
Category theory and diagrammatic reasoning
27th February 2019

Last updated: 10th March 2019

5 The Curry-Howard-Lambek correspondence

In the previous lectures, we have considered two main examples of monoidal categories:

the monoidal category Set× of sets and functions, and meet-semilattices. We have seen

that, in fact, both are cartesian monoidal categories. There is more: Set× has right

Kan extensions of every 1-cell along any 1-cell.

Definition 1. A symmetric monoidal closed category is a symmetric monoidal category

X together with a right Kan extension eva,b of every 1-cell b along every 1-cell a, called

an evaluator.

If X is cartesian, we say that it is a cartesian closed category.

Hence Set× is cartesian closed with evaluation functions as evaluators; so is every

meet-semilattice P with implications. Now, consider P as an model of propositional logic:

elements of P model propositions A,B, . . . and the partial order models an entailment

relation, written A ` B and read “B follows from A”. The same structure of a cartesian

closed category is expressed in quite different ways:

cartesian closed category Set× P

1-cells sets propositions

2-cells functions entailment

1-cell composition cartesian product S × T conjunction A ∧B
identity 1-cell one-element set {∗} true proposition >

right Kan extension function set TS implication A→ B

braiding (x, y) 7→ (y, x) A ∧B ` B ∧A
copy x 7→ (x, x) A ` A ∧A

discard x 7→ ∗ A ` >

This is a classical instance of a three-way correspondence between categories, processes

and logic, called the Curry-Howard-Lambek correspondence. Since its discovery in the

1970s, it has illuminated aspects of each of its branches, and is considered today a

fundamental concept in theoretical computer science.

To understand this correspondence, let us spell out what it means for P to be a

“model of propositional logic”. Logical reasoning is commonly formalised as a sequent

calculus: this is given by proof rules of the form

{Γi ` ∆i}i∈I
r

Γ ` ∆
(1)

1

where the Γi,Γ,∆i,∆ are sequences of formulas, and the rule states that when ∆i follows

from Γi for each i ∈ I, then ∆ follows from Γ. The top line of a rule is called the premise,

and the bottom line the consequence of a rule.

Each expression of the form Γi ` ∆i is called a sequent. The sequent calculus is said

to be intuitionistic if the right-hand of each sequent contains a single formula.

The rules of a sequent calculus are usually divided into structural rules, not related

to any particular logical connective, and logical rules. Logical rules often come in pairs,

one pair for each connective:

• in a natural deduction-style sequent calculus, each connective has one introduction

rule and one elimination rule;

• in a Gentzen-style sequent calculus, each connective has two introduction rules,

one for each side of a sequent.

We will only use Gentzen-style sequent calculus. We assume to have fixed a set of

propositional atoms, and use A,B, . . . as variables for generic formulas.

Definition 2. The sequent calculus LJ∧→ for the fragment of intuitionistic logic with

connectives (∧,→) has a set of formulas defined as follows:

• propositional atoms are formulas;

• if A and B are formulas, then A ∧B and A→ B are formulas.

It has the following structural rules:

ax
A ` A

Γ1, A,B,Γ2 ` C
exc

Γ1, B,A,Γ2 ` C

Γ, A,A ` B
ctr

Γ, A ` B

Γ ` B
wkn

Γ, A ` B
called axiom, exchange, contraction, and weakening, respectively, together with the fol-

lowing logical rules:

Γ, A,B ` C
∧L

Γ, A ∧B ` C

Γ1 ` A Γ2 ` B
∧R

Γ1,Γ2 ` A ∧B

A,Γ ` B
→R

Γ ` A→ B

Γ1 ` A B,Γ2 ` C
→L

Γ1, A→ B,Γ2 ` C

2

Example 3. The following is a proof of the sequent (A → B) ∧ (B → C) ` A → C,

that is, transitivity of implication, in LJ∧→:

ax
A ` A

ax
B ` B

→L
A,A→ B ` B

ax
B ` B

ax
C ` C

→L
B,B → C ` C

→L
A,A→ B,B → C ` C

→R
A→ B,B → C ` A→ C

∧L
(A→ B) ∧ (B → C) ` (A→ C)

In addition to the basic rules, one can state several admissible rules: a rule is admis-

sible in a sequent calculus if from any proof of its premise, one can construct a proof of

its consequence.

Exercise 4. Show that the following rules are all admissible for LJ∧→:

ax′
Γ, A ` A

Γ ` A
exc′

σ(Γ) ` A

where σ is an arbitrary permutation of the formulas in Γ.

Consider the following rule:

Γ1 ` A A,Γ2 ` B
cut

Γ1,Γ2 ` B

This can be seen as a sequent-version of modus ponens, and is the logical rule that most

closely mirrors our practical reasoning: instead of proving the “theorem” Γ ` B directly,

we decompose the “hypotheses” Γ into two subsets Γ1,Γ2, and then decompose the

theorem into a “lemma” Γ1 ` A with fewer hypothesis, and another lemma A,Γ2 ` B.

A celebrated result by Gentzen, which he proved in greater generality, says the following

when restricted to LJ∧→.

Theorem 5 (Cut-elimination). The rule cut is admissible in LJ∧→.

The proof proceeds by a case analysis on the last steps of the derivation of the

premise of a cut rule: at each step, the cut rule is “moved up” in the derivation tree,

until finally we reach cuts where one premise is obtained by an axiom rule, which can

safely be eliminated. Cut-elimination has a number of remarkable consequences: most

importantly, that provability of a sequent in LJ∧→ is decidable.

Let us return to the semantics. A meet-semilattice with implications P is a model for

LJ∧→ in the following sense. Given any interpretation JAK := x of propositional atoms

as elements of P , we can

3

1. define interpretations JA ∧ BK := JAK ∧ JBK and JA → BK := JAK → JBK of

composite formulas,

2. so that, for each rule r of LJ∧→ written as in (1), if JΓiK ≤ J∆iK for all i ∈ I, then

JΓK ≤ J∆K in P .

Rephrasing in categorical language: given any interpretation JAK of propositional atoms

as 1-cells, we can

1. define 1-cells JA ∧BK and JA→ BK;

2. for each rule r, given any interpretation JΓi ` ∆iK of the premises of r as 2-cells

(JΓiK)⇒ (J∆iK), we can define a 2-cell (JΓK)⇒ (J∆K).

We can now see that any cartesian closed category is a model of LJ∧→ in this generalised

sense.

Construction 6. Let X be a cartesian closed category, ca,b : (a, b) ⇒ (a × b) its

compositors, and eva,b : (a, a→ b)⇒ (b) its evaluators.

We fix an interpretation JAK of propositional atoms as 1-cells of X. We extend this

to all formulas of LJ∧→ by

JA ∧BK := JAK× JBK, JA→ BK := JAK→ JBK.

Next, we define the interpretation of each rule of LJ∧→. To avoid being pedantic, we

will omit brackets in the source and target of 2-cells when there is no ambiguity.

Structural rules.

1. Axiom rule. There are no premises; the consequence is interpreted as idJAK : JAK⇒
JAK.

2. Exchange rule. For any interpretation f : JΓ1K, JAK, JBK, JΓ2K ⇒ JCK of the

premise, the consequence is interpreted as

JBK JAK

f

.

3. Contraction rule. For any interpretation f : JΓK, JAK, JAK ⇒ JBK of the premise,

the consequence is interpreted as

JAK

f

cJAK,JAK

.

4

4. Weakening rule. For any interpretation f : JΓK ⇒ JBK of the premise, the conse-

quence is interpreted as

JAK

f

dJAK

.

Logical rules.

1. Left ∧-introduction. For any interpretation f : JΓK, JAK, JBK⇒ JCK of the premise,

the consequence is interpreted as

JAK×JBK

f

c−1JAK,JBK

.

(2)

2. Right ∧-introduction. For any interpretation f : JΓ1K ⇒ JAK and g : JΓ2K ⇒ JBK
of the premises, the consequence is interpreted as

JAK×JBK

f g

cJAK,JBK

.

3. Right →-introduction. For any interpretation f : JAK, JΓK ⇒ JBK of the premise,

the consequence is interpreted as the unique 2-cell λ1f : JΓK⇒ JAK→ JBK satisfy-

ing

JAK

JBK

λ1f

evJAK,JBK

.

JAK

JBK
f

=

4. Left →-introduction. For any interpretation f : JΓ1K ⇒ JAK and g : JBK, JΓ2K ⇒
JCK of the premises, the consequence is interpreted as

f

evJAK,JBK

g

.

5

Remark 7. Because cut is admissible, we expect to be able to interpret it. Indeed,

for any interpretation f : JΓ1K ⇒ JAK and g : JAK, JΓ2K ⇒ JBK of its premises, the

consequence is interpreted as

JAK

f

g

.

Remark 8. The interpretations of the right ∧-introduction rule and of the left →-

introduction rules are analogous: we “plug” the interpretations of the two premises

into the universal 2-cells ca,b and eva,b, in the only possible way.

The interpretation of right→-introduction is the solution of a division problem. It is

possible to rephrase the interpretation of left ∧-introduction in a way that it mirrors it,

using the characterisation of isomorphisms as universal morphisms: (2) is, equivalently,

the unique f̃ satisfying

JAK JBK

cJAK,JBK

f̃

.
JAK JBK

f

=

The other way around, we can say that each of the 2-cells ca,b and eva,b gives rise

both to a “composition problem” (what can we compose along the wires labelled a and

b?) and to a “division problem” by their universal property, and their solutions are the

interpretation of the left and the right introduction rule associated to a connective.

The same analysis can be applied to other logical connectives, which we will not treat

here.

Exercise 9. Exhibit a cartesian closed category with 1-cells a, b such that there are no

2-cells ((a→ b)→ a)⇒ (a). Deduce that the sequent (A→ B)→ A ` A is not provable

in LJ∧→.

Does A follow from (A→ B)→ A in classical logic?

Through the interpretation of sequent calculus in a cartesian closed category X, we

turn the process of proving, or deriving a sequent, into the process of constructing a

2-cell of X. This 2-cell is the interpretation of a derived sequent, but importantly, if X

is rich enough, it can contain information on the particular way that the sequent has

been proven.

Indeed, in the traditional algebraic models, such as a meet-semilattice P , because

there is at most one 2-cell with any given source and target, any proof of a sequent will

6

give rise to the same interpretation. Thus, the interpretation of a sequent Γ ` ∆ in P

only exhibits the fact that Γ ` ∆ is provable.

On the other hand, in a richer model — such as Set× — we can actually distinguish

two proofs of the same sequent via their interpretation. For example, consider the

following two proofs of A ∧A ` A:

ax
A ` A

wkn
A,A ` A

∧L
A ∧A ` A

and

ax
A ` A

wkn
A,A ` A

exc
A,A ` A

∧L
A ∧A ` A

Their interpretations in an arbitrary cartesian closed category are

JAK

JAK

c−1JAK,JAK

,

JAK

JAK

c−1JAK,JAK

,

which are the two different projections of JAK × JAK onto JAK. In Set×, if JAK has at

least two elements, these are different functions: (x, y) 7→ x and (x, y) 7→ y.

Therefore, the categorical models of logic imply a shift: from a semantics of prov-

ability (“if something is provable, then it has a model”) to a semantics of proofs.

Remark 10. Decades before categorical semantics were discovered, a number of logicians

proposed what is known as the Brouwer-Heyting-Kolmogorov (BHK) interpretation of

logic. According to BHK, the meaning of a formula is given by its proofs: for an atomic

formula A, we are free to choose what constitutes a proof of A; for a composite formula,

the standard of proof is fixed by that of its components. For example:

• a proof of A ∧B is a pair of a proof of A and a proof of B;

• a proof of A→ B is a process turning a proof of A into a proof of B.

If we read “process” as “function”, this is compatible with the semantics of LJ∧→ in

Set×, under the interpretation that JAK is the “set of proofs of A”. Then JA ∧ BK is

exactly the “set of pairs of a proof of A and a proof of B”, and JA → BK the “set of

functions sending proofs of A to proofs of B”.

This is a useful picture to have in mind, but by itself it does no justice either to the

BHK interpretation, or to categorical semantics:

1. on the one hand, both the notion of proof and the notion of process in BHK are

deliberately vague, so they are compatible with a number of more interesting and

dynamic interpretations than “elements of a set” and “functions”;

7

2. on the other hand, there are categorical semantics of logic in which any “func-

tional” or “process-theoretic” interpretation is a stretch; for example topological

interpretations where a proof is interpreted as a tangle.

Since in deriving a sequent in LJ∧→, we are also constructing a 2-cell in a cartesian

closed category, we may think of labelling each sequent with a term which denotes that

2-cell. Fortunately, the right language for the job predates even the definition of category

by a few decades: it is the λ-calculus.

Given the ample literature available on the subject, we will be brief on the definition

of the λ-calculus, of which we consider a version with pairings and projections.

Definition 11. The set of terms of the λ-calculus (or λ-terms), together with a set

free(t) of free variables of each term t, are defined inductively as follows:

• each variable x is a term with free(x) := {x};

• if t and u are terms, then 〈t, u〉 and tu are terms, with free(〈t, u〉) = free(tu) :=

free(t) ∪ free(u);

• if t is a term, then π1t and π2t are terms, with free(π1t) = free(π2t) := free(t);

• if t is a term and x a variable, then λx.t is a term, with free(λx.t) := free(t) \ {x}.

Terms are considered modulo α-equivalence, that is, the renaming of bound (non-free)

variables and their binders: for example, λx.x is α-equivalent to λy.y.

The substitution u[t/x] of a term t for a variable x inside a term u is defined by:

• x[t/x] := t, and y[t/x] := y if y 6= x;

• 〈u1, u2〉[t/x] := 〈u1[t/x], u2[t/x]〉;

• (πiu)[t/x] := πi(u[t/x]), for i = 1, 2;

• u1u2[t/x] := (u1[t/x])(u2[t/x]);

• (λy.u)[t/x] := λy.u[t/x] assuming y /∈ free(x) ∪ free(t).

The condition in the last clause can always be realised working modulo α-equivalence.

We will also write u[t/x, t′/y] for the simultaneous substitution of t for x and t′ for y.

The relation β of β-reduction on terms is defined by

• (λx.t)u β t[u/x],

• π1〈t, u〉 β t and π2〈t, u〉 β u,

• if t β t
′, then tu β t

′u, ut β ut
′, πit β πit

′, 〈t, u〉 β 〈t′, u〉, 〈u, t〉 β 〈u, t′〉,
and λx.t β λx.t

′.

8

We write ∗β for the transitive, reflexive closure of β. A term t is said to be in normal

form if there is no β-reduction from t to another term.

Construction 12. Now, we will use terms of the λ-calculus to label sequents of LJ∧→ in

a way that denotes their interpretation in a cartesian closed category. The labelling of a

sequent A1, . . . , An ` B by a term t is done in type-theoretic style, as a typing judgment

for t:

x1 : A1, . . . , xn : An ` t : B,

where free(t) ⊆ {x1, . . . , xn} and the xi are all distinct. The left-hand side of the sequent

is called a context for the typing judgment.

We will still use Γ,∆, . . . for sequences of typed variables x1 : A1, . . . , xn : An. We

call an entire sequent Γ ` t : B a typed term, and say that t has type B in the context Γ.

Structural rules.

ax
x : A ` x : A

Γ1, x : A, y : B,Γ2 ` t : C
exc

Γ1, y : B, x : A,Γ2 ` t : C

Γ, x : A, y : A ` t : B
ctr

Γ, z : A ` t[z/y, z/x] : B

Γ ` t : B
wkn

Γ, z : A ` t : B

where in ctr and wkn the variable z is fresh (does not appear elsewhere in the context).

Logical rules.

Γ, x : A, y : B ` t : C
∧L

Γ, z : A ∧B ` t[π1z/x, π2z/y] : C

Γ1 ` t : A Γ2 ` u : B
∧R

Γ1,Γ2 ` 〈t, u〉 : A ∧B

x : A,Γ ` t : B
→R

Γ ` λx.t : A→ B

Γ1 ` u : A x : B,Γ2 ` t : C
→L

Γ1, z : A→ B,Γ2 ` t[zu/x] : C

where in ∧L and →L the variable z is fresh.

It is clear that the term so constructed is only unique up to α-equivalence.

Example 13. The following is the derivation of the typed λ-term corresponding to the

proof of Example 3:

ax
x : A ` x : A

ax
x′ : B ` x′ : B

→L
x : A, y : A→ B ` yx : B

ax
w : B ` w : B

ax
w′ : C ` w′ : C

→L
w : B, z : B → C ` zw : C

→L
x : A, y : A→ B, z : B → C ` z(yx) : C

→R
y : A→ B, z : B → C ` λx.z(yx) : A→ C

∧L
w : (A→ B) ∧ (B → C) ` λx.π2w((π1w)x) : A→ C

9

Exercise 14. Give a proof in LJ∧→ of the following sequents:

A→ (A→ B) ` A→ B, A→ (B → C) ` (A→ B)→ (A→ C).

In both cases, construct the corresponding typed λ-term.

The typed λ-terms that are derivable in LJ∧→ have a quite restrictive property: they

are all in normal form. We can obtain non-normalised typed λ-terms by adding the

following, labelled cut rule:

Γ1 ` t : A x : A,Γ2 ` u : B
cut

Γ1,Γ2 ` u[t/x] : B

For example, we can obtain a β-reducible term of the form (λx.t)u as follows:

... (a)

x : A,Γ1 ` t : B
→R

Γ1 ` λx.t : A→ B

... (b)

Γ2 ` u : A
ax

z : B ` z : B
→L,exc

y : A→ B,Γ2 ` yu : B
cut

Γ ` (λx.t)u : B

The typed terms that we can construct in LJ∧→ + cut are called simply-typed.

A step of Gentzen’s cut-elimination proof for LJ∧→ turns this into the following:

... (b)

Γ2 ` u : A

... (a)

x : A,Γ1 ` t : B
cut,exc

Γ ` t[u/x] : B

which is a derivation of the immediate β-reduction of the original term.

One can do a similar analysis of the entire cut-elimination proof, and obtain a cor-

respondence

cut-elimination steps ⇔ β-reduction steps

and ultimately

cut-elimination ⇔ reduction to normal form.

In this sense, proofs of LJ∧→+cut with cut-elimination as a dynamics and simply-typed

λ-terms with β-reduction as a dynamics are equivalent models of computation.

What do the categorical models make of this? Given a derivation of Γ ` t : B, we

write JtK : JΓK⇒ JBK for the corresponding 2-cell in a cartesian closed category X.

Proposition 15. Suppose that Γ ` t : B is derivable in LJ∧→+cut, and t β t
′. Then

in any cartesian closed category X, under any interpretation of propositional atoms,

JtK = Jt′K.

10

What this result intuitively says is that the dynamics of sequent calculus and λ-

calculus are invisible to the categorical models: if a proof or typed λ-term is the definition

of a process which computes a function, then the categorical interpretation can tell at

most what function is being computed, and not how it is computed.

This is often expressed by saying that categorical semantics are a denotational seman-

tics, giving the “denotation” of a program (what it computes), rather than an operational

semantics, modelling how the program is executed.

Remark 16. Any categorical interpretation also identifies terms related by η-expansion:

this is a relation restricted to simply-typed λ-terms, given by

• t η λx.tx if t has a type of the form A→ B and x /∈ free(t), and

• t η 〈π1t, π2t〉 if t has a type of the form A ∧B.

The equivalence relation obtained as the union of the reflexive, symmetric, transitive

closures of β and η, called λ-conversion, is the minimal equivalence relation respected

by all interpretations in cartesian closed categories. In fact, one can define a “syntactic

model” whose 1-cells are formulas of LJ∧→, and 2-cells are simply-typed λ-terms modulo

λ-conversion, and prove that it is a cartesian closed category.

Remark 17. As cut-elimination always reduces a proof in LJ∧→+cut to a proof in LJ∧→,

so β-reduction always reduces a simply-typed λ-term to normal form.

However, the latter is not true of general λ-terms: λ-terms can encode recursion, in

such a way that β-reduction diverges. Famously, the term

Y := λf.(λx.f(xx))(λx.f(xx))

satisfies Yt ∗β t(Yt) for all terms t, and iterating we have

Yt ∗β t(Yt)
∗
β t(t(Yt))

∗
β . . . ,

a divergent computation. In particular, Y is not simply-typed.

However, we can still interpret a generic λ-term in a cartesian closed category with

a 1-cell a such that a× a and a→ a are both isomorphic to a, so that we can choose a

compositor ca,a : (a, a)⇒ (a) and an evaluator eva,a : (a, a)⇒ (a).

If we interpret all propositional atoms as a, we will have JAK = a for all formulas A

of LJ∧→. We can then “forget the typing” in LJ∧→+cut, and obtain a pure calculus of

λ-terms: for example, the cut rule becomes

Γ1 ` t x,Γ2 ` u
cut

Γ1,Γ2 ` u[t/x]

11

In this system, we can actually construct any λ-term. For example, the generic applica-

tion tu of a term t to a term u is obtained as

...

Γ1 ` t

...

Γ2 ` u
ax

z ` z
→L,exc

y,Γ2 ` yu
cut

Γ1,Γ2 ` tu

Still, we can interpret any such term as a 2-cell (a, . . . , a) ⇒ (a), following the steps of

Construction 6.

Exercise 18. Complete Remark 17, by constructing derivations of all λ-terms in the

“type-free” sequent calculus.

Example 19. There is a cartesian closed category whose only non-identity 1-cell is the

set N of natural numbers, and 2-cells (N, n. . .,N)⇒ (N, m. . .,N) are computable numerical

partial functions of n variables returning m natural numbers (or more precisely, partial

functions whose projections are partial recursive functions of n variables).

There is a computable bijective pairing function 〈−,−〉 encoding pairs of natural

numbers as natural numbers; this will be our compositor cN,N : (N,N)⇒ (N). Moreover,

we can fix a Gödel numbering of partial recursive functions, in such a way that there is a

computable function sending a pair of numbers (n, e) to fe(n) if and only if e is the Gödel

number of fe and fe is defined on n: this will be our evaluator evN,N : (N,N)⇒ (N).

Proceeding as in Remark 17, we obtain a model of λ-terms as partial recursive

functions.

Remark 20. In the previous lecture, we saw how we can interpret algebraic theories in

cartesian monoidal categories. Then, we noticed that some theories do not need the

entire structure of a cartesian monoidal category: a symmetric monoidal category, or

even a monoidal category can suffice.

The same reasoning can be applied to the semantics of logic in cartesian closed

categories. The cartesian structure is only used in the interpretation of contraction and

of weakening : a proof which does not make use of these rules may be interpreted in a

symmetric monoidal closed category, a symmetric monoidal category with all right Kan

extensions.

The sequent calculus that one obtains from LJ∧→ by removing contraction and weak-

ening is a fragment of linear logic, introduced 30 years ago by Jean-Yves Girard. This

is much more than just a “subtraction process”: for example, certain rules which are

usually mutually derivable become independent without contraction and weakening. In

particular, one can decompose ∧ into a pair of independent connectives, ⊗ (tensor,

12

or multiplicative conjunction) and & (with, or additive conjunction), and similarly for

disjunction.

We can also consider removing the exchange rule, which leads to a non-commutative

logic, with semantics in a (non-symmetric) monoidal category. Non-commutative logic is

compatible with the existence of a “right implication” (modelled by right Kan extensions)

and a “left implication” (modelled by right Kan lifts, duals of extensions via (−)op).

While somewhat less developed than linear logics, non-commutative logics have been

studied for the modelling of the syntax of natural language.

In general, logics that reject certain structural rules are called substructural ; they

form a rich field of research on their own, one that has been particularly illuminated by

categorical semantics.

13

	The Curry-Howard-Lambek correspondence

