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Abstract. We identify the algebraic structure of the material histo-
ries generated by concurrent processes. Specifically, we extend existing
categorical theories of resource convertibility to capture concurrent in-
teraction. Our formalism admits an intuitive graphical presentation via
string diagrams for proarrow equipments.

1 Introduction

Concurrent systems are abundant in computing, and indeed in the world at large.
Despite the large amount of attention paid to the modelling of concurrency in
recent decades (e.g., [1,10,16–18]), a canonical mathematical account has yet to
emerge, and the basic structure of concurrent systems remains elusive.

In this paper we present a basic structure that captures what we will call
the material aspect of concurrent systems: As a process unfolds in time it leaves
behind a material history of effects on the world, like the way a slug moving
through space leaves a trail of slime. This slime is captured in a natural way by
resource theories in the sense of [4], in which morphisms of symmetric monoidal
categories – conveniently expressed as string diagrams – are understood as trans-
formations of resources.

!

From the resource theoretic perspective, objects of a symmetric monoidal
category are understood as collections of resources, with the unit object denoting
the empty collection and the tensor product of two collections consisting of
their combined contents. Morphisms are understood as ways to transform one
collection of resources into another, which may be combined sequentially via
composition, and in parallel via the tensor product. For example, the process of
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baking bread might generate the following material history:

meaning that the baking process involved kneading dough and baking it in an
oven to obtain bread (and also the oven).

This approach to expressing the material history of a process has many ad-
vantages: It is general, in that it assumes minimal structure; canonical, in that
monoidal categories are well-studied as mathematical objects; and relatively
friendly, as it admits an intuitive graphical calculus (string diagrams). How-
ever, it is unable to capture the interaction between components of a concurrent
process. For example, consider our hypothetical baking process and suppose that
the kneading and baking of the dough are handled by separate subsystems, with
control of the dough being handed to the baking subsystem once the kneading
is complete. Such interaction of parts is a fundamental aspect of concurrency,
but is not expressible in this framework – we can only describe the effects of the
system as a whole.

We remedy this by extending a given resource theory to allow the decompo-
sition of material histories into concurrent components. Specifically, we augment
the string diagrams for symmetric monoidal categories with corners, through
which resources may flow between different components of a transformation.

!

Returning to our baking example, we might express the material history of the
kneading and baking subsystems separately with the following diagrams, which
may be composed horizontally to obtain the material history of the baking pro-
cess as a whole.

These augmented diagrams denote cells of a single object double category
constructed from the original resource theory. The corners make this double
category into a proarrow equipment, which turns out to be all the additional



structure we need in order to express concurrent interaction. From only this
structure, we obtain a theory of exchanges – a sort of minimal system of be-
havioural types – that conforms to our intuition about how such things ought
to work remarkably well.

Our approach to these concurrent material histories retains the aforemen-
tioned advantages of the resource-theoretic perspective: We lose no generality,
since our construction applies to any resource theory; It is canonical, with proar-
row equipments being a fundamental structure in formal category theory – al-
though not usually seen in such concrete circumstances; Finally, it remains rel-
atively friendly, since the string diagrams for monoidal categories extend in a
natural way to string diagrams for proarrow equipments [11].

1.1 Contributions and Related Work

Related Work. Monoidal categories are ubiquitous – if often implicit – in theo-
retical computer science. An example from the theory of concurrency is [15], in
which monoidal categories serve a purpose similar to their purpose here. String
diagrams for monoidal categories seem to have been invented independently a
number of times, but until recently were uncommon in printed material due to
technical limitations. The usual reference is [12]. We credit the resource-theoretic
interpretation of monoidal categories and their string diagrams to [4]. Double
categories first appear in [6]. Free double categories are considered in [5] and
again in [7]. The idea of a proarrow equipment first appears in [22], albeit in
a rather different form. Proarrow equipments have subsequently appeared un-
der many names in formal category theory (see e.g., [9, 20]). String diagrams
for double categories and proarrow equipments are treated precisely in [11]. We
have been inspired by work on message passing and behavioural types, in par-
ticular [2], from which we have adopted our notation for exchanges.
Contributions. Our main contribution is the resource-theoretic interpretation
of certain proarrow equipments, which we call cornerings, and the observation
that they capture exactly the structure of concurrent process histories. Our
mathematical contributions are minor, most significantly the identification of
crossing cells in the free cornering of a resource theory and the corresponding
Lemma 2, which we believe to be novel. We do not claim the other lemmas of
the paper as significant mathematical contributions. Instead, they serve to flesh
out the structure of the free cornering.

1.2 Organization and Prerequisites

Prerequisites. This paper is largely self-contained, but we assume some familiar-
ity with category theory, in particular with monoidal categories and their string
diagrams. Some good references are [8, 14,19].
Organization. In Section 2 we review the resource-theoretic interpretation of
symmetric monoidal categories. We continue by reviewing the theory of double
categories in Section 3, specialized to the single object case. In Section 4 we
introduce cornerings of a resource theory, in particular the free such cornering,



and exhibit the existence of crossing cells in the free cornering. In Section 5 we
show how the free cornering of a resource theory inherits its resource-theoretic
interpretation while enabling the concurrent decomposition of resource transfor-
mations. In Section 6 we conclude and consider directions for future work.

2 Monoidal Categories as Resource Theories

Symmetric strict monoidal categories can be understood as theories of resource
transformation. Objects are interpreted as collections of resources, with A ⊗ B
the collection consisting of both A and B, and I the empty collection. Arrows
f : A→ B are understood as ways to transform the resources of A into those of
B. We call symmetric strict monoidal categories resource theories when we have
this sort of interpretation in mind.

For example, let B be the free symmetric strict monoidal category with
generating objects

{bread, dough, water, flour, oven}

and with generating arrows

mix : water⊗ flour→ dough knead : dough→ dough

bake : dough⊗ oven→ bread⊗ oven

subject to no equations. B can be understood as a resource theory of baking
bread. The arrow mix represents the process of combining water and flour to form
a bread dough, knead represents kneading dough, and bake represents baking
dough in an oven to obtain bread (and an oven).

The structure of symmetric strict monoidal categories provides natural alge-
braic scaffolding for composite transformations. For example, consider the fol-
lowing arrow of B:

(bake⊗ 1dough); (1bread ⊗ σoven,dough; bake)

of type

dough⊗ oven⊗ dough→ bread⊗ bread⊗ oven

where σA,B : A⊗B ∼→ B⊗A is the braiding. This arrow describes the transfor-
mation of two units of dough into loaves of bread by baking them one after the
other in an oven.

It is often more intuitive to write composite arrows like this as string di-
agrams: Objects are depicted as wires, and arrows as boxes with inputs and
outputs. Composition is represented by connecting output wires to input wires,
and we represent the tensor product of two morphisms by placing them beside
one another. Finally, the braiding is represented by crossing the wires involved.



For the morphism discussed above, the corresponding string diagram is:

Notice how the topology of the diagram captures the logical flow of resources.

Given a pair of parallel arrows f, g : A → B in some resource theory, both
f and g are ways to obtain B from A, but they may not have the same effect
on the resources involved. We explain by example: Consider the parallel arrows
1dough, knead : dough → dough of B. Clearly these should not be understood
to have the same effect on the dough in question, and this is reflected in B
by the fact that they are not made equal by its axioms. Similarly, knead and
knead ◦ knead are not equal in B, which we understand to mean that kneading
dough twice does not have the same effect as kneading it once, and that in
turn any bread produced from twice-kneaded dough will be different from once-
kneaded bread in our model.

Consider a hypothetical resource theory constructed from B by imposing the
equation knead ◦ knead = knead. In this new setting we understand kneading
dough once to have the same effect as kneading it twice, three times, and so on,
because the corresponding arrows are all equal. Of course, the sequence of events
described by knead is not the one described by knead ◦knead: In the former the
dough has been kneaded only once, while in the latter it has been kneaded twice.
The equality of the two arrows indicates that these two different processes would
have the same effect on the dough involved. We adopt as a general principle in
our design and understanding of resource theories that transformations should
be equal if and only if they have the same effect on the resources involved.



For the sake of further illustration, observe that by naturality of the braiding
maps the following two resource transformations are equal in B:

Each transformation gives a method of baking two loaves of bread. On the left,
two batches of dough are mixed and kneaded before being baked one after the
other. On the right, first one batch of dough is mixed, kneaded and baked and
only then is the second batch mixed, kneaded, and baked. Their equality tells
us that, according to B, the two procedures will have the same effect, resulting
in the same bread when applied to the same ingredients with the same oven.

3 Single Object Double Categories

In this section we set up the rest of our development by presenting the theory of
single object double categories, being those double categories D with exactly one
object. In this case D consists of a horizontal edge monoid DH = (DH ,⊗, I), a
vertical edge monoid DV = (DV ,⊗, I), and a collection of cells

where A,B ∈ DH and X,Y ∈ DV . Given cells α, β where the right boundary
of α matches the left boundary of β we may form a cell α|β – their horizontal
composite – and similarly if the bottom boundary of α matches the top boundary
of β we may form α

β – their vertical composite – with the boundaries of the
composite cell formed from those of the component cells using ⊗. We depict



horizontal and vertical composition, respectively, as in:

and

Horizontal and vertical composition of cells are required to be associative and
unital. We omit wires of sort I in our depictions of cells, allowing us to draw
horizontal and vertical identity cells, respectively, as in:

and

Finally, the horizontal and vertical identity cells of type I must coincide – we
write this cell as �I and depict it as empty space, see below on the left – and
vertical and horizontal composition must satisfy the interchange law. That is,
α
β |
γ
δ = α|γ

β|δ , allowing us to unambiguously interpret the diagram below on the

right:

Every single object double category D defines strict monoidal categories VD
and HD, consisting of the cells for which the DH and DV valued boundaries
respectively are all I, as in:

and

That is, the collection of objects of VD is DH , composition in VD is vertical
composition of cells, and the tensor product in VD is given by horizontal com-
position:

In this way, VD forms a strict monoidal category, which we call the category
of vertical cells of D. Similarly, HD is also a strict monoidal category (with
collection of objects DV ) which we call the horizontal cells of D.



4 Cornerings and Crossings

Next, we define cornerings, our primary technical device. In particular we discuss
the free cornering of a resource theory, which we show contains special crossing
cells with nice formal properties. Tersely, a cornering of a resource theory A is a
single object proarrow equipment with A as its vertical cells. Explicitly:

Definition 1. Let A be a symmetric strict monoidal category. Then a cornering
of A is a single object double category D such that:

(i) The vertical cells of D are A. That is, there is an isomorphism of categories
VD ∼= A.

(ii) For each A in A0
∼= DH , there are distinguished elements A◦ and A• of

DV along with distinguished cells of D

called ◦-corners and •-corners respectively, which must satisfy the yanking
equations:

Intuitively, A◦ denotes an instance of A moving from left to right, and A• denotes
an instance of A moving from right to left (see Section 5).

Of particular interest is the free cornering of a resource theory:

Definition 2. Let A be a resource theory. Then the free cornering of A, written
p
xAqy, is the free single object double category defined as follows:

– The horizontal edge monoid p
xAqyH = (A0,⊗, I) is given by the objects of A.

– The vertical edge monoid p
xAqyV = (A0×{◦, •})∗ is the free monoid on the set

A0 × {◦, •} of polarized objects of A – whose elements we write A◦ and A•.
– The generating cells consist of corners for each object A of A as above, subject

to the yanking equations, along with a vertical cell p
xf

q
y for each morphism

f : A→ B of A subject to equations as in:

For a precise development of free double categories see [7]. In brief: cells are
formed from the generating cells by horizontal and vertical composition, subject
to the axioms of a double category in addition to any generating equations. The



free cornering is free both in the sense that it is freely generated, and in the
sense that for any cornering D of A there is exactly one double functor p

xAqy → D
that sends corner cells to corner cells and restricts to the identity on A ∼= VD.
That is, diagrams in p

xAqy have a canonical interpretation in any cornering of A.

Proposition 1. p
xAqy is a cornering of A.

Proof. Intuitively V p
xAqy ∼= A because in a composite vertical cell every wire

bent by a corner must eventually be un-bent by the matching corner, which by
yanking is the identity. The only other generators are the cells p

xf
q
y, and so any

vertical cell in p
xA

q
y can be written as p

xg
q
y for some morphism g of A. A more

rigorous treatment of corner cells can be found in [11], to the same effect.

ut
Before we properly explain our interest in p

xAqy we develop a convenient bit of
structure: crossing cells. For each B of p

xAqyH and each X of p
xAqyV we define a cell

of p
xAqy inductively as follows: In the case where X is A◦ or A•, respectively, define

the crossing cell as in the diagrams below on the left and right, respectively:

in the case where X is I, define the crossing cell as in the diagram below on the
left, and in the composite case define the crossing cell as in the diagram below
on the right:

We prove a technical lemma:

Lemma 1. For any cell α of p
xAqy we have



Proof. By structural induction on cells of p
xAqy. For the ◦-corners we have:

and for the •-corners, similarly:

the final base cases are the p
xf

q
y maps:

There are two inductive cases. For vertical composition, we have:

Horizontal composition is similarly straightforward, and the claim follows by
induction.

ut
From this we obtain a “non-interaction” property of our crossing cells, similar
to the naturality of braiding in symmetric monoidal categories:

Corollary 1. For cells α of V p
xAqy and β of H p

xAqy, the following equation holds
in p

xAqy:

These crossing cells greatly aid in the legibility of diagrams corresponding
to cells in p

xAqy, but also tell us something about the categorical structure of p
xAqy,

namely that it is a monoidal double category in the sense of [21]:

Lemma 2. If A is a symmetric strict monoidal category then p
xAqy is a monoidal

double category. That is, p
xAqy is a pseudo-monoid object in the strict 2-category

VDblCat of double categories, lax double functors, and vertical transformations.



Proof. We give the action of the tensor product on cells:

This defines a pseudofunctor, with the component of the required vertical trans-
formation given by exchanging the two middle wires as in:

Notice that ⊗ is strictly associative and unital, in spite of being only pseudo-
functorial.

ut

5 Concurrency Through Cornering

We next proceed to extend the resource-theoretic interpretation of some sym-
metric strict monoidal category A to its free cornering p

xAqy. Interpret elements
of p

xAqyV as A-valued exchanges. Each exchange X1 ⊗ · · · ⊗ Xn involves a left
participant and a right participant giving each other resources in sequence, with
A◦ indicating that the left participant should give the right participant an in-
stance of A, and A• indicating the opposite. For example say the left participant
is Alice and the right participant is Bob. Then we can picture the exchange
A◦ ⊗B• ⊗ C• as:

Alice  Bob

Think of these exchanges as happening in order. For example the exchange
pictured above demands that first Alice gives Bob an instance of A, then Bob

gives Alice an instance of B, and then finally Bob gives Alice an instance of C.
We interpret cells of p

xAqy as concurrent transformations. Each cell describes a
way to transform the collection of resources given by the top boundary into that
given by the bottom boundary, via participating in A-valued exchanges along
the left and right boundaries. For example, consider the following cells of p

xB
q
y:



From left to right, these describe: A procedure for transforming water into noth-
ing by mixing it with flour obtained by exchange along the right boundary,
then sending the resulting dough away along the right boundary; A procedure
for transforming an oven into an oven, receiving flour along the right bound-
ary and sending it out the left boundary, then receiving dough along the left
boundary, which is baked in the oven, with the resulting bread sent out along
the right boundary; Finally, a procedure for turning flour into bread by giving
it away and then receiving bread along the left boundary. When we compose
these concurrent transformations horizontally in the evident way, they give a
transformation of resources in the usual sense, i.e., a morphism of A ∼= V p

xAqy:

We understand equality of cells in p
xAqy much as we understand equality of

morphisms in a resource theory: two cells should be equal in case the trans-
formations they describe would have the same effect on the resources involved.
In this way, cells of p

xAqy allow us to break a transformation into many concur-
rent parts. Note that with the crossing cells, it is possible to exchange resources
“across” cells.

Consider the category H p
xAqy of horizontal cells. If the vertical cells V p

xAqy are
concerned entirely with the transformation of resources, then our interpretation
tells us that the horizontal cells are concerned entirely with exchange. Just as
isomorphic objects in V p

xAqy ∼= A can be thought of as equivalent collections of
resources – being freely transformable into each other – we understand isomor-
phic objects in H p

xAqy as equivalent exchanges. For example, There are many ways
for Alice to give Bob an A and a B: Simultaneously, as A ⊗ B; one after the
other, as A and then B; or in the other order, as B and then A. While these are
different sequences of events, they achieve the same thing, and are thus equiv-
alent. Similarly, for Alice to give Bob an instance of I is equivalent to nobody
doing anything. Formally, we have:

Lemma 3. In H p
xAqy we have for any A,B of A:

(i) I◦ ∼= I ∼= I•.
(ii) A◦ ⊗B◦ ∼= B◦ ⊗A◦ and A• ⊗B• ∼= B• ⊗A•.

(iii) (A⊗B)◦ ∼= A◦ ⊗B◦ and (A⊗B)• ∼= A• ⊗B•

Proof. (i) For I ∼= I◦, consider the ◦-corners corresponding to I:



we know that these satisfy the yanking equations:

which exhibits an isomorphism I ∼= I◦. Similarly, I ∼= I•. Thus, we see
formally that exchanging nothing is the same as doing nothing.

(ii) The ◦-corner case is the interesting one: Define the components of our
isomorphism to be:

and

then for both of the required composites we have:

and so A◦ ⊗ B◦ ∼= B◦ ⊗ A◦. Similarly A• ⊗ B• ∼= B• ⊗ A•. This captures
formally the fact that if Alice is going to give Bob an A and a B, it doesn’t
really matter which order she does it in.

(iii) Here it is convenient to switch between depicting a single wire of sort A⊗B
and two wires of sort A and B respectively in our string diagrams. To this
end, we allow ourselves to depict the identity on A ⊗ B in multiple ways,
using the notation of [3]:

Then the components of our isomorphism (A⊗B)◦ ∼= A◦ ⊗B◦ are:

and

and, much as in (ii), it is easy to see that the two possible composites
are both identity maps. Similarly, (A ⊗ B)• ∼= (A• ⊗ B•). This captures
formally the fact that giving away a collection is the same thing as giving
away its components.

ut
For example, we should be able to compose the cells on the left and right

below horizontally, since their right and left boundaries, respectively, indicate



equivalent exchanges:

Our lemma tells us that there will always be a canonical isomorphism, as above
in the middle, making composition possible.

It is worth noting that we do not have A◦ ⊗B• ∼= B• ⊗A◦:

Observation 1 There is a morphism d◦• : A◦⊗B• → B•⊗A◦ in one direction,
defined by

but there is need not be a morphism in the other direction, and this is not in
general invertible. In particular, H p

xAqy is monoidal, but need not be symmetric.

This observation reflects formally the intuition that if I receive some resources
before I am required to send any, then I can send some of the resources that I
receive. However, if I must send the resources first, this is not the case. In this
way, H p

xAqy contains a sort of causal structure.

6 Conclusions and Future Work

We have shown how to decompose the material history of a process into con-
current components by working in the free cornering of an appropriate resource
theory. We have explored the structure of the free cornering in light of this in-
terpretation and found that it is consistent with our intuition about how this
sort of thing ought to work. We do not claim to have solved all problems in the
modelling of concurrency, but we feel that our formalism captures the material
aspect of concurrent systems very well.

We find it quite surprising that the structure required to model concurrent
resource transformations is precisely the structure of a proarrow equipment. This
structure is already known to be important in formal category theory, and we
are appropriately intrigued by its apparent relevance to models of concurrency
– a far more concrete setting than the usual context in which one encounters
proarrow equipments!

There are of course many directions for future work. For one, our work is
inspired by the message passing logic of [2], which has its categorical semantics
in linear actegories. Any cornering defines an actegory – although not quite a
linear actegory – and we speculate that cornerings are equivalent to some class of
actegories, which would connect our work to the literature on behavioural types.
Another direction for future work is to connect our material histories to a theory
of concurrent processes – the slugs to our slime – with the goal of a formalism
accounting for both. The category of spans of reflexive graphs, interpreted as



open transition systems, seems especially promising here [13]. More generally,
we would like to know how the perspective presented here can be integrated into
other approaches to modelling concurrent systems.
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