting, similar to a
polygraph, but “homotopically sound”;

a notion of directed space with a combinatorial model of
directed cells.
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We can associate to a cell complex its face poset...
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Regular directed complexes

(After R. Steiner, The algebra of directed complexes, 1993)

An orientation on a finite poset P is an edge-labelling
o : H P1 → {+,−} of its Hasse diagram.

An oriented graded poset is a finite graded poset with an
orientation.

If U ⊆ P is (downward) closed, α ∈ {+,−}, n ∈ N,

∆α
nU := {x ∈ U |dim(x) = n and if y ∈ U covers x , then o(y → x) = α},
∂αn U := cl(∆α

nU) ∪ {x ∈ U | for all y ∈ U, if x ≤ y , then dim(y) ≤ n},
∆nU := ∆+

n U ∪∆−n U, ∂nU := ∂+n U ∪ ∂−n U.
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∆α
nU := {x ∈ U |dim(x) = n and if y ∈ U covers x , then o(y → x) = α},
∂αn U := cl(∆α

nU) ∪ {x ∈ U | for all y ∈ U, if x ≤ y , then dim(y) ≤ n},
∆nU := ∆+

n U ∪∆−n U, ∂nU := ∂+n U ∪ ∂−n U.



Regular directed complexes

If U is a closed subset of P, then U is a molecule if either

U has a greatest element, in which case we call it an atom, or

there exist molecules U1 and U2, both properly contained in U, and
n ∈ N such that U1 ∩ U2 = ∂+n U1 = ∂−n U2 and U = U1 ∪ U2.

A molecule U has spherical boundary if, for all k < n,

∂+k U ∩ ∂
−
k U = ∂k−1U.
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Regular directed complexes

An oriented graded poset P is a regular directed complex if, for all x ∈ P
and α, β ∈ {+,−},

1 cl{x} has spherical boundary,

2 ∂αx is a molecule, and

3 ∂α(∂βx) = ∂αn−2x if n := dim(x) > 1.

A map f : P → Q of regular directed complexes is a function that
satisfies

∂αn f (x) = f (∂αn x)

for all x ∈ P, n ∈ N, and α ∈ {+,−}. Regular directed complexes and
maps form a category DCpxR.

A map factors essentially uniquely as a surjection followed by an inclusion.
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Regular directed complexes

Proposition

The underlying poset of a regular directed complex is the face
poset of a regular CW complex.

(...and a regular CW complex structure is determined up to cellular
homeomorphism by its face poset.)

In particular, the underlying poset of a regular n-dimensional atom
is the face poset of a regular CW n-ball.

Let be (a skeleton of) the full subcategory of DCpxR on the
atoms. A diagrammatic set is a presheaf on .
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Gray product and smash product

Let P,Q be oriented graded posets.
We take their cartesian product as posets.

We give it an orientation
as in the tensor product of chain complexes.

If P and Q are regular directed complexes
we obtain a regular directed complex P ⊗Q,

the Gray product of P and Q.

This is part of a monoidal structure on DCpxR,
which restricts to ,

then extends to a monoidal biclosed structure on Set.
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Gray product and smash product

The Gray product is semicartesian on Set (the unit is terminal),
so X ⊗Y is fibred over X and Y .

This allows us to define a (Gray) smash product (X , •X ) ? (Y , •Y )
of pointed diagrammatic sets,
part of a monoidal biclosed structure on Set•.
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Gray product and smash product

There is a nerve-realisation pair relating Set and cgHaus, which
lifts to a nerve-realisation pair relating Set• and cgHaus•.

Theorem

1 The realisation | − | : Set→ cgHaus sends Gray products to
cartesian products.

2 The realisation | − | : Set• → cgHaus• sends smash
products to smash products.



Gray product and smash product

There is a nerve-realisation pair relating Set and cgHaus, which
lifts to a nerve-realisation pair relating Set• and cgHaus•.

Theorem

1 The realisation | − | : Set→ cgHaus sends Gray products to
cartesian products.

2 The realisation | − | : Set• → cgHaus• sends smash
products to smash products.



Gray product and smash product

There is a nerve-realisation pair relating Set and cgHaus, which
lifts to a nerve-realisation pair relating Set• and cgHaus•.

Theorem

1 The realisation | − | : Set→ cgHaus sends Gray products to
cartesian products.

2 The realisation | − | : Set• → cgHaus• sends smash
products to smash products.



The main theorem

The bulk of the article is the definition of adjunctions relating

1 diagrammatic sets and pros (easy), and

2 diagrammatic sets and Gray-categories (hard).
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The main theorem

Theorem

The diagram of functors

Pro× Pro Prob

Set• × Set• Set•

GrayCatN× N

−⊗−

−? (−)◦

U3

G

commutes up to natural isomorphism.



Picturing Gray products

Let X ,Y be diagrammatic sets.

a : x− ⇒ x+ 1-cell in X , c : y− ⇒ y+ 1-cell in Y

ay− x+c

x−c ay+
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Picturing Gray products

ϕ : (a1, . . . , an)⇒ (b1, . . . , bm) 2-cell in X ,
c : y− ⇒ y+ 1-cell in Y
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Picturing smash products

In X ?Y , any cell of X ⊗Y in the fibre of •X or •Y becomes the
unique degenerate cell over •

ϕ : (a1, . . . , an)⇒ (b1, . . . , bm) 2-cell in X ,
c : •Y ⇒ •Y 1-cell in Y
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Picturing smash products

In X ?Y , any cell of X ⊗Y in the fibre of •X or •Y becomes the
unique degenerate cell over •

a : •X ⇒ •X 1-cell in X ,
ψ : (c1, . . . , cp)⇒ (d1, . . . , dq) 2-cell in Y

ad2
ad1

adq
aψ

ac2
ac1

acp



Picturing smash products

We compute some cells in the smash product
of the theories of monoids and comonoids

X := N(Mon), Y := N(Monco)◦

1 := single sort  1-cell in X ,Y

µ := monoid multiplication  2-cell (1, 1)⇒ (1) in X

δ := comonoid comultiplication  2-cell (1, 1)⇒ (1) in Y

1⊗ 1 is the only non-degenerate 2-cell in X ?Y
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Picturing smash products
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Picturing smash products

1δ 1δ µ1 µ1

⇓ µδ

µ1 1δ

µδ



Higher-dimensional cells

Some observations:

The realisation as probs loses information: µ⊗ δ is an
oriented 4-cell, but becomes an equation in the tensor product
of pros.

Because N is full and faithful, we can replace N(T ,T ) with
any other X such that PX ' (T ,T ).
For example X could be a presentation with oriented 3-cells
with nice computational properties.

If X and Y have interesting oriented n-cells, then X ?Y has
interesting oriented k-cells up to k = 2n!
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Higher-dimensional cells

Idea: Given presentations X of (T ,T ) and Y of (S ,S ), the
smash product X ?Y ◦ produces

1 a presentation (with oriented equations) of (T ,T )⊗ (S ,S ),

2 plus higher-dimensional coherence cells, or oriented syzygies,
for this presentation.
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Then X ?X is a presentation of Mon⊗Monco.
It has the following “new” critical branching:
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Towards compositional higher rewriting

The 5-cell α⊗µ in X ?X exhibits confluence at this critical
branching:

µµ µµ α1

⇓ αµ

α1 α1 µµ µµ

6-cells such as α⊗α are higher syzygies exhibiting
confluence at critical branchings of syzygies
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Towards compositional higher rewriting

Question:

If we start from presentations with nice
computational properties or nice

homotopical properties,

do we obtain nice presentations of their tensor product?



Outlook

Pros and probs are low-dimensional objects.

Diagrammatic sets can be a (homotopically sound) context for
presentations of higher-algebraic theories with oriented generators
in arbitrary dimension.

k-tuply monoidal n-dimensional theories ∼
k-fold directed loop spaces

(k = 1: monoidal, k = 2: braided monoidal)
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Symmetric monoidal = stable (k-tuply monoidal for each k)

...which is why props are closed under tensor products,
but pros and probs are not!
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