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In search of an analogy

Goal: high-level methods for reasoning about both intensional and
extensional aspects of computation

1 Can we find other areas of mathematics that have dealt with
analogous concerns?

2 Can we turn the analogies into functors?

3 Can we transport some useful methods and ideas through
them?

My focus: rewriting theory v homotopy theory
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A vague motivation

Homotopy ideas appear in “non-geometric” areas of mathematics
when there is a need to store some “intensional” information, while
keeping access to its “extensional” projection

Example: interpretation of identity types in intensional type
theory (from Hofmann-Streicher to univalent foundations)

But there are simpler examples
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A combinatorial example

Finite set with a group action (example: triples of numbers in
{0, . . . , 4}, with action of permutations on {0, 1, 2})
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−→
truncation

XX//S3

[012]

X/S3

The quotient X/S3 is bad (for example: |X/S3| 6= |X |/|S3|)

The weak quotient X//S3 is nice (|X//S3| = |X |/|S3|)
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In homotopy theory, everything is reversible / undirected

Not in computation
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Higher-dimensional rewriting theory studies
“spaces of directed cells”
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Polygraphs

An n-dimensional generator x has an input boundary ∂−x and an
output boundary ∂+x , which are combinatorially specified
composites of lower-dimensional generators

Polygraphs (Street, Burroni): the combinatorics are given by
strict higher categories

Standard in HDR (Lafont, Métayer, Mimram, Malbos, . . .)
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Polygraphic resolutions

Resolution of a higher category X : surjective map f : P → X ,
equalities lift to proper cells

f (p)

f (q)

p

q

f

Example: (linear) λ-calculus  monoidal closed categories '
closed representable multicategories (special 2-polygraphs with
algebraic composition of 2-cells)  resolutions
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To briefly mention

Better understanding and expansion of classic results linking
rewriting theory and homological algebra, e.g. Squier’s
criterion for the existence of finite convergent presentations of
a monoid (Guiraud, Malbos 2016)

Refined analysis of confluence, convergence etc. by keeping
direction in higher dimensions, e.g. directing confluence
squares (“rewrites of rewrites”)



From directed cells to string diagrams

“Expand” lower-dimensional cells by filling the space with identities

 



Bringing compositionality to HDR

Compositional reasoning is essential to the practice of algebraic
topology (products, disjoint unions, subspaces, quotients)

1 Do these operations have directed analogues?

2 If so, do they make sense for rewriting and universal algebra?
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Tensor product of polygraphs

Do these operations have directed analogues?

Yes. Disjoint unions and quotients are basically unvaried.

We can replace the cartesian product of spaces with the
(noncommutative) tensor product of polygraphs:

for each n-dimensional x in X , and m-dimensional y in Y , the
polygraph X ⊗ Y has an (n + m)-dimensional x ⊗ y with
∂(x ⊗ y) = (∂x ⊗ y) ∪ (x ⊗ ∂y);

there is only one division of ∂(x ⊗ y) into input and output
that makes sense combinatorially
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The cube



The cube: input boundary



The cube: output boundary
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Tensor products are everywhere

Instantiates to quantum teleportation protocol and encrypted
communication with one-time pads (Stay, Vicary 2013)
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Tensor products are everywhere

Theory of bialgebras: a quotient∗ of Mon ⊗Mon (smash product)

=

Plus everything comes with higher-dimensional
coherence/confluence cells



More than an analogy?

The analogy is quite strong, it has led to transmission of ideas
(e.g. Lafont, Métayer, Worytkiewicz 2010)...

But is not quite a functor.

There is no “good” direction-forgetting functor | − | : Pol→ Top
with |X ⊗ Y | ' |X | × |Y |

(And the reason why it doesn’t exist is linked to several technical
problems)



More than an analogy?

The analogy is quite strong, it has led to transmission of ideas
(e.g. Lafont, Métayer, Worytkiewicz 2010)...

But is not quite a functor.

There is no “good” direction-forgetting functor | − | : Pol→ Top
with |X ⊗ Y | ' |X | × |Y |

(And the reason why it doesn’t exist is linked to several technical
problems)



More than an analogy?

The analogy is quite strong, it has led to transmission of ideas
(e.g. Lafont, Métayer, Worytkiewicz 2010)...

But is not quite a functor.

There is no “good” direction-forgetting functor | − | : Pol→ Top
with |X ⊗ Y | ' |X | × |Y |

(And the reason why it doesn’t exist is linked to several technical
problems)



A solution

Regular polygraphs: sub-class closed under tensor products, good
technical properties, and a nice functor | − | : RPol→ Top exists

Capture more aspects of topological spaces in the theory of
regular polygraphs

Transport and generalise — a lever for compositional rewriting
theory, beyond example-collection

A.H., The algebra of entanglement and the geometry of
composition, PhD thesis, 2017
Work in progress: A combinatorial-topological shape category for
polygraphs
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