
Diagrammatic sets:
weak higher categories for rewriting

Amar Hadzihasanovic

Formerly: RIMS, Kyoto University
Currently: IRIF, Université de Paris
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Higher categories for all

Higher categories for a homotopy theorist/algebraic
geometer/etc:

There is a familiar world of spaces/∞-groupoids/homotopy
types in the background.

Everything must be weak. n-categories in this world are
(∞, n)-categories.

Do we really need to work in a specific model?

If we do, it better look like what we already know.

 complete Segal spaces, complicial sets... pick your favourite.
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Higher categories for all

Higher categories for an applied category theorist:

We love diagrams! We love presented monoidal categories.

We may need to implement this on a computer. We need
syntax, we need rigidity.

(While in dimension 2...) Oh, this diagrammatic proof is
justified, because bla bla Mac Lane coherence bla bla Joyal
Street bla bla

(Then higher dimensions appear) *panic*
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An interaction of planar (2d) diagrams,

producing a transformation of 3d diagrams

(hence a 4d transformation)

How do we interpret this?
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The foundation of diagrammatic reasoning is a pasting theorem:

the statement that we can univocally interpret
a certain class of diagrams

in a certain model of higher categories.

There is a lack of pasting theorems
for mainstream models of weak higher categories.
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The golden age of strict ω-categories

1987: Ross Street’s The algebra of oriented simplexes is out,
sparking an interest in the combinatorics of
higher-dimensional categorical diagrams.

Then several works on the combinatorics of pasting diagrams and
their pasting theorems in strict n-categories:

1988: John Power

1989: Michael Johnson

1991: Ross Street, John Power

1993: Richard Steiner
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Steiner’s directed complexes

Steiner 1993, The algebra of directed complexes, gives sufficient
conditions for

an oriented poset to be the oriented face poset of a pasting
diagram, and

the pasting diagram to be reconstructed from its oriented
face poset.

Many oriented posets present ω-categories —
fewer present polygraphs,

that is,
ω-categories that are freely generated by some of their cells.
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Steiner’s directed complexes

Let P,Q be oriented posets.
We can take their cartesian product as posets.

We can give it an orientation
as in the tensor product of chain complexes.

The product of two directed complexes is still a directed complex
P � Q, the lax Gray product of P and Q.

If P has dim n and Q has dim k , P � Q has dim n + k .

A variant of this was used to define
the lax Gray product of ω-categories
(Steiner 2004, Ara-Maltsiniotis 2017)
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Lax Gray products and diagrammatic algebra

Example: Biunitary equations

Used by Jamie Vicary and Mike Stay to unify quantum and
encrypted communication protocols. They are models of a lax Gray
product of 2-categories.

=



Lax Gray products and diagrammatic algebra

Example: Distributive laws of monads

They are models in Cat of a lax Gray product of 2-categories.

µT µS



Lax Gray products and diagrammatic algebra

The original example is not simply a lax Gray product.

monoidal category  2-category with one 0-cell
PRO  2-cat with one 0-cell, one 1-generator

These are naturally pointed objects in ωCat.
With pointed objects, it is natural to take smash products ∧.

PRO ∧ PRO  4-cat with one 0-cell, one 2-generator

Morally this should be a braided monoidal category.
But in strict ω-categories, it is a commutative monoidal category.
This breaks everything.
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Voevodsky’s non-proof...

1991: Mikhail Kapranov and Vladimir Voevodsky publish
∞-groupoids and homotopy types, claiming a proof that strict
higher categories model all homotopy types in the sense of the
homotopy hypothesis.

1998: Carlos Simpson proves that the result is false (without
pointing to a specific mistake).

The core of the argument relies on the fact that “doubly
monoidal” degenerates to “commutative” in strict 3-categories
(strict Eckmann-Hilton).
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...still contained some good ideas

Good takeaway #1 from Kapranov-Voevodsky:

homotopy types may have semistrict algebraic models
with weak units

2006: André Joyal and Joachim Kock in dim 3

2017: Simon Henry and I come up independently with the
regularity constraint as a way of avoiding the pitfall of strict
Eckmann-Hilton

2018: Henry proves the homotopy hypothesis for “regular
ω-groupoids”.
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Regularity: only n-diagrams with spherical boundary
have a composite

These are the ones whose face poset
is the face poset of a regular CW n-ball

of the appropriate dimension

∼ “are homeomorphic to n-balls”
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Diagrammatic sets

Kapranov-Voevodsky pass from spaces to ω-categories
through an intermediate notion

of “spaces locally modelled on combinatorial pasting diagrams”,

they call diagrammatic sets.
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Diagrammatic sets

2019: Kapranov-Voevodsky’s equivalence of “Kan
diagrammatic sets” and spaces is “morally correct”

...except they chose the wrong class of combinatorial diagrams, not
closed under most of the operations they perform.

Directed complexes + all cells have spherical boundary works!

(Work in progress: axiomatic approach
relative to “nice classes of diagrams”)
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Diagrammatic sets

There is a natural coinductive definition of
equivalence cell in a diagrammatic set.

A diagrammatic set where every diagram with spherical
boundary is equivalent to a single cell
— its “weak composite” —
is a reasonable notion of weak ω-category.

This is a model where we can interpret every regular diagram
and compose every diagram with spherical boundary.

Just “stuff” any diagram with units and it will become regular!
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The silver age of strict ω-categories

1993: Albert Burroni’s Higher-dimensional word problems
suggests the theory of polygraphs as an arena to
“unify all rewriting theories”

This started a slowly rising French school of rewriting with
polygraphs (Yves Lafont, Philippe Malbos, Yves Guiraud, Samuel
Mimram...)
and related work on ω-categories (François Métayer, Georges
Maltsiniotis, Dimitri Ara...)

which is why I am in Paris now
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“presented ω-categories” and “presented spaces”.

This analogy is limited by
the fact that strict ω-categories do not model all spaces.
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Rewriting in diagrammatic sets

I respectfully suggest:

Everything that can be done with polygraphs
can be done equally or better with diagrammatic sets.

1 Key rewriting operations like substitution, gluing are done
combinatorially, not with inductions on algebraic syntax

2 Clear separation between diagrams and composites

3 Analogy with CW complexes becomes an actual functor

4 Diagrams can be interpreted in models of all homotopy types,
for rewriting homotopies

5 Lax Gray products, joins are easily defined and computed
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Rewriting in diagrammatic sets

=

The smash product of diagrammatic sets
produces this equation, the way it should.
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Higher-dimensional rewriting is packed with
notions suggestive of a directed homotopy theory.

The appearance of smash products in diagrammatic algebra
seems to me another piece of a puzzle.

My hope is that diagrammatic sets can make the link
between rewriting and homotopy theory tighter,

on our way to figuring out what the right notions are.

Work in progress:
a model of computation in diagrammatic sets
based on a “directed homotopy extension property”.
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