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Dimensions in rewriting

Dimension 2: algebraic theories / monoidal categories
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Dimensions in rewriting

Rewriting objects of dimension > 2:

higher/homotopical algebra

k-manifolds in n-space (e.g. k=1, n=3: knots and braids)

Higher-dimensional “rewrites” for a fixed base dimension:

confluence, coherence...
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The key observation

A higher-dimensional rewrite system is like a CW complex, a
space built by pasting together topological balls (cells)

Except cells have a direction
(“Computationally aware” homotopy theory?)
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Polygraphs

Standard framework for higher-dimensional rewriting:

Directed n-cells are modelled by n-globes, the objects
classifying n-cells in a strict ω-category

Any formal composition in the algebra of strict ω-categories
gives a valid pasting map

Problem:

The pasting maps are not sound for the interpretation of “rewrite
systems as CW complexes”

...plus other technical issues
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Towards diagrammatic sets

Let the CW complex interpretation
guide the choice of a framework



Face posets
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Regular CW complex X : pasting maps are homeomorphisms with
their image

A classical theorem of combinatorial topology

A regular CW complex is specified up to cellular homeomorphism
by its face poset

Conjecture

A regular pasting diagram is specified up to cellular isomorphism
by its oriented face poset
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Diagrammatic sets

Directed n-cells are modelled by regular directed complexes
(which are oriented face posets of regular pasting diagrams)

with a greatest element of rank n
(so the underlying poset is the face poset of a regular CW n-ball)

These have realisations both in ω-categories and in spaces

Pasting is given by maps of posets that are compatible
functorially with both realisations
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Diagrammatic sets

More formally, diagrammatic sets are presheaves on a category
whose objects are regular directed complexes with a greatest
element.

Maps factor into

injections, giving face operations
→ sub-diagrams, substitutions in context

surjections, giving units and degeneracy operations
→ “nullary” operations in universal algebra

Enough for higher-dimensional rewriting?
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Other features:

Some constructions which are a nightmare with strict
ω-categories (lax Gray products, joins) are easy with
diagrammatic sets

(and I think these are important in higher algebra)

Good geometric realisation; can be used to construct CW
complexes

(in fact, diagrammatic sets satisfy a version of the homotopy
hypothesis — one can reason about spaces/homotopy types

in terms of their diagrammatic nerve, as with simplicial sets)
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We want to interpret higher-dimensional rewrite systems in a
model of higher categories

Diagrammatic sets have some features of a model (pasting, units)

Idea: higher categories → diagrammatic sets with an internal
notion of weak composition

(in the spirit of categorical semantics:

syntax and semantics in the same universe)
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Equivalences and weak composition

Computational meaning of composition:

A diagram x can be substituted in every context with a cell JxK

A special case of the more general:

A diagram x can be substituted in every context with another
diagram y (and vice versa)

↓

There are special equivalence cells x ⇒ y , y ⇒ x ,
which mediate between all cells containing x and all cells

containing y in their boundary
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Equivalences and weak composition

This is a coinductive definition.

Let X be a diagrammatic set. For all subsets A ⊆ Cell(X ), define

F(A) := {x : U → X | for all α ∈ {+,−} and

(Λ ↪→W , λ : Λ→ X ) ∈ Div(x , ∂αU),

there exists (h : W → X ) ∈ A such that h|Λ = λ};

Then F is an order-preserving map on P(Cell(X )). Its greatest
fixed point is the set EqX of equivalence cells of X .

Proof method: if A ⊆ F(A), then A ⊆ EqX .
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Equivalences and weak composition

Representable diagrammatic set (RDS)

A diagrammatic set where, for all diagrams x , there exist cells
JxK, JxK′ and equivalence cells x ⇒ JxK, JxK′ ⇒ x .

For all diagrams x and y , let x ' y if there exists an equivalence
x ⇒ y .

Theorem

In a representable diagrammatic set,

1 all degenerate cells are equivalence cells, and

2 ' is an equivalence relation.
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Representable diagrammatic sets

1 “Groupoidal” RDSs (in which every cell is an equivalence)
model all homotopy types.

2 Conditional to the conjecture on regular pasting diagrams,
strict ω-categories embed as a full subcategory
(if one takes morphisms that preserve a choice of weak composites)

3 There are n-truncated RDSs corresponding to weak
n-categories. 2-truncated RDSs are equivalent to bicategories


