Diagrammatic sets: weak higher categories for rewriting

Amar Hadzihasanovic

Formerly: RIMS, Kyoto University
Currently: IRIF, Université de Paris

TallCat Seminar
11 June 2020

arXiv:1909.07639
There is a paper. But I'm reworking it heavily. Read at your own risk.

Higher categories for all

Higher categories for a homotopy theorist/algebraic geometer/etc:

Higher categories for all

Higher categories for a homotopy theorist/algebraic geometer/etc:

- There is a familiar world of spaces/ ∞-groupoids/homotopy types in the background.

Higher categories for all

Higher categories for a homotopy theorist/algebraic geometer/etc:

■ There is a familiar world of spaces/ ∞-groupoids/homotopy types in the background.

- Everything must be weak. n-categories in this world are (∞, n)-categories.

Higher categories for all

Higher categories for a homotopy theorist/algebraic geometer/etc:

■ There is a familiar world of spaces/ ∞-groupoids/homotopy types in the background.

- Everything must be weak. n-categories in this world are (∞, n)-categories.
- Do we really need to work in a specific model?

Higher categories for all

Higher categories for a homotopy theorist/algebraic geometer/etc:

- There is a familiar world of spaces/ ∞-groupoids/homotopy types in the background.
- Everything must be weak. n-categories in this world are (∞, n)-categories.
- Do we really need to work in a specific model?

■ If we do, it better look like what we already know.

Higher categories for all

Higher categories for a homotopy theorist/algebraic geometer/etc:

- There is a familiar world of spaces/ ∞-groupoids/homotopy types in the background.
- Everything must be weak. n-categories in this world are (∞, n)-categories.
- Do we really need to work in a specific model?

■ If we do, it better look like what we already know.
\rightsquigarrow complete Segal spaces, complicial sets... pick your favourite.

Higher categories for all

Higher categories for an applied category theorist:

Higher categories for all

Higher categories for an applied category theorist:
■ We love diagrams! We love presented monoidal categories.

Higher categories for all

Higher categories for an applied category theorist:
■ We love diagrams! We love presented monoidal categories.
■ We may need to implement this on a computer. We need syntax, we need rigidity.

Higher categories for all

Higher categories for an applied category theorist:
■ We love diagrams! We love presented monoidal categories.
■ We may need to implement this on a computer. We need syntax, we need rigidity.

- (While in dimension 2...) Oh, this diagrammatic proof is justified, because bla bla Mac Lane coherence bla bla Joyal Street bla bla

Higher categories for all

Higher categories for an applied category theorist:
■ We love diagrams! We love presented monoidal categories.
■ We may need to implement this on a computer. We need syntax, we need rigidity.

- (While in dimension 2...) Oh, this diagrammatic proof is justified, because bla bla Mac Lane coherence bla bla Joyal Street bla bla
- (Then higher dimensions appear) *panic*
2014

Bialgebra equation

Bialgebra equation

$=$

$=$

Bialgebra equation

An interaction of planar (2d) diagrams, producing a transformation of 3d diagrams
(hence a 4d transformation)

Bialgebra equation

An interaction of planar (2d) diagrams, producing a transformation of 3d diagrams
 (hence a 4d transformation)

How do we interpret this?

Pasting theorem

The foundation of diagrammatic reasoning is a pasting theorem:

Pasting theorem

The foundation of diagrammatic reasoning is a pasting theorem:
the statement that we can univocally interpret
a certain class of diagrams in a certain model of higher categories.

Pasting theorem

The foundation of diagrammatic reasoning is a pasting theorem:

> the statement that we can univocally interpret
> a certain class of diagrams in a certain model of higher categories.

There is a lack of pasting theorems for mainstream models of weak higher categories.
2014

2014

2013

2014

2013

2012

2014

2013
2012
2011

2014

2013
2012
2011
2010

2014
 2013
 2012
 2011
 2010
 2009

2014

 2012
 2011
 2010
 2009
 2008

2014

 2012
 2011
 2010
 2009
 2008

2014

 2012
 2011
 2010
 2009
 2008

1993

2014

 2012
 2011
 2010
 2009
 2008

1993
1992

2014

 2012
 2011
 2010
 2009
 2008

1993
1992
1991
2014 2013
2012
2011
2010
2009
2008
1993
1992
1991
1990
2014 2013
2012
2011
2010
2009
2008
1993
1992
1991
1990
1989

2014
 2013
 2012
 2011
 2010
 2009
 2008
 1993
 1992
 1991
 1990
 1989
 1988

2014 2013
2012
2011
2010
2009
2008
1993
1992
1991
1990
1989
1988
1987

The golden age of strict ω-categories

- 1987: Ross Street's The algebra of oriented simplexes is out, sparking an interest in the combinatorics of higher-dimensional categorical diagrams.

The golden age of strict ω-categories

- 1987: Ross Street's The algebra of oriented simplexes is out, sparking an interest in the combinatorics of higher-dimensional categorical diagrams.

Then several works on the combinatorics of pasting diagrams and their pasting theorems in strict n-categories:

■ 1988: John Power

- 1989: Michael Johnson
- 1991: Ross Street, John Power
- 1993: Richard Steiner

Steiner's directed complexes

We can associate to a cell complex its face poset...

Steiner's directed complexes

We can associate to a cell complex its face poset...

and to a pasting diagram its oriented face poset.

Steiner's directed complexes

Steiner 1993, The algebra of directed complexes, gives sufficient conditions for

- an oriented poset to be the oriented face poset of a pasting diagram, and
- the pasting diagram to be reconstructed from its oriented face poset.

Steiner's directed complexes

Steiner 1993, The algebra of directed complexes, gives sufficient conditions for

- an oriented poset to be the oriented face poset of a pasting diagram, and
- the pasting diagram to be reconstructed from its oriented face poset.

Many oriented posets present ω-categories fewer present polygraphs, that is,
ω-categories that are freely generated by some of their cells.

Steiner's directed complexes

Let P, Q be oriented posets.
We can take their cartesian product as posets.

Steiner's directed complexes

Let P, Q be oriented posets.
We can take their cartesian product as posets.
We can give it an orientation as in the tensor product of chain complexes.

Steiner's directed complexes

Let P, Q be oriented posets.
We can take their cartesian product as posets.
We can give it an orientation as in the tensor product of chain complexes.

The product of two directed complexes is still a directed complex $P \boxtimes Q$, the lax Gray product of P and Q.

Steiner's directed complexes

> Let P, Q be oriented posets. We can take their cartesian product as posets.
> We can give it an orientation as in the tensor product of chain complexes.

The product of two directed complexes is still a directed complex $P \boxtimes Q$, the lax Gray product of P and Q.

If P has $\operatorname{dim} n$ and Q has $\operatorname{dim} k, P \boxtimes Q$ has $\operatorname{dim} n+k$.

Steiner's directed complexes

> Let P, Q be oriented posets. We can take their cartesian product as posets.
> We can give it an orientation as in the tensor product of chain complexes.

The product of two directed complexes is still a directed complex $P \boxtimes Q$, the lax Gray product of P and Q.

If P has $\operatorname{dim} n$ and Q has $\operatorname{dim} k, P \boxtimes Q$ has $\operatorname{dim} n+k$.
A variant of this was used to define the lax Gray product of ω-categories
(Steiner 2004, Ara-Maltsiniotis 2017)

1993

1993
1994

1993
1994
1995

1993
1994
1995
1996

1993
1994
1995
1996
1997

1993
1994
1995
1996
1997
1998
1993
1994
1995
1996
1997
1998
1999
1993
1994
1995
1996
1997
1998
1999

1993
1994
1995
1996
1997
1998
1999
2010

1993
1994
1995
1996
1997
1998
1999
2010
2011
1993
1994
1995
1996
1997
1998
1999
2010
2011
2012
1993
1994
1995
1996
1997
1998
1999
2010
2011
2012
2013
1993
1994
1995
1996
1997
1998
1999
2010
2011
2012
2013
2014
1993
1994
1995
1996
1997
1998
1999
2010
2011
2012
2013
2014
2015
1993
1994
1995
1996
1997
1998
1999
2010
2011
2012
2013
2014
2015
2016

Lax Gray products and diagrammatic algebra

$$
2 d+2 d=4 d
$$

Around this time, I start seeing lax Gray products everywhere

Lax Gray products and diagrammatic algebra

$$
2 d+2 d=4 d
$$

Around this time, I start seeing lax Gray products everywhere (I'm not the only one)

Lax Gray products and diagrammatic algebra

Example: Biunitary equations

Used by Jamie Vicary and Mike Stay to unify quantum and encrypted communication protocols. They are models of a lax Gray product of 2-categories.

Lax Gray products and diagrammatic algebra

Example: Distributive laws of monads

They are models in Cat of a lax Gray product of 2-categories.

Lax Gray products and diagrammatic algebra

The original example is not simply a lax Gray product.

Lax Gray products and diagrammatic algebra

The original example is not simply a lax Gray product. monoidal category $\rightsquigarrow 2$-category with one 0 -cell

Lax Gray products and diagrammatic algebra

The original example is not simply a lax Gray product.
monoidal category $\rightsquigarrow 2$-category with one 0 -cell
PRO $\rightsquigarrow 2$-cat with one 0-cell, one 1-generator

Lax Gray products and diagrammatic algebra

The original example is not simply a lax Gray product.

$$
\begin{aligned}
& \text { monoidal category } \rightsquigarrow 2 \text {-category with one } 0 \text {-cell } \\
& \text { PRO } \rightsquigarrow 2 \text {-cat with one } 0 \text {-cell, one } 1 \text {-generator }
\end{aligned}
$$

These are naturally pointed objects in ω Cat. With pointed objects, it is natural to take smash products \wedge.

Lax Gray products and diagrammatic algebra

The original example is not simply a lax Gray product.

$$
\begin{aligned}
& \text { monoidal category } \rightsquigarrow 2 \text {-category with one } 0 \text {-cell } \\
& \text { PRO } \rightsquigarrow 2 \text {-cat with one } 0 \text {-cell, one } 1 \text {-generator }
\end{aligned}
$$

These are naturally pointed objects in ω Cat.
With pointed objects, it is natural to take smash products \wedge.
$\mathbf{P R O} \wedge \mathbf{P R O} \rightsquigarrow 4$-cat with one 0-cell, one 2-generator

Lax Gray products and diagrammatic algebra

The original example is not simply a lax Gray product.

$$
\begin{aligned}
& \text { monoidal category } \rightsquigarrow 2 \text {-category with one } 0 \text {-cell } \\
& \text { PRO } \rightsquigarrow 2 \text {-cat with one } 0 \text {-cell, one } 1 \text {-generator }
\end{aligned}
$$

These are naturally pointed objects in ω Cat.
With pointed objects, it is natural to take smash products \wedge.
$\mathbf{P R O} \wedge \mathbf{P R O} \rightsquigarrow 4$-cat with one 0-cell, one 2-generator
Morally this should be a braided monoidal category.
But in strict ω-categories, it is a commutative monoidal category. This breaks everything.

2016

2016 2015

2016
2015
2014

2016 2015
2014
2013

2016 2015
 2014
 2013
 2012

2016 2015
 2014
 2013
 2012
 2011

2016 2015
 2014
 2013
 2012
 2011
 2010

2016 2015
 2014
 2013
 2012
 2011
 2010

2016 2015
 2014
 2013
 2012
 2011
 2010

1997

2016 2015
 2014
 2013
 2012
 2011
 2010
 1997
 1996

2016 2015
2014
2013
2012
2011
2010
1997
1996
1995
2016 2015
2014
2013
2012
2011
2010
1997
1996
1995
1994
2016 2015
2014
2013
2012
2011
2010
1997
1996
1995
1994
1993
2016 2015
2014
2013
2012
2011
2010
1997
1996
1995
1994
1993
1992

2016 2015
 2014
 2013
 2012
 2011
 2010

1997
1996
1995
1994
1993
1992
1991

Voevodsky's non-proof...

- 1991: Mikhail Kapranov and Vladimir Voevodsky publish ∞-groupoids and homotopy types, claiming a proof that strict higher categories model all homotopy types in the sense of the homotopy hypothesis.

Voevodsky's non-proof...

- 1991: Mikhail Kapranov and Vladimir Voevodsky publish ∞-groupoids and homotopy types, claiming a proof that strict higher categories model all homotopy types in the sense of the homotopy hypothesis.
- 1998: Carlos Simpson proves that the result is false (without pointing to a specific mistake).

Voevodsky's non-proof...

- 1991: Mikhail Kapranov and Vladimir Voevodsky publish ∞-groupoids and homotopy types, claiming a proof that strict higher categories model all homotopy types in the sense of the homotopy hypothesis.
- 1998: Carlos Simpson proves that the result is false (without pointing to a specific mistake).

The core of the argument relies on the fact that "doubly monoidal" degenerates to "commutative" in strict 3-categories (strict Eckmann-Hilton).

...still contained some good ideas

Good takeaway \#1 from Kapranov-Voevodsky:
homotopy types may have semistrict algebraic models with weak units

- 2006: André Joyal and Joachim Kock in dim 3

...still contained some good ideas

Good takeaway \#1 from Kapranov-Voevodsky:

homotopy types may have semistrict algebraic models with weak units

- 2006: André Joyal and Joachim Kock in dim 3
- 2017: Simon Henry and I come up independently with the regularity constraint as a way of avoiding the pitfall of strict Eckmann-Hilton

...still contained some good ideas

Good takeaway \#1 from Kapranov-Voevodsky:

homotopy types may have semistrict algebraic models with weak units

- 2006: André Joyal and Joachim Kock in dim 3
- 2017: Simon Henry and I come up independently with the regularity constraint as a way of avoiding the pitfall of strict Eckmann-Hilton
- 2018: Henry proves the homotopy hypothesis for "regular ω-groupoids".

Diagrams with spherical boundary

Regularity: only n-diagrams with spherical boundary
have a composite

Diagrams with spherical boundary

Regularity: only n-diagrams with spherical boundary have a composite

These are the ones whose face poset is the face poset of a regular CW n-ball of the appropriate dimension

Diagrams with spherical boundary

Regularity: only n-diagrams with spherical boundary have a composite

These are the ones whose face poset is the face poset of a regular CW n-ball of the appropriate dimension
\sim "are homeomorphic to n-balls"

Diagrams with spherical boundary

but not

...and more good ideas

Good takeaway \#2 from Kapranov-Voevodsky:
...and more good ideas

Good takeaway \#2 from Kapranov-Voevodsky:

Diagrammatic sets

...and more good ideas

Good takeaway \#2 from Kapranov-Voevodsky:

Diagrammatic sets

Kapranov-Voevodsky pass from spaces to ω-categories through an intermediate notion of "spaces locally modelled on combinatorial pasting diagrams", they call diagrammatic sets.

Diagrammatic sets

■ 2019: Kapranov-Voevodsky's equivalence of "Kan diagrammatic sets" and spaces is "morally correct"
...except they chose the wrong class of combinatorial diagrams, not closed under most of the operations they perform.

Diagrammatic sets

■ 2019: Kapranov-Voevodsky's equivalence of "Kan diagrammatic sets" and spaces is "morally correct"
...except they chose the wrong class of combinatorial diagrams, not closed under most of the operations they perform.

Directed complexes + all cells have spherical boundary works!

Diagrammatic sets

■ 2019: Kapranov-Voevodsky's equivalence of "Kan diagrammatic sets" and spaces is "morally correct"
...except they chose the wrong class of combinatorial diagrams, not closed under most of the operations they perform.

Directed complexes + all cells have spherical boundary works!
(Work in progress: axiomatic approach relative to "nice classes of diagrams")

Diagrammatic sets

- There is a natural coinductive definition of equivalence cell in a diagrammatic set.

Diagrammatic sets

■ There is a natural coinductive definition of equivalence cell in a diagrammatic set.

■ A diagrammatic set where every diagram with spherical boundary is equivalent to a single cell
— its "weak composite" -
is a reasonable notion of weak ω-category.

Diagrammatic sets

■ There is a natural coinductive definition of equivalence cell in a diagrammatic set.

■ A diagrammatic set where every diagram with spherical boundary is equivalent to a single cell
— its "weak composite" -
is a reasonable notion of weak ω-category.

This is a model where we can interpret every regular diagram and compose every diagram with spherical boundary.

Diagrammatic sets

■ There is a natural coinductive definition of equivalence cell in a diagrammatic set.

■ A diagrammatic set where every diagram with spherical boundary is equivalent to a single cell
— its "weak composite" is a reasonable notion of weak ω-category.

This is a model where we can interpret every regular diagram and compose every diagram with spherical boundary. Just "stuff" any diagram with units and it will become regular!
2019

2019
2018

2019
2018
2017

2019

2018
2017
2016

2019

2018
2017
2016
2015

2019
 2018
 2017
 2016
 2015
 2014

2019
 2018
 2017
 2016
 2015
 2014
 2013

2019
 2018
 2017
 2016
 2015
 2014
 2013

2019
 2018
 2017
 2016
 2015
 2014
 2013

1999

2019
 2018
 2017
 2016
 2015
 2014
 2013

1999
1998

2019
 2018
 2017
 2016
 2015
 2014
 2013

1999
1998
1997

2019

2018
2017
2016
2015
2014
2013

1999
1998
1997
1996

2019

2018
2017
2016
2015
2014
2013

1999
1998
1997
1996
1995

2019
2018
2017
2016
2015
2014
2013

1999
1998
1997
1996
1995
1994
2019
2018
2017
2016
2015
2014
2013
1999
1998
1997
1996
1995
1994
1993

The silver age of strict ω-categories

■ 1993: Albert Burroni's Higher-dimensional word problems suggests the theory of polygraphs as an arena to "unify all rewriting theories"

The silver age of strict ω-categories

■ 1993: Albert Burroni's Higher-dimensional word problems suggests the theory of polygraphs as an arena to "unify all rewriting theories"

This started a slowly rising French school of rewriting with polygraphs (Yves Lafont, Philippe Malbos, Yves Guiraud, Samuel Mimram...)
and related work on ω-categories (François Métayer, Georges Maltsiniotis, Dimitri Ara...)

The silver age of strict ω-categories

■ 1993: Albert Burroni's Higher-dimensional word problems suggests the theory of polygraphs as an arena to "unify all rewriting theories"

This started a slowly rising French school of rewriting with polygraphs (Yves Lafont, Philippe Malbos, Yves Guiraud, Samuel Mimram...)
and related work on ω-categories (François Métayer, Georges Maltsiniotis, Dimitri Ara...)
which is why I am in Paris now

The silver age of strict ω-categories

Many of the core ideas in polygraphic rewriting rest on an analogy between
polygraphs and CW complexes, "presented ω-categories" and "presented spaces".

The silver age of strict ω-categories

Many of the core ideas in polygraphic rewriting rest on an analogy between

polygraphs and CW complexes, "presented ω-categories" and "presented spaces".

This analogy is limited by the fact that strict ω-categories do not model all spaces.

Rewriting in diagrammatic sets

I respectfully suggest:
Everything that can be done with polygraphs can be done equally or better with diagrammatic sets.

Rewriting in diagrammatic sets

I respectfully suggest:
Everything that can be done with polygraphs can be done equally or better with diagrammatic sets.

1 Key rewriting operations like substitution, gluing are done combinatorially, not with inductions on algebraic syntax

Rewriting in diagrammatic sets

I respectfully suggest:
Everything that can be done with polygraphs can be done equally or better with diagrammatic sets.

1 Key rewriting operations like substitution, gluing are done combinatorially, not with inductions on algebraic syntax
2 Clear separation between diagrams and composites

Rewriting in diagrammatic sets

I respectfully suggest:
Everything that can be done with polygraphs can be done equally or better with diagrammatic sets.

1 Key rewriting operations like substitution, gluing are done combinatorially, not with inductions on algebraic syntax
2 Clear separation between diagrams and composites
3 Analogy with CW complexes becomes an actual functor

Rewriting in diagrammatic sets

I respectfully suggest:
Everything that can be done with polygraphs can be done equally or better with diagrammatic sets.

1 Key rewriting operations like substitution, gluing are done combinatorially, not with inductions on algebraic syntax
2 Clear separation between diagrams and composites
3 Analogy with CW complexes becomes an actual functor
4 Diagrams can be interpreted in models of all homotopy types, for rewriting homotopies

Rewriting in diagrammatic sets

I respectfully suggest:
Everything that can be done with polygraphs can be done equally or better with diagrammatic sets.

1 Key rewriting operations like substitution, gluing are done combinatorially, not with inductions on algebraic syntax
2 Clear separation between diagrams and composites
3 Analogy with CW complexes becomes an actual functor
4 Diagrams can be interpreted in models of all homotopy types, for rewriting homotopies
5 Lax Gray products, joins are easily defined and computed

Rewriting in diagrammatic sets

The smash product of diagrammatic sets produces this equation, the way it should.

Rewriting in diagrammatic sets

Higher-dimensional rewriting is packed with notions suggestive of a directed homotopy theory.

Rewriting in diagrammatic sets

Higher-dimensional rewriting is packed with notions suggestive of a directed homotopy theory.

The appearance of smash products in diagrammatic algebra seems to me another piece of a puzzle.

Rewriting in diagrammatic sets

Higher-dimensional rewriting is packed with notions suggestive of a directed homotopy theory.

The appearance of smash products in diagrammatic algebra seems to me another piece of a puzzle.

My hope is that diagrammatic sets can make the link between rewriting and homotopy theory tighter, on our way to figuring out what the right notions are.

Rewriting in diagrammatic sets

Higher-dimensional rewriting is packed with notions suggestive of a directed homotopy theory.

The appearance of smash products in diagrammatic algebra seems to me another piece of a puzzle.

My hope is that diagrammatic sets can make the link between rewriting and homotopy theory tighter, on our way to figuring out what the right notions are.

Work in progress:
a model of computation in diagrammatic sets based on a "directed homotopy extension property".

$$
\begin{gathered}
2014 \\
2015 \\
2016 \\
2017 \\
2018 \\
2019 \\
2020
\end{gathered}
$$

Thanks for listening!

Eckmann-Hilton in diagrammatic sets

