
Category theory and diagrammatic reasoning
30th January 2019

Last updated: 30th January 2019

1 Categories, functors and diagrams

It is a common opinion that sets are the most basic mathematical objects. The intuition

of a set is a collection of elements with no additional structure.

When the set is finite, especially when it has a small number of elements, then we can

describe it simply by listing its elements one by one. With infinite sets, we usually give

some algorithmic procedure which generates all the elements, but this rarely completes

the description: that only happens when the set is “freely generated” in some sense.

Example 1. The set N of natural numbers is freely generated by the procedure:

• add one element, 0, to the empty set;

• at every step, if x is the last element you added, add an element Sx.

It is more common that a set X is presented by first giving a set X0 of terms that denote

elements of X, and which is freely generated; and then by giving an equivalence relation

on X0 which tells us when two terms of X0 should be considered equal as elements of

X. This is sometimes called a setoid.

We can present the equivalence relation onX0 as a setX1, together with two functions

X1 X0.
s

t
(1)

You should think of an element f ∈ X1 as a “witness of the fact that s(f) is equal to

t(f) in X”. To transform this into an equivalence relation on X0, we take the relation

x ∼ y if and only if there exists f ∈ X1 such that s(f) = x and t(f) = y

and then close it under the reflexive, symmetric, and transitive properties.

As a mathematical structure, (1) is a directed graph with labelled vertices and edges

(from now on, just a graph). This graph has X0 as its set of vertices, and it has an edge

from s(f) to t(f), labelled f , for all f ∈ X1:

s(f) t(f)f

We will write f : x→ y, in short, for an edge that has s(f) = x and t(f) = y.

The fact is, some equivalence relations can be quite useless. For example, say X0 has

two elements {x, y}, and x ∼ y if and only if the Riemann hypothesis is true: neither of

us can tell whether x = y or x 6= y in X.

1



In practice, many useful equivalence relations come with a procedure to decide when

two elements are equal, performing certain computations with terms; and when we

compute something, there should be a direction towards which we are going, or we may

end up stuck in a loop. In these situations, the “proofs of equality” f ∈ X1 may be seen

as processes going from s(f) to t(f).

Example 2. The set Q>0 of positive rational numbers is generated by pairs (n,m) of

non-zero natural numbers, together with the equivalence relation (n1,m1) ∼ (n2,m2) if

and only if n1m2 = n2m1.

Any positive rational number has a “minimal” representative given by (p, q) such that

gcd(p, q) = 1. So starting from (n,m), we may want to reduce it to this representative,

dividing n and m by their common divisors. We can describe each reduction step by a

triple (n,m, k), where k > 1 is a common divisor of n and m: the triple is telling us that

we can reduce (n,m) by dividing both numbers by k. This corresponds to the graph

X1 := {(n,m, k) | k divides both n and m},

s(n,m, k) := (n,m), t(n,m, k) :=
(n
k
,
m

k

)
.

Exercise 3. Prove that this graph presents Q>0.

Even in very simple situations, if we keep track of all the computations we do with

elements of sets, we are forced to admit we are actually working at least with directed

graphs. When we write something as simple as 2 + 2 = 4, it is not actually the case

that the two sides have the same computational content: for example, by computation,

we can go uniquely from 2 + 2 to a single natural number, 4, but we cannot uniquely

decompose 4 as a sum of two numbers. In other words, the “equality” 2 + 2 = 4 has a

preferred computational direction 2 + 2→ 4.

Of course, the computational interpretation of graphs goes beyond the presentation

of set(oid)s. The structure (1) is the same as a labelled transition system: the elements

of X0 are states of a system, and the edges f ∈ X1 are possible transitions from the

state s(f) to the state t(f). It is also the same as a labelled abstract rewriting system.

In this context, we may not want to consider s(f) and t(f) as “equivalent”.

There are two natural things that we can do with computations:

1. we are in state x and we do nothing, just stay at x;

2. we proceed from x to y by a process f : x→ y, then we proceed from y to z by a

process g : y → z, and so on.

Interpreting the first one requires the structure of a reflexive graph.

Definition 4. A reflexive graph is a graph X together with a function id(−) : X0 → X1

satisfying s(idx) = t(idx) = x for all x ∈ X0.

We call idx the identity on x.

2



For the second one, we need to be able to interpret any finite path in the graph X

as an edge of X. Let

X+
1 := {f1, . . . , fn | fi ∈ X1, t(fi) = s(fi+1)}

be the set of finite paths in a reflexive graph X. The structure that we need is a compo-

sition function m : X+
1 → X1 such that s(m(f1, . . . , fn)) = s(f1) and t(m(f1, . . . , fn)) =

t(fn). Furthermore, we expect it to satisfy some properties:

1. the composite of a path f of length 1 is f itself;

2. composing parts of a path, then composing the composites, is the same as com-

posing the entire path;

3. composing with an identity “does nothing”.

Definition 5. A category is a reflexive graph X together with a composition operation

m : X+
1 → X1, satisfying the following equations whenever the left-hand side is defined:

1. s(m(f1, . . . , fn)) = s(f1) and t(m(f1, . . . , fn)) = t(fn);

2. m(f) = f ;

3. m(f1, . . . , fn) = m(m(f1, . . . , fj), . . . ,m(fk, . . . , fn));

4. m(f, idx) = m(idx, f) = f .

A category has an underlying graph. The vertices of this graph are usually called the

objects of the category. The edges of this graph are called the morphisms, or arrows of the

category. In the prospect of higher-dimensional generalisations, objects and morphisms

may also be called 0-cells and 1-cells, respectively.

If f is a morphism, then s(f) is called the source, and t(f) the target of f . Other

common terms are input and output, or domain and codomain, respectively.

We will write f ; g for m(f, g), and similarly f1; . . . ; fn for m(f1, . . . , fn), whenever

defined. Other common notations for f ; g are g ◦ f and gf ; notice that these reverse the

order in which the morphisms are written.

Remark 6. Strictly speaking, this is the definition what is called a small category; in

general, objects and morphisms may not be required to form a set. For now you should

not be too worried about it.

Remark 7. The more common definition requires a composition m̃ only of paths of length

two, satisfying

m̃(m̃(f, g), h) = m̃(f, m̃(g, h)), m̃(f, idx) = m̃(idx, f) = f,

whenever either side is defined. This is simpler to check, and what you will want to use

in practice.

3



Exercise 8. Prove that the two definitions are equivalent.

Let us look at a few examples.

Example 9. Let X be a graph. We can form a reflexive graph X∗ with

X∗1 := X+
1 + {idx : x→ x |x ∈ X0},

that is, the edges of X∗ are finite paths, possibly of “length 0”, in X. This becomes a

category by letting the composite of two paths be their concatenation. This is called the

free category on a graph.

Example 10. A preorder on a set P is a binary relation ≤ which is reflexive and

transitive, that is, for all x, y, z ∈ P ,

• x ≤ x, and

• if x ≤ y and y ≤ z, then x ≤ z.

A preorder determines a category as follows:

• the objects are the elements of P ;

• there is a unique morphism x→ y if and only if x ≤ y;

• the identity on x is the unique morphism x→ x, which exists because ≤ is reflexive;

• the composite of two morphisms x→ y and y → z is the unique morphism x→ z,

which exists because ≤ is transitive.

Conversely, any category with the property that between any two objects x, y there is

at most one morphism determines a preorder on its set of objects.

Definition 11. An isomorphism f : x → y in a category X is a morphism with the

following property: there is an inverse morphism f−1 : y → x such that f ; f−1 = idx
and f−1; f = idy. We say that two objects x, y are isomorphic if there is an isomorphism

f : x→ y.

A groupoid is a category with the property that all its morphisms are isomorphisms.

Exercise 12. Prove that “being isomorphic” is an equivalence relation on the objects

of a category.

Example 13. In a preorder, two objects x, y are isomorphic if and only if x ≤ y and

y ≤ x. A partial order is exactly a preorder with the property that any two isomorphic

objects are equal. An equivalence relation is a preorder which is also a groupoid.

4



Example 14. A monoid is a set M together with a multiplication operation (x, y) 7→ x·y
and a chosen element e, the unit, satisfying

(x · y) · z = x · (y · z), x · e = e · x = x

for all x, y, z ∈ M . Looking at Remark 7, you should see that a monoid is the same as

a category with a single object ∗: the elements of M are morphisms x : ∗ → ∗, the unit

is id∗, and multiplication is composition of morphisms.

A monoid is a group if all its elements have two-sided inverses: this is the same as a

groupoid with a single object.

Example 15. Most mathematical structures with an underlying set form categories to-

gether with their structure-preserving functions; these are called concrete categories. In

all of these, composition is composition of functions, and identities are identity functions.

These categories are often “large” in the sense that their objects do not form a set, but

we may reduce them to “small” categories by restricting to objects below a certain size

(e.g. sets below a certain cardinality).

Examples are:

• Set whose objects are sets, morphisms are functions;

• Grp whose objects are groups, morphisms are group homomorphisms;

• Veck whose objects are vector spaces over a field k, and morphisms are linear

maps;

• Top whose objects are topological spaces, and morphisms are continuous maps;

and many, many more.

Definition 16. Let x, y be two objects of a category X. The hom-set of morphisms

from x to y is the subset

HomX(x, y) := {f : x→ y}

of the set of morphisms X1.

A morphism f : x → x is called an endomorphism of x. For each x, the hom-set

HomX(x, x) admits the structure of a monoid, whose multiplication is composition of

endomorphisms.

Example 17. If you know some algebraic topology, you may have encountered the

fundamental groupoid of a space X. This is a category defined as follows.

A path in X is a continuous map f : I → X, where I is the closed interval [0, 1]. Let

D be the topological disk; we can subdivide its boundary into two copies ∂−D and ∂+D

5



of I, connected by their extremities:

ı− : I → ∂−D

ı+ : I → ∂+D

D

.

(2)

A homotopy relative to ∂I between two paths f, g : I → X is a map h : D → X such

that ı−;h = f and ı+;h = g. This implies that f(0) = g(0) and that f(1) = g(1). We

say that two paths are homotopic relative to ∂I if there exists such a homotopy: it can

be shown that this is an equivalence relation on paths in X.

The fundamental groupoid π(X) of X is the category so defined:

• the objects are the points of the space X;

• the morphisms f∼ : x→ y are equivalence classes of paths f : I → X with f(0) = x

and f(1) = y, modulo homotopy relative to ∂I;

• the identity on x is the (equivalence class of) the constant path on x;

• the composition of f∼ : x → y and g∼ : y → z is the equivalence class of the

concatenation f ∗ g : [0, 2] → X of the two paths, pre-composed with a fixed

homeomorphism [0, 1]→ [0, 2] (for example t 7→ 2t).

This is well-defined, and is in fact a groupoid: the inverse of f∼ : x→ y is the equivalence

class of the reversed path f∗ : I → X, which is f precomposed with t 7→ (1− t).
For each point x ∈ X, the fundamental group π(X,x) of X at x is the monoid of

endomorphisms Homπ(X)(x, x).

Definition 18. Let X and Y be two categories. A functor F : X → Y is a pair of

functions F : X0 → Y0 and F : X1 → Y1 satisfying the following equations, whenever

the left-hand side makes sense:

1. s(F (f)) = F (s(f)) and t(F (f)) = F (t(f)),

2. F (f ; g) = F (f);F (g), and

3. F (idx) = idF (x).

The functor F is an isomorphism if there exists a functor F−1 : Y → X such that

F ;F−1 : Xi → Xi and F−1;F : Yi → Yi are the identity function, for i = 0, 1. Two

categories are isomorphic if there exists an isomorphism between them.

A functor is an inclusion if it is injective on both objects and morphisms.

6



In words, a functor maps a morphism f : x→ y to a morphism F (f) : F (x)→ F (y),

in such a way that the image of a composite is the composite of the images, and the

image of an identity is an identity.

Definition 19. The identity functor on a category X is the functor idX : X → X whose

components are identity functions on Xi.

Given two functors F : X → Y and G : Y → Z, their composite F ;G : X → Z is the

functor with component functions F ;G : Xi → Zi, for i = 0, 1.

Restricting to categories of small size (so there is a set of them), this defines a

category Cat.

Example 20. The concrete categories of Example 15 have a forgetful functor to Set,

which sends their objects to their underlying sets, and the morphisms to their underlying

functions of sets.

A forgetful functor may factor as a composite of functors progressively forgetting

more and more structure: for example, the forgetful functor U : Veck → Set factors as

U : Veck → Grp, sending a vector space to its underlying abelian group with addition,

followed by U : Grp→ Set.

Exercise 21. What are functors between preorders? And functors between monoids?

Lemma 22. Let f : x → y be an isomorphism in X and F : X → Y a functor. Then

F (f) is an isomorphism in Y .

Proof. Let f−1 : y → x be the inverse of f in X. Then

F (f);F (f−1) = F (f ; f−1) = F (idx) = idF (x),

F (f−1);F (f) = F (f−1; f) = F (idy) = idF (y),

that is, F (f−1) is an inverse to F (f) in Y .

Example 23. Let 1 be the free category on the graph with one vertex and no edges;

this has a single object ∗, and only the identity morphism id∗ : ∗ → ∗. A functor

F : 1→ X maps ∗ to an object F (∗) of X, and the identity on ∗ to the the identity on

F (∗): equivalently, it is the choice of an object of X.

Example 24. Let ~I be the free category on the graph

;

then a functor F : ~I → X is, equivalently, the choice of a morphism of X.

Similarly, letting #n~I be the free category on the linear graph

7



with n consecutive edges (the dotted line stands for a sequence of edges), a functor

F : #n~I → X corresponds to a composable sequence of n morphisms in X.

Then, functors from the free category ∂O2 on the graph

are the same as parallel pairs of morphisms in X, that is, pairs of morphisms with the

same source and target; and functors from the free category ∂O2
n,m

m

n

where the lower semicircle is a sequence of n edges, and the upper one a sequence of m

edges, are the same as parallel paths of morphisms in X.

Exercise 25. What is a functor F : ∂O2 → Set?

In general, we can depict functors from free categories on a graph by labelling the

vertices and edges of these graphs with the names of their images in X. For example,

the functor ∂O2 → X corresponding to a pair of morphisms f, g : x → y is depicted as

the diagram

x y

f

g

.
(3)

Definition 26. Let X be a graph, and F : X∗ → Y a functor from the free category on

X to a category Y . We say that F is a commutative diagram in Y if the images of all

parallel paths in X have equal composites in Y .

Example 27. The functor F : ∂O2 → X depicted in (3) is a commutative diagram if

and only if f = g. A functor F : ∂O2
2,1 → X, that is, a diagram

x

y

z

h

f g

is commutative if and only if h = f ; g.

8



We will often express the fact that a diagram is commutative by placing an equality

sign between two parallel paths, e.g.

x

y

z

h

f g .

Remark 28. In the fundamental groupoid of a space X, two paths f, g with the same

endpoints are declared equal whenever the map

X

from the circle, which is equal to f on the upper semicircle and to g on the lower

semicircle, can be “completed” to (factors through) a map

X

from the disk.

The intuition of a commutative diagram in a category X is the same: any parallel

pair of paths determines a functor

X

which is a commutative diagram if and only if it factors through a functor

X

from the category where the two parallel edges are declared equal (isomorphic to ~I).

Lemma 29. Let F : X∗ → Y be a commutative diagram in Y , and G : Y → Z a

functor. Then F ;G : X∗ → Z is a commutative diagram in Z.

9



Proof. Let p and q be any pair of parallel paths in X. Then F (p) = F (q), and conse-

quently F ;G(p) = G(F (p)) = G(F (q)) = F ;G(q).

The most important fact about commutative diagrams is that they can be composed

together. In the following pictures, a “dotted arrow” means a path of 0 or more edges,

and a “dashed arrow” means a path of 1 or more edges.

Proposition 30. Let F : X∗ → Y be a functor from the free category on a graph X

which has one of the following shapes:

, , , .

If the restrictions of F to the two smaller circles composing the larger circle are both

commutative, then F is commutative.

Proof. We consider the case of a diagram

f

l

k

g

h
(1) (2)

;

the others are analogous. We have F (f ; k) = F (f);F (k) = F (g;h);F (k) by commu-

tativity of the restriction to (1). This is equal to F (g);F (h);F (k) = F (g);F (h; k) =

F (g);F (l) by commutativity of the restriction to (2). Hence F (f ; k) = F (g; l).

This “composition of commutative diagrams” can be iterated. For example, a dia-

gram of shape

is commutative if and only if its restrictions to the three components are: it suffices to

focus on a pair, first, to obtain commutativity of its outer boundary; and then repeat

for the outer boundary of the pair and the third component.

We conclude with a couple of constructions of categories from other categories.

10



Construction 31. Let X be a category. There is a category Xop, the opposite category

of X, whose objects are the same as those of X, and there is a morphism fop : y → x

for each morphism f : x → y of X: that is, Xop is X with “all arrows reversed”. The

identity on x in Xop is idx
op, and the composite gop; fop is defined to be (f ; g)op.

Given a functor F : X → Y , there is a functor F : Xop → Y op, equal to F on objects,

and defined by F (fop) := (F (f))op on morphisms.

Definition 32. A functor F : Xop → Y is called a contravariant functor from X to Y .

It is common to treat contravariant functor as if they were defined on X, rather than

Xop, but reversed the source and target and the direction of composition: for example,

given f : x→ y in X, write F (f) : F (y)→ F (x) for F (fop).

Example 33. The powerset functor P : Setop → Set is the contravariant functor

mapping a set A to its powerset P, and a function f : A → B to the inverse image

function Pf : PB → PA, sending U ⊆ B to f−1(U) ⊆ A.

Construction 34. Let X and Y be two categories. There is a category X × Y , the

product of the categories X and Y , defined as follows:

• objects are ordered pairs (x, y) of an object of X and an object of Y ;

• morphisms (x, y) → (x′, y′) are pairs (f, g) of a morphism f : x → x′ in X and a

morphism g : y → y′ in Y ;

• the unit on (x, y) is (idx, idy);

• the composite of (f, g) and (f ′, g′) is (f ; f ′, g; g′).

Remark 35. The products X × 1 and 1×X are both isomorphic to X.

For all categories X,Y , there are projection functors p1 : X × Y → X and p2 :

X × Y → Y , sending (x, y) to x and y, respectively, and (f, g) to f and y, respectively.

For all objects y of Y , there is an inclusion (−, y) : X → X×Y sending x to (x, y) and

f to (f, idy). Similarly, for all objects x of X, there is an inclusion (x,−) : Y → X × Y
sending y to (x, y) and g to (idx, g).

Example 36. Let X be a category. There is a functor HomX : Xop×X → Set, sending

the object (x, y) to the homset HomX(x, y), and the morphism (fop, h) : (x′, y)→ (x, y′),

corresponding to a pair f : x→ x′ and h : y → y′ of morphisms of X, to the function

HomX(x′, y)→ HomX(x, y′),

g 7→ f ; g;h.

Precomposing with an inclusion (−, x) : Xop → Xop×X gives a contravariant functor

HomX(−, x) : Xop → Set, and precomposing with (x,−) a functor HomX(x,−) : X →
Set. These are called contravariant and covariant homset functors, respectively.

11



Exercise 37. Given two categories X and Y , consider the graph whose vertices are of

the form x� y, where x is an object of X and y an object of Y , and edges are of the

form f � y : x� y → x′ � y or x� g : x� y → x� y′ for all morphisms f : x→ x′ in X and

g : y → y′ in Y .

Then, let X �Y be the category whose objects are the vertices of this graph, and

morphisms are finite paths in this graph, quotiented by the equations

(f � y); (f ′ � y) = (f ; f ′) � y,

(x� g); (x� g′) = x� (g; g′),

idx � y = x� idy = idx � y,

(f � y); (x′ � g) = (x� g); (f � y′),

whenever either side is defined. Prove that X �Y is isomorphic to the product X × Y .

12


	Categories, functors and diagrams

