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4 String diagrams and algebraic theories

String diagrams are an alternative representation for 2-cells and their compositions in

a bicategory. A 2-cell with two 1-cells in its source and one 1-cell in its target has the

following representation as a pasting diagram:

x

y

x

f g

h

α

,

and the following as a string diagram:

h

f g

α

y

x x

.

In their appearance, string diagrams are topological graphs embedded into a square, with

the endpoint of some edges bound to the top or bottom side of the square (a framing of

the graph) and some additional labelling.

The basic recipe is the following:

• 2-cells become nodes in the string diagram;

• 1-cells in the source of a 2-cell become incoming wires, and 1-cells in the target

become outgoing wires (the “flow” goes from bottom to top);

• 0-cells are regions of the plane bounded by the wires.

Remark 1. In the literature, you may also find 2-cells pictured as boxes with their label

inside, instead of nodes.

When there are few 0-cells involved, we may colour-code the regions instead of la-

belling them, with one colour corresponding to each 0-cell: for example, with y colour-

coded as yellow, the diagram above becomes

h

f g

α

.
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Corresponding to the “dotted edge” notation for an indefinite number of sources and

targets, we draw wires with a lighter shade, indicating a repeated pattern:

f1 fn

g1 gm

α

.

g1 gm

f1 fn

α  

In string diagrams, we have the following ways of composing 2-cells:

, , , .

Moreover, there are two conventions generally adopted.

1. Identity 2-cells are drawn as sequences of parallel wires, with no nodes:

f1 fn

f1 fn

id
 f1 fn

.

This is justified by the fact that composing with an identity “changes nothing”,

which in the diagrammatic language is the same as “lengthening wires”, since the

length and curvature of wires in a string diagram have no meaning.

2. Identity 1-cells are not drawn, and the left and right unitor 2-cells are drawn as

identities:

idx f

f

lf
 

f

,

f idy

f

rf
 

f

.

Because identity 1-cells can always be introduced and eliminated freely to the left

and right of other 1-cells, using the unitors and their inverses, this notational choice

is inessential when dealing with 2-cells with at least one non-identity 1-cell in the
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source and in the target: it is the same as “agreeing to always eliminate as many

identity 1-cells as possible”.

The only real effect of this convention is that we can draw diagrams with no

incoming or outgoing wires, such as

, , , ,

and that they can be “moved around” in the way that one intuitively expects.

You may ask: if string diagrams and pasting diagrams convey the exact same informa-

tion, why have two languages instead of one? The answer is that the intuitive usage of

the two languages, hence their heuristic value, is different.

• Pasting diagrams are close both to commutative diagrams in categories, and to

pasting diagrams of topological cells. Consequently, they are ideally suited to the

study of bicategories both as generalisations of categories, and of 2-dimensional

topological spaces.

• On the other hand, string diagrams look like graphs, and have a different “natu-

ral” set of topological manipulations, such as bending wires, or making one wire

cross another. It turns out that important classes of bicategories and monoidal

categories are characterised by the fact that certain topological moves can always

be performed on their 2-cells, pictured in string diagrams.

While the language of string diagrams is surprisingly useful in general bicategories (as we

will see later in the course), in this lecture we will focus on monoidal categories. String

diagrams are particularly intuitive in this context: because there is no “colour-coding”

of the background, the way that the plane is partitioned by the diagram is inessential,

and we can think of going beyond planar embeddings of graphs.

Definition 2. A braided monoidal category is a monoidal category X together with a

family of invertible 2-cells {bx,y : (x, y) ⇒ (y, x)}, called the braidings, parametrised

by pairs x, y of 1-cells, with the following property. Picture bx,y as the following string

diagram:

x

x

y

y

.
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Then, for all 2-cells f and 1-cells x in X, the following hold, with the only compatible

labelling of braidings:

x
f

=

x
f

,

x
f

=

x
f

.

(1)

The way that the braiding 2-cells are drawn is suggestive of their use: braidings are

a way of having wires “cross over” other wires, in such a way that one can “slide” any

other diagram under or over it.

Remark 3. We draw the inverse of bx,y in the following way:

y

y

x

x

,

that is, with the opposite crossing. Then the fact that the bx,y are invertible is expressed

in string diagrams as

= =

,

and the special case of (1) where f is itself a braiding is

=

.

If you have encountered the theory of knots, you may recognise the second and third

Reidemeister move: thus, any 1-cell in any braided monoidal category gives an interpre-

tation of braid equations.

Apart from areas related to knot theory, braided monoidal categories are frequently

encountered in quantum algebra; outside of it, the following “degenerate” case is more

common.

Definition 4. A symmetric monoidal category is a braided monoidal category X with

the property that bx,y = b−1
y,x for each pair of 1-cells x, y.

4



Because in a symmetric monoidal category there is no need to distinguish a braiding

from its inverse, in string diagrams we denote them both by

x

x

y

y

.

This is sometimes called a swap. The axioms (1) become

x
f

=

x
f

,

x
f

=

x
f

.

Thus in a symmetric monoidal category we can rearrange nodes of a string diagram

without being constrained by the planarity of the embedding.

Example 5. The monoidal category Set× is a symmetric monoidal category with the

braidings bS,T : (S, T )⇒ (T, S) given by (x, y) 7→ (y, x) for all x ∈ S and y ∈ T .

Example 6. A meet-semilattice P with greatest element, seen as a monoidal category,

is a symmetric monoidal category whose braiding bx,y is the unique morphism corre-

sponding to the relation x ∧ y ≤ y ∧ x.

In the previous lecture, we saw that, in both these examples, identity 1-cells and

composites of 1-cells also satisfy certain universal properties. Recall that for each pair of

0-cells x, y of a bicategory X, there is a category HomX(x, y) whose objects are 1-cells

x→ y, and morphisms are 2-cells between them.

Remark 7. In what follows, if X is a generic monoidal category, we denote by i the

identity on the unique 0-cell ∗ of X, and by a⊗ b the composite of two 1-cells a, b.

Definition 8. Let X be a monoidal category. We say that X is a cartesian monoidal

category if

1. i is a terminal object of HomX(∗, ∗), and

2. the following pair of 2-cells forms a limit cone in HomX(∗, ∗), exhibiting a ⊗ b as

the product of a and b:

a⊗ b
b

a
!b

c−1
a,b

,
a⊗ b

a

b
!a

c−1
a,b

,

(2)

where !a and !b are the unique morphisms into the terminal object.

5



Exercise 9. Prove that every cartesian monoidal category becomes a symmetric monoidal

category in a canonical way.

In fact, it is possible to give an entirely algebraic definition of cartesian monoidal

categories, as the following result shows.

Theorem 10. Let X be a symmetric monoidal category. The following conditions are

equivalent:

1. X is a cartesian monoidal category;

2. for all 1-cells a, there exist 2-cells

a a

a
,

(copy)

a
,

(discard)

satisfying the following equations:

=

,

=

,

(3)

and, for all 2-cells f ,

f

=

, f

= f f

(4)

with the only compatible labelling of edges.

Proof. Suppose X is cartesian monoidal. For each 1-cell a, we define the discard 2-cell to

be the unique 2-cell da : (a)⇒ (i). Moreover, by the universal property of a⊗a, there is a

unique 2-cell (a)⇒ (a⊗a) corresponding to the cone {ida : (a)⇒ (a), ida : (a)⇒ (a)} in

HomX(∗, ∗). Post-composing it with the inverse of the compositor ca,a : (a, a)⇒ (a⊗a),

we obtain a 2-cell ca : (a)⇒ (a, a): this will be our copy 2-cell.

Exercise 11. Prove that da and ca so defined satisfy equations (3) and (4).
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Conversely, suppose we are given 2-cells ca : (a)⇒ (a, a) and da : (a)⇒ (i) satisfying

the equations. First, let us show that i is terminal in HomX(∗, ∗); we will use the same

names for 2-cells in X and morphisms in HomX(∗, ∗).
For all 1-cells a, the 2-cell da is a morphism da : a → i in HomX(∗, ∗); we need to

show that it is unique. Consider any other morphism f : a → i. We can post-compose

it with di : i→ i; by the leftmost equation of (4),

f ; di = da,

so it suffices to show that di = idi. The copy 2-cell ci : (i)⇒ (i, i), post-composed with a

unitor, gives a 2-cell c̃i : (i)⇒ (i), corresponding to a morphism c̃i : i→ i. The leftmost

equation of (3) implies that

c̃i; di = idi.

Moreover, by the leftmost equation of (4), we have that di; di = di, so

di = idi; di = c̃i; di; di = c̃i; di = idi.

This proves that i is the terminal object.

Now, consider any span {f : c→ a, g : c→ b} in HomX(∗, ∗). We define 〈f, g〉 : c→
a⊗ b to be the composite

c

a⊗ b
ca,b

cc

gf

.

(5)

We have

db

c−1
a,b

ca,b

cc

gf

=
db

cc

g

f =
db

cc

f = f

,

and similarly
da

c−1
a,b

ca,b

cc

gf

= g

.
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This proves that the cone {f : c → a, g : c → b} factors through the cone (2) via the

morphism (5).

Suppose that there is another morphism h : c→ a⊗ b with the same property. Then

ca,b

cc

gf =

ca,b

cc

db da

c−1
a,bc−1

a,b

hh

=

ca,b

c−1
a,b

db da

cbca

h

=

ca,b

c−1
a,b

h

and this is equal to h. This proves uniqueness of the factorisation, and completes the

proof that a⊗ b is a product of a and b.

Example 12. In Set×, the copy and discard 2-cells for a set S are given, respectively,

by

1. the diagonal function defined by x 7→ (x, x) for each x ∈ S, and

2. the unique function x 7→ ∗ from S to the one-element set.

Example 13. In a meet-semilattice P with greatest element >, copy and discard for an

element x correspond to the relations x ≤ x ∧ x and x ≤ >, valid for all elements of P .

As an exercise in diagrammatic reasoning, let us prove a couple of derived properties

of the copy 2-cells in a cartesian monoidal category.

Proposition 14. The following equations hold for copy 2-cells in all cartesian monoidal

categories:

=

,

=

.

Proof. For the first one

= = =

,

and for the second one

= = =

.
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A far-reaching observation, due to Lawvere, is that the structure of a cartesian

monoidal category is exactly what is needed to define a model of an algebraic theory.

Definition 15. Let Var be a fixed, countably infinite set of variables, and let F be a

set of functional symbols together with a function F → N assigning to each symbol its

arity. A functional symbol with arity 0 is called a constant.

The set of terms on F , together with a set free(t) of free variables of each term t,

are defined inductively as follows:

• each x ∈ Var is a term, and free(x) := {x};

• each constant c ∈ F is a term, and free(c) := ∅;

• if f ∈ F has arity n > 0 and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term, and

free(f(t1, . . . , tn)) :=
⋃n

i=1 free(ti).

An algebraic theory T on F is given by a set E of pairs (t1, t2) of terms on F , to be read

as equations t1 = t2.

A (set-theoretic) model of T is given by a set A, together with a function f : An → A

for each functional symbol f ∈ F with arity n, such that, for each pair (t1, t2) ∈ E, the

equation t1 = t2 holds under all instantiations of free variables in free(t1) ∪ free(t2) as

elements of A.

Construction 16. We can rephrase the definition of an algebraic theory in terms of

diagrams in a cartesian monoidal category. We represent an n-ary function symbol f as

a diagram

f

.

(6)

with n incoming wires, all with the same label (left implicit). We call this a generator

of the theory.

Next, we will represent terms on F as diagrams, in such a way that the free variables

of a term t are in bijection with the incoming wires of the diagram that represents it.

We interpret a variable x and a constant c as

,

c

,
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respectively. For the inductive step, suppose we have fixed a total order on Var, and

suppose we have the interpretation of the terms t1, . . . , tn as certain diagrams

ti

;

then, first we form the composite

f

t1 t2 tn

.

(7)

Each incoming wire of ti corresponds to a unique free variable of ti; let us temporarily

label each incoming wire of (7) with that variable. If two wires have the same label x,

we plug the two outgoing wires of a copy 2-cell into them, and label the incoming wire

x:

x
x

x

ti ti+1 tj

.

We keep plugging copy 2-cells until there are no incoming wires with the same label; it

follows from Proposition 14 that the order in which this is done does not matter.

Finally, we use braidings to permute the incoming wires so that the leftmost wires

have labels that come before in the total ordering on Var.

This gives an interpretation of all terms t. Now, to interpret an equation t1 = t2 as

an equation of diagrams, we need to make sure that

1. the two diagrams have the same number of incoming wires, and that

2. the i-th incoming wire of one diagram corresponds to the same free variable as the

i-th incoming wire of the other diagram.

For that, we take the interpretation of t1 as a diagram; then, for each free variable of t2
which is not a free variable to t2, we add a discard 2-cell to the diagram, whose incoming

wire is in the correct position with respect to the fixed ordering on Var. Then, we do

the same with the interpretation of t2 as a diagram.
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Definition 17. The algebraic theory of semigroups has a binary functional symbol m

and a unique equation

m(x,m(y, z)) = m(m(x, y), z).

The algebraic theory of monoids extends it with a constant e, and equations

m(e, x) = x, m(x, e) = e.

In diagrams (and with the ordering of variables x < y < z) these become

m

m
=

m

m

,

m

e

=

,

m

e

=

.

The theory of commutative monoids has the additional equation m(y, x) = m(x, y); in

string diagrams,
m

=

m

.

Definition 18. The algebraic theory of groups extends the theory of monoids with a

unary functional symbol s and the equations

m(s(x), x) = e, m(x, s(x)) = e.

In string diagrams, these are

m

s =
e

,

m

s =
e

.

(8)

Recalling the interpretation of copy and discard in Set×, you should be able to

convince yourself that a set-theoretic model of T is the same as an interpretation of the

diagrams (6) in Set× such that all the diagrammatic equations hold.

Because all that is needed to make sense of the diagrams is the structure of a cartesian

monoidal category, we can generalise the notion of model.
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Definition 19. Let T be an algebraic theory, and consider its diagrammatic presentation

as in Construction 16. Let X be a cartesian monoidal category. A model of T in X is

an interpretation of the generators of T in X such that all the diagrammatic equations

hold.

When T is the theory of “something”, it is common to call a model of T in X an

“internal something” in X. For example, a model of the theory of monoids in X is an

internal monoid in X.

Example 20. An internal model of T in Set× is the same as a set-theoretic model of

T . In particular, internal monoids in Set× are monoids, internal groups are groups, and

so on.

Example 21. Consider the cartesian monoidal category Top×, defined in a similar way

to Set×, whose 1-cells are topological spaces, and 2-cells (X1, . . . , Xn) ⇒ (Y1, . . . , Ym)

correspond to maps X1 × . . .×Xn → Y1 × . . .× Ym that are continuous with respect to

the product topology.

Internal groups in Top× are topological groups: that is, group structures on topo-

logical spaces whose multiplication and inverse operations are all continuous maps.

Exercise 22. Let P be a meet-semilattice with greatest element. What is an internal

semigroup in P? What is an internal monoid in P?

Notice that for some algebraic theories, the entire structure of a cartesian monoidal

category is not needed to make sense of the diagrammatic equations, because they do

not use braidings, copy, or discard: for example,

• the equations of monoids can be interpreted in any monoidal category;

• the equations of commutative monoids in any symmetric monoidal category.

This means that we can make sense of internal monoids in any monoidal category, and

of internal commutative monoids in any symmetric monoidal category.

Example 23. There is a symmetric monoidal category Ab⊗ whose 1-cells are abelian

groups, and 2-cells (X1, . . . , Xn) ⇒ (Y1, . . . , Ym) are homomorphisms X1 ⊗ . . . ⊗Xn →
Y1 ⊗ . . .⊗ Ym between tensor products of abelian groups.

An internal monoid in Ab⊗ is the same as a ring ; an internal commutative monoid

in Ab⊗ is a commutative ring.

Then one can think of completely dropping the “logical” framework, and defining

“generalised algebraic theories” directly by generators and relations in the language of

string diagrams. What one obtains in the cartesian monoidal case is called a Lawvere

theory, in the symmetric monoidal case a PROP, and in the monoidal case a PRO.
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In the cartesian monoidal case, generators with multiple outputs do not introduce

anything new, because they are entirely characterised by their single-output projections.

In general, however, coalgebraic theories involving single-input, many-outputs operations

are as rich as their algebraic counterparts.

Definition 24. The theory of comonoids is presented by the generators

c

,

d

,

called comultiplication and counit, together with the equations

c

c
=

c

c ,

c

d

=

,
c

d

=

.

The theory of cocommutative comonoids has the additional equation

c

=

c
.

Example 25. There is a symmetric monoidal category Veck,⊗ whose 1-cells are vector

spaces over a field k, and 2-cells (V1, . . . , Vn)⇒ (W1, . . . ,Wm) are linear maps V1⊗ . . .⊗
Vn →W1 ⊗ . . .⊗Wm between tensor products of vector spaces.

Any choice of a basis {ei} on V gives an internal cocommutative comonoid in Veck,⊗,

with comultiplication c : V → V ⊗ V and counit d : V → k defined by

c : ei 7→ ei ⊗ ei, d : ei 7→ 1

on basis elements.

By Theorem 10 and Proposition 14, every 1-cell in a cartesian monoidal category

has the structure of an internal cocommutative comonoid, with copy as comultiplication

and discard as counit; this is, in fact, the only possibility.
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Also by Theorem 10, cartesian monoidal structure can be presented equationally:

even in an algebraic theory whose equations make use of “copy” and “discard”, we can

treat the latter simply as additional generators with their own equations, rather than

structure. Applying this idea to the algebraic theory of groups, we obtain the following.

Definition 26. The theory of bialgebras is presented by the generators of the theories

of monoids and comonoids, together with the equations of the theories of monoids and

comonoids, and the following additional equations:

=

,

=

,

=

,

=

.

The theory of Hopf algebras contains an additional generator s and equations (8) as in

the theory of groups.

In a cartesian monoidal category X, the comonoid is interpreted as the (only possible)

copy-discard comonoid, and the additional equations of bialgebras are all special cases

of (4). Thus an internal bialgebra in X is the same as an internal monoid in X, and an

internal Hopf algebra in X is the same as an internal group in X.

In general symmetric monoidal categories, however, there can be internal monoids

that are not part of a bialgebra structure. Internal Hopf algebras in various symmetric

monoidal categories have a rich theory, with important applications in algebraic topology,

representation theory, and mathematical physics.
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