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What this is about, in short

m Equational axiomatisations of the theory of extensional
equality of certain quantum circuits

m Which also provide, topologically, information on the
correlations between different parts of a circuit

The interface between these two aspects is given by monoidal
categories presented by string diagrams



From algebraic theories to PROs to string diagrams

Presentation of an algebraic theory: finitary operations +
identities (with all variables universally quantified)

Example: theory of abelian groups

Binary multiplication m(—, —), unary inverse i(—), nullary unit u
m(m(x,y),z) = m(x, m(y, z)), m(x, u) = x = m(u, x),

m(x, i(x)) = u = m(i(x),x), m(x,y) = m(y,x)
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From algebraic theories to PROs to string diagrams

Lawvere '63: the same information presents particular categories
with finite products

Example: Lawvere theory of abelian groups

Generating morphisms m:axa—a, i:a—a, u:1—a
+ structural morphisms s:axa—axa, c:a—axa d:a—1

(mxid,); m = (id, x m); m, (ida X u); m=1id, = (u xid,); m

¢;(idy x i);m=d;u=c; (i xid,); m, m=s;m

plus whatever is needed to make x a categorical product...
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From algebraic theories to PROs to string diagrams

Why treat the “structural” morphisms differently?

Example: PRO of commutative Hopf algebras

Generating morphisms m: a®a—a,i:a—a, u:1— a,
s:a®a—a®a, c:a—a®a d:a—1

(m®id,); m = (idy ® m); m, (ida®@u);m=id, = (u®id,s); m
c=¢s ¢(idy®@i)yym=d,u=c;(i®id,); m, m=s;m

¢, (m®id,) = ¢; (id, ® ¢), ¢;(id;,® d) =id, = ¢; (d ® id,)

plus other equations ensuring s behaves like a swap, m and ¢
interact as expected, etc



From algebraic theories to PROs to string diagrams

Formally, Joyal-Street '91 (informally, way before?)
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From algebraic theories to PROs to string diagrams

Coassociativity:

Inverse:



Self-dual objects and “undirectedness”

At the other end of the spectrum w.r.t. “cartesian” ...

N
A

satisfying
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Self-dual objects and “undirectedness”

With self-duality, we can turn inputs into outputs

@YY

If permuting the inputs and outputs of a generator, the result only
depends on the arity of the resulting diagram, then we can
effectively treat the diagram as an undirected graph



Self-dual objects and “undirectedness”

3
Theory can be studied with methods of graph rewriting



The pure-state qubit model

Single system: two-dimensional Hilbert space (with a fixed
“computational” basis |0), [1))
Composite system: tensor product of Hilbert spaces



The pure-state qubit model

Single system: two-dimensional Hilbert space (with a fixed
“computational” basis |0), [1))
Composite system: tensor product of Hilbert spaces

I ——
The only physical processes are isometries!

However restricting to isometries may not give the best portrayal
of what's “logically” happening, so we consider all linear maps

The monoidal category Qubit

Morphisms n — m are linear maps (C2)®" — (C2)®m



Brief chronology of string diagrams for Qubit

m 2004 Abramsky, Coecke — categorical quantum mechanics

m 2008 Coecke, Duncan — first “ZX calculus’ axioms
ZX calculus: two colours of vertices, axioms symmetric in the two;
decomposition of CNOT gate

m 2014 Backens — complete axioms for stabiliser fragment



Brief chronology of string diagrams for Qubit

m 2004 Abramsky, Coecke — categorical quantum mechanics

m 2008 Coecke, Duncan — first “"ZX calculus” axioms
ZX calculus: two colours of vertices, axioms symmetric in the two;
decomposition of CNOT gate

m 2014 Backens — complete axioms for stabiliser fragment
Meanwhile:

m 2010 Coecke, Kissinger — propose an alternative
presentation, with two colours related to “inequivalent” (in a
specific, operational sense) three-qubit states



Qubit ZW calculus

The qubit ZW calculus is a presentation of Qubit with generators
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Qubit ZW calculus

The two “swaps’:
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From qubit to fermionic ZW

]
Unlike the ZX calculus,

m somewhat disconnected from “typical’ qubit gates;

m no symmetry between basis states...

However,



From qubit to fermionic ZW

]
Unlike the ZX calculus,

m somewhat disconnected from “typical’ qubit gates;

m no symmetry between basis states...

However,

We can interpret |0) and | 1) as the empty and occupied states of
a different physical system: a local fermionic mode, on which the
Bravyi-Kitaev model of fermionic quantum computation is based



The pure-state fermionic model

Allowed operations are the ones that
m preserve the parity (number of particles mod 2), or

m introduce any number of particles into the system

The monoidal category LFM

Morphisms n — m are purely even or purely odd linear maps
(C2)®n N (C2)®m




The pure-state fermionic model

Allowed operations are the ones that
m preserve the parity (number of particles mod 2), or

m introduce any number of particles into the system

The monoidal category LFM

Morphisms n — m are purely even or purely odd linear maps
(C2)®n N (C2)®m

Example: |0) +— |1), or [0) — |00) + |11) is allowed;
[0) — |0)+|1) is not.
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“Natural” fermionic gates in the calculus:




Fermionic ZW calculus

All generators of qubit ZW calculus except the ternary white vertex

“Natural” fermionic gates in the calculus:

Also suggests generalisations to higher-dimensional systems
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Qubit = fermionic + duplication?

The fermionic model is “resource sensitive”: there is no map
duplicating particles.
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However, it soundly embeds into the qubit model; to cover all
qubit maps, it suffices to add a single generator, which can be
interpreted as “copying particles” (|1) — |11))



Qubit = fermionic + duplication?

The fermionic model is “resource sensitive”: there is no map
duplicating particles.

However, it soundly embeds into the qubit model; to cover all
qubit maps, it suffices to add a single generator, which can be
interpreted as “copying particles” (|1) — |11))

fermionic : qubit ~ linear : intuitionistic?



