Cornering Optics

Chad Nester

Tallinn University of Technology

(with Guillaume Boisseau and Mario Román)

ACT 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Optics $\langle \alpha \mid \beta \rangle_M : (A, B) \to (C, D)$ in a monoidal category \mathbb{A} consist of arrows $\alpha : A \to M \otimes C$ and $\beta : M \otimes D \to B$ in \mathbb{A} .

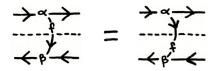
$$\begin{array}{c} A \rightarrow \propto \rightarrow c \\ \hline B \rightarrow P \rightarrow D \end{array}$$

For example, lenses are optics in a cartesian monoidal category.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Optics are subject to "sliding equations" of the following form:

$$\langle \alpha(f \otimes 1_C) \mid \beta \rangle_N = \langle \alpha \mid (f \otimes 1_C) \beta \rangle_M$$

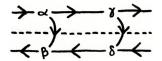


where $f: M \to N$, $\alpha: A \to M \otimes C$, $\beta: N \otimes D \to B$ in A.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Optics in \mathbb{A} form a category $Optic_{\mathbb{A}}$. Composition is given by:

 $\langle \alpha \mid \beta \rangle_M \langle \gamma \mid \delta \rangle_N = \langle \alpha(1_M \otimes \gamma) \mid (1_M \otimes \delta) \beta \rangle_{M \otimes N}$

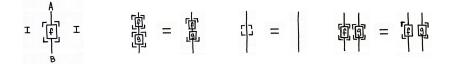


and identities are given by $\langle 1_A | 1_A \rangle_I : (A, A) \to (A, A)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

We construct a single object double category [A].

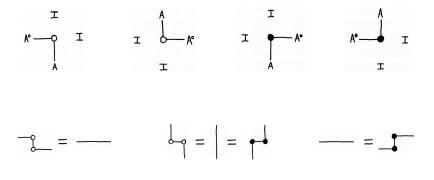
The horizontal edge monoid of $[\mathbb{A}]$ is $(\mathbb{A}_0, \otimes, I)$.



・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

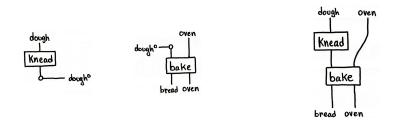
The vertical edge monoid of [A] is $(A_0 \times \{\circ, \bullet\})^*$.

$$A^{\circ} \otimes B^{\bullet} \otimes C^{\bullet}$$
: Alice $\rightsquigarrow \begin{array}{c} \xrightarrow{} & A^{\circ} \\ & \xrightarrow{} & B^{\circ} \\ & & \swarrow \\ & & \swarrow \end{array} \begin{array}{c} & \xrightarrow{} & A^{\circ} \\ & \xrightarrow{} & B^{\circ} \\ & & & & \Theta^{\circ} \end{array} \begin{array}{c} & \xrightarrow{} & A^{\circ} \\ & \xrightarrow{} & B^{\circ} \\ & & & & & \Theta^{\circ} \end{array}$



▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ⊙

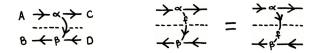
Cells of $[\mathbb{A}]$ are like arrows of \mathbb{A} that interact with the environment.

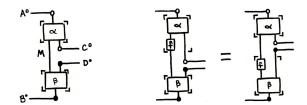


When composed horizontally, they interact with each other.

・ロト ・西ト ・ヨト ・ヨー うへぐ

 $Optic_{\mathbb{A}}$ embeds into $\mathbf{H}[\mathbb{A}]$:

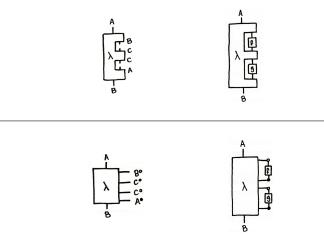




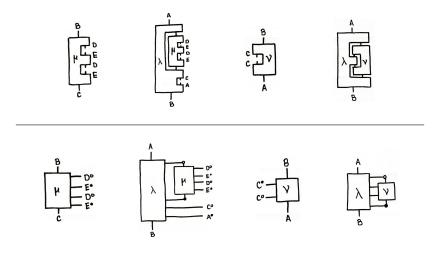
In fact, $\operatorname{Optic}_{\mathbb{A}}$ is the full subcategory of $\mathbf{H}[\mathbb{A}]$ on objects $A^{\circ} \otimes B^{\bullet}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Comb Diagrams:



Exotic operations on comb diagrams:



▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → の々ぐ

References:

Cornering Optics Guillaume Boisseau, Chad Nester, and Mario Román ACT 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Structure of Concurrent Process Histories Chad Nester COORDINATION 2021

Situated Transition Systems Chad Nester ACT 2021

Open Diagrams via Coend Calculus Mario Román ACT 2020