
Protocol Choice and Iteration for the Free Cornering⋆,⋆⋆

Chad Nestera,∗, Niels Voornevelda,b

aTallinn University of Technology, Akadeemia Tee 21/1, 12618, Tallinn, Estonia
bCybernetica AS, Mäealuse 2/1, 12618, Tallinn, Estonia

Abstract

We extend the free cornering of a symmetric monoidal category, a double cat-
egorical model of concurrent interaction, to support branching communication
protocols and iterated communication protocols. We validate our constructions
by showing that they inherit significant categorical structure from the free cor-
nering, including that they form monoidal double categories. We also establish
some elementary properties of the novel structure they contain. Further, we
give a model of the free cornering in terms of strong functors and strong natural
transformations, inspired by the literature on computational effects.

Keywords: Category Theory, Concurrency, Double Categories,
Computational Effects

1. Introduction

While there are many theories of concurrent computation, none may yet
claim to be the canonical such theory. In the words of Abramsky [2]:

It is too easy to cook up yet another variant of process calculus or
algebra; there are too few constraints . . . The mathematician André
Weil apparently compared finding the right definitions in algebraic
number theory — which was like carving adamantine rock — to
making definitions in the theory of uniform spaces . . . which was
like sculpting with snow. In concurrency theory we are very much
at the snow-sculpture end of the spectrum. We lack the kind of
external reality . . . which is hard and obdurate, and resistant to our
definitions.

This motivates the search for categorical models of concurrency, with cat-
egory theory playing the role of a suitably stubborn external reality against
which to test our definitions. In this we adopt the perspective suggested by

⋆Both authors were supported by the ESF funded Estonian IT Academy research measure
(project 2014-2020.4.05.19-0001).

⋆⋆Niels Voorneveld was supported by the Estonian Research Council, grant no. PRG1780.
∗Corresponding Author

Preprint submitted to Elsevier December 6, 2023

Maddy [21] on the relationship of category theory to set theory. Loosely, set
theory serves among other things as a generous arena in which the full array of
mathematical construction techniques are permissible, but with no way of dis-
cerning the mathematically promising structures from the rest (sculpting with
snow). The role of category theory is to provide essential guidance, with the idea
being that the mathematically promising structures are precisely those which
fit smoothly into the category-theoretic landscape (carving rock). Whether or
not category theory can provide this sort of essential guidance in the theory of
concurrent computation has not yet been conclusively established, but the idea
is a compelling one, and we work under the assumption that it can and will.

This paper concerns the free cornering of a symmetric monoidal category,
a categorical model of concurrent interaction proposed by Nester [25, 27]. The
model builds on the resource-theoretic interpretation of symmetric monoidal
categories as a kind of process theory (see e.g., [10]) by defining the free corner-
ing of a given symmetric monoidal category to be a certain double category in
which the processes represented by the base are augmented with corner cells.
The cells of the free cornering admit interpretation as interacting processes, with
the corner cells embodying a notion of message passing. The corner cells are
precisely what is required to make the free cornering into a proarrrow equipment,
which is a kind structured double category that plays a fundamental role in for-
mal category theory. We remark that for the structure of a proarrow equipment
to coincide with a notion of message passing would seem to be essential guidance
of the highest quality. That said, the free cornering is currently far from being
a canonical model of concurrent computation. Much work remains to be done,
and many connections remain unexplored.

More specifically, this paper addresses the connection of the free cornering to
notions of session type. Roughly, session types are to communication protocols
what data types are to structured data. Much like the way that data types
constrain the possible data values a process operates on, session types constrain
the behaviour of a process so that it conforms to the corresponding communica-
tion protocol. In the free cornering of a symmetric monoidal category, process
interaction is governed by the monoid of exchanges, whose elements may be
understood as a basic sort of session type. The communication protocols ex-
pressible in this way are those in which messages of a predetermined type are
sent and received in a predetermined sequence. Viewed this way, the monoid
of exchanges is missing a number of features that systems of session types are
expected to have. In particular, branching protocols — in which one of the
participants chooses which of two possible continuations of the current protocol
will happen and the other participant must react — and iterated protocols, in
which all or part of the protocol is carried out some number of times based on
choices made by the participants.

In an effort to rectify the situation, we construct the free cornering with
choice and free cornering with iteration of a distributive monoidal category.
The free cornering with choice supports branching communication protocols in
addition to those of the free cornering, and the free cornering with iteration sup-
ports iterated communication protocols in addition to those of the free cornering

2

with choice. To ask that the base category is distributive monoidal is to ask
that it supports a kind of sequential branching, analogous to the “if then else”
statements present in many programming languages. In the free cornering with
choice, this sequential branching structure interacts nontrivially with branching
communication protocols, and is what allows a process to decide which branch
of a protocol to select based on its inputs.

We prove some elementary results concerning the monoidal category of hori-
zontal cells of the free cornering with choice and the free cornering with iteration.
The objects of the category of horizontal cells correspond to communication pro-
tocols. We show that the category of horizontal cells of the free cornering with
choice has binary products and coproducts given by branching communication
protocols. Further, we characterize iterated communication protocols in the cat-
egory of horizontal cells of the free cornering with iteration by showing that they
arise as initial algebras (or dually, final coalgebras) of a suitable endofunctor,
and that process iteration forms a monad (or dually, a comonad).

An important feature of the free cornering is the existence of well-behaved
crossing cells, which among other things carry the structure of amonoidal double
category in the sense of Shulman [33]. We extend the construction of crossing
cells in the free cornering to construct crossing cells in the free cornering with
choice and the free cornering with iteration, and show that these crossing cells
remain well-behaved. It follows that the free cornering with choice and free
cornering with iteration also form monoidal double categories. We view the
presence of these well-behaved crossing cells as a kind of sanity check.

As an additional sanity check, we construct a model of the free cornering, and
extend it to give a model of the free cornering with choice and the free cornering
with iteration. Specifically, from a cartesian closed category we construct a
double category of stateful transformations, in which cells are given by strong
natural transformations between strong endofunctors on the base category (see
e.g. [22]). This double category is a model of the free cornering in the sense that
there is a structure-preserving double functor from the free cornering of the base
category into the category of stateful transformations. We show that under
additional assumptions on the base category, the double category of stateful
transformations gives a model of the free cornering with choice and the free
cornering with iteration in this sense. The existence of such a model is reassuring
in that it tells us the axioms of the free cornering with choice and free cornering
with iteration do not collapse. Strong functors play an important role in the
categorical semantics of effectful computations (see e.g,[23, 29]), and so the
double category of stateful transformations may be of independent interest.

Contributions. The central contributions of this paper are the construction of
the free cornering with choice (Definitions 9 and 10) and the free cornering with
iteration (Definitions 12 and 13). In this we include the results validating the
two constructions, specifically the contents of Sections 3.3, 3.4, 4.2, and 4.3. A
further contribution is the construction of the double category of stateful trans-
formations together with the fact that it models the free cornering (Section 2.4),
free cornering with choice (Section 3.5), and free cornering with iteration (Sec-

3

tion 4.4) in the presence of suitable assumptions on the base category. Finally,
Lemma 1 is a minor contribution to the theory of the free cornering (without
choice or iteration): while in previous work on the free cornering it has been
part of the definition of the crossing cells, in recapitulating the material on
crossing cells we realised that it was in fact a consequence of the slightly weaker
definition used here.

Related Work. Double categories first appear in [12]. Free double categories
are considered in [11] and again in [13]. The idea of a proarrow equipment
first appears in [38], albeit in a rather different form. Proarrow equipments
have subsequently appeared under many names in formal category theory (see
e.g., [32, 15]). The string diagrams for double categories and proarrow equip-
ments that we will use without comment are given a detailed treatment in [24].
The free cornering was introduced in [25], and has been developed in [27, 26, 5].
Session types were introduced by Honda [17] and the idea has since been de-
veloped by a number of authors. While the purpose of this paper is to develop
more sophisticated session types in the free cornering, we are primarily influ-
enced not by the literature on session types after Honda but by the logic of
message passing of Cockett and Pastro [8], in which process communication
is modelled categorically by linear actegories (the semantics of a kind of aug-
mented linear logic). A particular point of difference between these two lines
of research is that in the logic of message passing, like in the free cornering,
the protocols that our types describe are two-sided, requiring a left and right
participant. In the literature on session types after Honda the protocol types
are one-sided, and two participants must each conform to a session type dual
to that of the other if they wish to interact. The connection between session
types and linear logic is explored from slightly different angles in [36] and [7],
and all of this seems to have been heavily influenced by the early work of Bellin
and Scott [4]. In our use of distributive monoidal categories to model branching
programs and datatypes we follow Walters [37]. The definitions of protocols in
the model of stateful transformations are based on the theory of strong functors
and monads for describing computational effects by Moggi [23]. Stateful trans-
formations themselves are inspired by stateful runners [34], and interaction laws
as described in [18].

Organisation. In Section 2 we give an introduction to single-object double cat-
egories (Section 2.1); recapitulate the construction of the free cornering of a
symmetric monoidal category (Section 2.2); recall the construction of crossing
cells in the free cornering along with certain properties of crossing cells (Sec-
tion 2.3); and introduce the double category of stateful transformations and its
relationship to the free cornering (Section 2.4). Section 3 concerns the free cor-
nering with choice. We introduce distributive monoidal categories and discuss
the way in which they model branching sequential processes (Section 3.1); intro-
duce the free cornering with choice of a distributive monoidal category together
with its interpretation (Section 3.2); establish a few elementary properties of the
resulting single-object double category (Section 3.3); show that the construc-

4

tion of crossing cells in the free cornering extends to the free cornering with
choice, and that the attendant properties of crossing cells hold in the larger
setting (Section 3.4); and show that when the base cartesian closed category is
distributive the category of stateful transformations gives a model of the free
cornering with choice (Section 3.5). Section 4 concerns the free cornering with
iteration, and its organisation is similar to that of Section 3. We introduce the
free cornering with iteration of a distributive monoidal category together with
its interpretation (Section 4.1); establish a few elementary properties of the re-
sulting single-object double category, in particular that our notion of iteration
is (co)monadic (Section 4.2); show that the construction of crossing cells in the
free cornering with choice extends to the free cornering with iteration, and that
the attendant properties of crossing cells conitnue to hold in the larger setting
(Section 4.3); and show that when we consider only the part of the double cate-
gory of stateful transformations given by certain container functors on the base
category Set this gives a model of the free cornering with iteration (Section 4.4).
We conclude and discuss a number of directions for future work in Section 5.

Prerequisites. We assume some familiarity with elementary category theory (see
e.g., [20]), cartesian closed categories (see e.g., [19]), and in particular with
symmetric monoidal categories and their string diagrams (see e.g., [31]). While
knowledge of the theory of double categories would certainly be helpful, it is not
strictly required, and we provide a brief technical introduction in Section 2.1 that
covers everything we will need for our development. The sections concerning
the double category of stateful transformations make heavy use of the notion of
tensorial strength and the associated notion of strong natural transformation.
We give the necessary definitions in Section 2.4, but prior familiarity would, of
course, be helpful (see e.g., [9]).

2. The Free Cornering

The aim of this section is to introduce the free cornering of a symmetric
monoidal category. We begin by recapitulating some basic double category
theory in the single-object case, which occupies Section 2.1. This done, in
Section 2.2 we recapitulate the free cornering construction and its interactive
interpretation. In Section 2.3 we recall the crossing cells of the free cornering.
We recall certain important properties of the crossing cells, the continuing valid-
ity of which will serve as a kind of litmus test for the soundness of our notions of
choice and iteration in the sequel. Finally, in Section 2.4 we construct a double
category of stateful transformations over a cartesian closed category, and more-
over show that it is a model of the free cornering of that category, possessing
corner cells and crossing cells in an interesting fashion. This will serve as a
running example throughout the paper.

Before we begin, we must briefly discuss strictness and notation. We write
composition of arrows in a category in diagrammatic order. That is, the com-
posite of f : A → B and g : B → C is written fg : A → C. While we
may write g ◦ f : A → C, we will never write gf : A → C. Moreover, in

5

this paper we consider only strict monoidal categories, and in our development
the term “monoidal category” should be read as “strict monoidal category”.
That said, we imagine that our results will hold in some form for arbitrary
monoidal categories via the coherence theorem for monoidal categories [20].
Similarly, our double categories are what some authors call strict double cate-
gories. The braiding maps in a symmetric monoidal category will be written
σA,B : A ⊗ B → B ⊗ A. Further notational conventions will be introduced as
needed.

2.1. Single-Object Double Categories

In this section we set up the rest of our development by recalling the theory
of single-object double categories, being those double categories D with exactly
one object. In this case D consists of a horizontal edge monoid DH = (DH ,⊗, I),
a vertical edge monoid DV = (DV ,⊗, I), and a collection of cells

where A,B ∈ DH and U,W ∈ DV . We write D(U A
BW) for the cell-set of all such

cells in D, and write α : D(U A
BW) to indicate the membership of α in a cell-set.

When D is clear from context, we write (U A
BW) instead of D(U A

BW). Given cells

α : (U A
BV) and β : (V A′

B′ W) for which the right boundary of α matches the left

boundary of β we may form a cell α|β : (U A⊗A′

B⊗B′ W) – their horizontal composite

– and similarly if the bottom boundary of α : (U A
CW) matches the top boundary

of β : (U ′ C
BW ′) we may form α

β : (U⊗U ′ A
BW⊗W ′) – their vertical composite –

with the boundaries of the composite cell formed from those of the component
cells using the binary operation associated with the appropriate monoid (both
written ⊗). We depict horizontal and vertical composition, respectively, as in:

and

Horizontal and vertical composition of cells are required to be associative and
unital. We write idU : (U I

I U) and 1A : (I A
AI) for units of horizontal and vertical

composition, respectively. We omit wires of sort I in our depictions of cells,
allowing us to depict horizontal and vertical identity cells, respectively, as in:

and

6

Finally, the horizontal and vertical identity cells of type I must coincide – we
call this cell □I = 1I = idI : (I I

I I) and depict it as empty space, see below on
the left – and vertical and horizontal composition must satisfy the interchange

law. That is, α
β |

γ
δ = α|γ

β|δ , allowing us to unambiguously interpret the diagram

below on the right:

Every single-object double category D defines monoidal categories VD and
HD, consisting of the cells for which the DV and DH valued boundaries respec-
tively are all I, as in:

and

That is, the collection of objects of VD is DH , composition in VD is verti-
cal composition of cells, and the tensor product in VD is given by horizontal
composition:

In this way, VD forms a monoidal category, which we call the category of
vertical cells of D. Similarly, HD is also a monoidal category (with collection of
objects DV) which we call the horizontal cells of D.

2.2. The Free Cornering

In this section we introduce the free cornering of a symmetric monoidal cat-
egory. It is useful to frame this construction in terms of the resource-theoretic
understanding of symmetric monoidal categories [10]. That is, objects are un-
derstood of as collections of resources. The tensor product A⊗B of two objects
is the collection consisting of A and B, and the unit I is the empty collec-
tion. Morphisms are understood as transformations, with f : A → B being
understood as a way to transform the resources of A to the resources of B. We
adopt this perspective here and use the associated vocabulary to elucidate our
development.

We begin with the monoid of exchanges over a symmetric monoidal category:

7

Definition 1. Let A be a symmetric monoidal category. Define the monoid
A◦• of A-valued exchanges to be the free monoid on the set of polarized objects
of A, as in A◦• = (A0 × {◦, •})∗. Explicitly, A◦• has elements given by:

A ∈ A0

A◦ ∈ A◦•
A ∈ A0

A• ∈ A◦• I ∈ A◦•
U ∈ A◦• W ∈ A◦•

U ⊗W ∈ A◦•

subject to the following equations:

I ⊗ U = U U ⊗ I = U (U ⊗W)⊗ V = U ⊗ (W ⊗ V)

We may omit brackets as in A◦ ⊗ B◦ ⊗ C•, as associativity of ⊗ ensures that
this denotes an element of A◦• unambiguously.

The A-valued exchanges are interpreted as follows: each X1⊗· · ·⊗Xn ∈ A◦•

involves a left participant and a right participant giving each other resources
in sequence, with A◦ indicating that the left participant should give the right
participant an instance of A, and A• indicating the opposite. For example say
the left participant is Alice and the right participant is Bob. Then we can
picture the exchange A◦ ⊗B• ⊗ C• as:

Alice⇝ ⇝Bob

These exchanges happen in order. For example the exchange pictured above
demands that first Alice gives Bob an instance of A, then Bob gives Alice an
instance of B, and then finally Bob gives Alice an instance of C.

The monoid of A-valued exchanges plays an important role in the free cor-
nering of A, which we introduce presently:

Definition 2 ([25]). Let A be a monoidal category. We define the free cornering
of A, written ⌜

⌞A⌝⌟, to be the free single-object double category with horizontal
edge monoid (A0,⊗, I), vertical edge monoid A◦•, and generating cells and
equations consisting of:

• For each f : A→ B of A a cell ⌜
⌞f

⌝
⌟ : ⌜⌞A⌝⌟(I

A
B I) subject to equations:

⌜
⌞fg

⌝
⌟ =

⌜
⌞f

⌝
⌟

⌜
⌞g
⌝
⌟

⌜
⌞1A

⌝
⌟ = 1A

⌜
⌞f ⊗ g⌝⌟ = ⌜

⌞f
⌝
⌟ | ⌜⌞g⌝⌟

One way to understand these is to notice that they allow us to interpret
string diagrams denoting morphisms of A as cells of ⌜

⌞A⌝⌟ unambiguously:

We write ⌜
⌞f

⌝
⌟ = f when it is clear in context that f denotes a cell of ⌜

⌞A⌝⌟.

8

• For each object A of A, corner cells getAL : ⌜
⌞A⌝⌟(A◦ I

AI), putAR : ⌜
⌞A⌝⌟(I

A
I A◦),

getAR : ⌜⌞A⌝⌟(I
I
AA•), and putAL : ⌜⌞A⌝⌟(A• A

I I), which we depict as follows:

The corner cells are subject to the yanking equations:

Intuitively, the corner cells send and receive resources along the left and
right boundaries. The yanking equations allow us to carry out exchanges
between horizontally composed cells, and tell us that being exchanged has
no effect on the resources involved.

For a precise development of free double categories see [13]. Briefly, cells are
formed from the generating cells by horizontal and vertical composition, subject
to the axioms of a double category in addition to any generating equations.
The corner structure has been heavily studied under various names including
proarrow equipment, framed bicategory, connection structure, and companion
and conjoint structure. A good resource is the appendix of [32].

Cells of ⌜
⌞A⌝⌟ can be understood as interacting morphisms of A. Each cell

is a method of obtaining the resources of bottom boundary from those of the
top boundary by participating in A-valued exchanges along the left and right
boundaries in addition to using the resource transformations supplied by A.
For example, if the morphisms of A describe the procedures involved in baking
bread, we might have the following cells of ⌜

⌞A⌝⌟:

The cell on the left describes a procedure for transforming dough into nothing
by kneading it and sending the result away along the right boundary, and the
cell in the middle describes a procedure for transforming an oven into bread and
an oven by receiving dough along the left boundary and then using the oven to
bake it. Composing these cells horizontally results in the cell on the right via the
yanking equations. In this way the free cornering models process interaction,
with the corner cells capturing the flow of information across components.

9

2.3. Crossing Cells

In this section we recall crossing cells, an interesting bit of structure that
exists in the free cornering of any symmetric monoidal category. We recall a few
results concerning the crossing cells, which are quite well-behaved. Our purpose
in doing so is mainly to extend these results later on when we add choice and
iteration to the free cornering. The crossing cells will remain well-behaved,
which is a sign that our notions of choice and iteration are formally coherent.

Definition 3 ([25]). Let A be a symmetric monoidal category. For each A ∈
⌜
⌞A⌝⌟H and each U ∈ ⌜

⌞A⌝⌟V we define a crossing cell χU,A, pictured as in:

inductively as follows: define χA◦,B and χA•,B as in the diagrams below on the
left and right, respectively:

further, define χI,A = 1A and χU⊗W,A =
χU,A

χW,A
, as in:

We note that this definition differs slightly from that given in [25, 27]. In
previous work on the free cornering, the definition of crossing cells included the
assumption that they were coherent with respect to horizontal composition. We
show that in fact, this can be derived:

Lemma 1. Let A be a symmetric monoidal category. For U ∈ A◦• and A,B ∈
A0 the following equations hold in ⌜

⌞A⌝⌟:

(i) χU,A⊗B = χU,A | χU,B

(ii) χU,I = idU

Proof. (i) By structural induction on U . In case U = C◦ we have:

10

as required. The case for U = C• is similar. If U = I then we have:

χI,A⊗B = ⌜
⌞1A⊗B

⌝
⌟ = ⌜

⌞1A
⌝
⌟ | ⌜⌞1B⌝⌟ = χI,A | χI,B

For the inductive case U ⊗W we have

χU⊗W,A⊗B =
χU,A⊗B

χW,A⊗B
=

χU,A | χU,B

χW,A | χW,B
=

χU,A

χW,A
| χU,B

χW,B
= χU⊗W,A | χU⊗W,B

The claim follows.

(ii) By induction on the structure of U . If U = A◦ then we have:

as required. The case for U = A• is similar. If U = I then we have:

χU,I = χI,I = 1I = idI

For U ⊗W , we have:

χU⊗W,I =
χU,I

χW,I
=

idU
idW

= idU⊗W

The claim follows.

Additionally, the crossing cells carry interesting categorical structure. The
core technical lemma underpinning this structure is as follows:

Lemma 2 ([25]). For any cell α of ⌜
⌞A⌝⌟ we have

We recapitulate the proof of this, as we will refer to it later on, when we
extend the above lemma to the setting with choice and iteration.

Proof. By structural induction on cells of ⌜
⌞A⌝⌟. For the ◦-corners we have:

and for the •-corners, similarly:

11

the final base cases are the ⌜
⌞f

⌝
⌟ maps:

There are two inductive cases. For vertical composition, we have:

Horizontal composition is similarly straightforward, and the claim follows by
induction.

A particularly interesting consequence of Lemma 2 is that for any symmetric
monoidal category A, ⌜

⌞A⌝⌟ is a monoidal double category in the sense of Shul-
man [33]. That is, a pseudo-monoid object in the strict 2-category VDblCat of
double categories, lax double functors, and vertical transformations.

Lemma 3 ([25]). If A is a symmetric monoidal category then ⌜
⌞A⌝⌟ is a monoidal

double category.

Proof. We give the action of the tensor product on cells:

This defines a pseudofunctor, with the component of the required vertical trans-
formation given by exchanging the two middle wires as in:

Notice that ⊗ is strictly associative and unital, in spite of being only pseudo-
functorial.

This concludes our treatment of crossing cells in the free cornering. We
proceed to give a model of the free cornering that we have recovered from the
mathematical wilderness.

12

2.4. A Model: Stateful Transformations

In this section we construct a single-object double category of stateful trans-
formations, named for their resemblance to the stateful runners studied by
Uustalu in the context of monadic computational effects [34]. Our interest in
the double category of stateful transformations is that it gives a model of the free
cornering, exemplifying the corner cells and crossing structure in a more familiar
setting. Stateful transformations will serve as a running example throughout
our development. First, we require the notion of strong functor. Recall:

Definition 4. Let (C,⊗, I) be a monoidal category, and let F : C → C be a
functor. Then a tensorial strength for F consists of a natural transformation:

τFX,Y : FX ⊗ Y → F (X ⊗ Y)

satisfying τFX,I = 1FX and also:

FX ⊗ Y ⊗ Z

F (X ⊗ Y)⊗ Z F (X ⊗ Y ⊗ Z)

τF
X,Y ⊗1Z

τF
X,Y ⊗Z

τF
X⊗Y,Z

A strong functor (F, τF) : C→ C consists of a functor F : C→ C together with
a tensorial strength τF for F .

Let CC
τ be the collection of strong functors C → C. Then CC

τ forms a
monoid (CC

τ , ◦, I). Given two strong functors (F, τF), (G, τG) : C → C we
define (F, τF)◦ (G, τG) = (G◦F, τG◦F) where τG◦F

X,Y = τGFX,Y G(τFX,Y). The unit

I is given by the identity functor 1C with strength τ1CX,Y = 1X⊗Y . We write

F instead of (F, τF) when confusion is unlikely. The accompanying notion of
natural transformation is:

Definition 5. Let (C,⊗, I) be a monoidal category, and let (F, τF), (G, τG) :
C → C be strong functors. A strong natural transformation α : (F, τF) →
(G, τG) is a natural transformation α : F → G satisfying:

FX ⊗ Y GX ⊗ Y

F (X ⊗ Y) G(X ⊗ Y)

αX⊗1Y

τF
X,Y τG

X,Y

αX⊗Y

We will be concerned with strong functors over a cartesian closed category1

(C,⊗, I). We writeXA for the exponential, evBA : BA⊗A→ A for the evaluation

1In fact, for the purposes of this section it suffices to assume that our category is merely
monoidal closed. We make the stronger assumption of cartesian closure for continuity with
later sections in which it is truly necessary.

13

maps, and λ[f] : B → CA for the name of f : B⊗A→ C. We reiterate that here
monoidal structure is assumed to be strict, and that this includes the cartesian
monoidal structure in cartesian closed categories. Given an object A of C, we
define endofunctors A◦ = (−⊗A) and A• = (−)A of C. The tensorial strengths
for A◦ and A• have components as in:

τA
◦

X,Y = 1X ⊗ σA,Y : X ⊗A⊗ Y → X ⊗ Y ⊗A

τA
•

X,Y = λ[(1XA ⊗ σY,A)(ev
A
X ⊗ 1Y)] : X

A ⊗ Y → (X ⊗ Y)A

Note that A◦ is left adjoint to A•.
We may now assemble the double category of stateful transformations:

Definition 6. Let (C,⊗, I) be a cartesian closed category. The single-object
double category S(C) of stateful transformations in C has horizontal edge monoid
(C0,⊗, I) given by the cartesian product structure of C, and has vertical edge
monoid (CC, ◦, I) the monoid of strong endofunctors on C. The cells α :
S(C)(U A

BW) are strong natural transformations:

α : (A◦ ◦ U, τA
◦◦U)→ (W ◦B◦, τW◦B◦

)

so in particular the components are of the form:

αX : UX ⊗A→W (X ⊗B)

For horizontal composition, if we have α : (F A
BG) and β : (GA′

B′ H) then their

horizontal composite (α | β) : (F A⊗A′

B⊗B′ H) is given by:

(α|β)X = (αX ⊗ 1A′)(βX⊗B) : FX ⊗A⊗A′ → H(X ⊗B ⊗B′)

and the horizontal identity cells idF : (F I
I F) are given by:

(idF)X = 1FX : FX ⊗ I = FX → FX = F (X ⊗ I)

For vertical composition, if we have α : (F A
BG) and β : (HB

C K) then their

vertical composite α
β : (F◦H A

CG◦K) is given by(
α

β

)
X

= αHXG(βX) : F (H(X))⊗A→ G(K(X ⊗ C))

and the vertical identity cells 1A : (I A
AI) are given by:

(1A)X = 1X⊗A : 1C(X)⊗A = X ⊗A→ X ⊗A = 1C(X ⊗A)

We show that this is indeed a double category:

Lemma 4. S(C) is well-defined.

14

Proof. Horizontal and vertical composition are associative and unital because
both composition of natural transformations and the cartesian product structure
are associative and unital. The rest of the requirements on a double category
are easily seen to hold, with the most involved being interchange, which we show

holds explicitly. Given α : (F A
BG), β : (GA′

B′ H), γ : (F ′ B
C G′) and δ : (G′ B

′

C′ H′),

then the interchange law (αγ |
β
δ) = (α|βγ|δ) holds as follows:

F (F ′(X))⊗A⊗A′

αF ′(X)⊗A′

��
(α|β)F ′X

��

(α
γ)X⊗A′

��
(
α|β
γ|δ)X

oo

(α
γ | βδ)X

//

G(F ′(X)⊗B)⊗A′

G(γX)⊗A′
vv βF ′X⊗B ((

G(G′(X ⊗ C))⊗A′

βG′(X⊗C)

((

(β
δ)X⊗C

((

H(F ′(X)⊗B ⊗B′)

H(γX⊗B′)

vv

H(γ|δ)
vv

H(G′(X ⊗ C)⊗B′)

H(δX⊗C)

��
H(H ′(X ⊗ C ⊗ C ′))

where the middle diamond commutes by naturality of β and the rest of the
diagram is obtained by unfolding definitions.

A first observation concerning S(C) is that for each f : A → B of C there
is a cell [f] : S(C)(I A

B I) given by [f]X : (1X ⊗ f) : X ⊗ A → X ⊗ B, and that
this defines an embedding [−] : C → V S(C). Moreover, the category of strong
endofunctors of C and strong natural transformations embeds into HS(C), since
a strong natural transformation α : (F, τF) → (G, τG) is equivalently a cell
α : S(C)(F I

I G).

We define ◦-corner cells putAR : S(C)(I A
I A◦) and getAL : S(C)(A◦ I

AI) to have
identity maps as components, as in:

(putAR)X = 1X⊗A : 1C(X)⊗A = X ⊗A→ X ⊗A = A◦(X ⊗ I)

(getAL)X = 1X⊗A : A◦(X)⊗ I = X ⊗A→ X ⊗A = 1C(X ⊗A)

That the yanking equations hold is immediate. Next, we define •-corner cells
putAL : S(C)(A• A

I I) and getAR : S(C)(I I
AA•) using the closed structure, as in:

(putAL)X = evAX : A•(X)⊗A = XA ⊗A→ X = 1C(X ⊗ I)

(getAR)X = λ[1X⊗A] : 1C(X)⊗ I = X → (X ⊗A)A = A•(X ⊗A)

In other words, (putAL)X : A◦(A•X) → X is and (getAR)X : X → A•(A◦X) are
the unit and counit of the adjunction A◦ ⊣ A• given by the cartesian closed

15

structure. The yanking equations are then the triangle equations of this ad-
junction. Explicitly:

(getAR | putAL)X = (λ[1X⊗A]⊗ 1A)ev
A
X⊗A = 1X⊗A = (idA•)X(

getAR
putAL

)
X

= λ[1XA⊗A](ev
A
X)A = λ[1XA⊗Aev

A
X] = 1XA = (1A)X

That the corner cells constitute strong natural transformations is straightfor-
ward, if slightly tedious, to verify. It follows that S(C) is a proarrow equipment.

The fact that S(C) is constructed from strong functors is closely connected to
the nature of crossing cells there. Given a strong functor (F, τF) : C→ C and an
object A of C the tensorial strength of F defines a crossing cell χF,A : S(C)(F A

AF)
with components (χF,A)X = τFX,A : FX ⊗A→ F (X ⊗A). These crossing cells
are coherent with respect to both horizontal and vertical composition in S(C)
in the sense that:

χF,I = idF χF,A⊗B = χF,A | χF,B χI,A = 1A χF◦G,A =
χF,A

χG,A

The crossing cells χB◦,A and χB•,A obtained in this manner are equal to those
defined in terms of the corner cells and braiding, as in Definition 3.

Moreover, the equation from Lemma 2 concerning crossing cells:

holds for all cells α of S(C) precisely because cells α are required to be strong
natural transformations. In particular, this means that S(C) is also a monoidal
double category.

We have seen that the double category of stateful transformations has corner
and crossing cells, much as the free cornering does. We have previously men-
tioned that stateful transformations give a model of the free cornering. What we
mean by this is that there is a structure-preserving double functor from the free
cornering of a cartesian closed category into the associated category of stateful
transformations. That is, we have:

Lemma 5. Let (C,⊗, I) be a cartesian closed category. Then we have:

(i) S(C) is a proarrow eqipment.

(ii) S(C) is a monoidal double category.

(iii) There is a double functor D : ⌜
⌞C⌝⌟ → S(C) defined as follows: on the

horizontal edge monoid D acts as the identity; on the vertical edge monoid
D sends A◦ and A• in C◦• to the strong functors A◦ and A• in CC

τ detailed
above, and is otherwise defined as in D(I) = I and D(U ⊗W) = D(U)⊗

16

D(W); on cells D acts on the morphisms ⌜
⌞f

⌝
⌟ as in D(⌜⌞f

⌝
⌟) = [f], and on

the corner cells as in:

D(putAR) = putAR D(getAL) = getAL

D(putAL) = putAL D(getAR) = getAR

Moreover, D : ⌜⌞C⌝⌟ → S(C) preserves the proarrow equipment structure and
monoidal double category structure, in the sense that it maps corner cells
and crossing cells in ⌜

⌞C⌝⌟ to corner cells and crossing cells in S(C).

Remark 1. Strong functors, and in particular strong monads, are often used
to model computational effects (see e.g., [23, 29]). For example A• is sometimes
called the reader monad : arrows f : B → C in the Kleisli category are given by
arrows f : B → CA = A•(C), which are understood as arrows B → C that read
input of type A. This input is understood to be provided by the environment of
the program. Moreover, A◦ is the writer comonad, A• ◦A◦ is the state monad,
and A◦ ◦A• is the store comonad.

One way to think of cells α of S(C) from the perspective of computational
effects is as follows: the right boundary of α represents its environment, that is,
the context in which α executes. For example if the right boundary of α is A•

then α will read a value (supplied by the environment). The left boundary of α
represents the interior of α, in the sense that α acts as the environment of its
interior. For example if the left boundary of α is A• then the interior of α will
read a value, which α must supply. Here effects are understood to be triggered
from the left, propagating outwards until resolved.

This concludes our discussion of S(C) for the time being. We proceed to
discuss the addition of choice to the free cornering.

3. Adding Choice to the Free Cornering

In this section we extend the free cornering of a symmetric monoidal category
with a notion of protocol choice. In addition to symmetric monoidal structure
we will require the base category to have distributive binary coproducts, which
we review in Section 3.1. We also discuss the way in which this sort of category
can be seen as an algebra of sequential branching programs. In Section 3.2
we construct the free cornering with choice over a suitable base and discuss its
interpretation. In Section 3.3 we establish a number of elementary properties
of the free cornering with choice. In Section 3.4 we define crossing cells in the
free cornering with choice, and show that they are well-behaved. This is mostly
an extension of Section 2.3 to the new setting, with the exception of Lemma 14.
Finally, in Section 3.5 we show that with additional assumptions on the base
category the double category of stateful transformations from Section 2.4 gives
a model of the free cornering with choice.

17

3.1. Distributive Monoidal Categories and Branching Programs

We begin by recapitulating the notion of a category with binary coproducts,
largely in order to establish our notation for them:

Definition 7. A category A is said to have binary coproducts in case for each
pair A,B of objects of A there is is an object A⊕B of A together with morphisms
σA,B
0 : A → A⊕ B and σA,B

1 : B → A⊕ B such that for any pair of morphims
f : A → C and g : B → C there exists a unique morphism [f, g] : A ⊕ B → C

with the property that σA,B
0 [f, g] = f and σA,B

1 [f, g] = g. We call A ⊕ B
the coproduct of A and B, and call [f, g] the copairing of f and g. We write

σA,B
0 = σ0 and σA,B

1 = σ1 when it is unlikely to result in confusion. Note that
a category with binary coproducts need not have an initial object.

Next, we recall the notion of a distributive monoidal category, being a
monoidal category with distributive binary coproducts:

Definition 8. A distributive monoidal category (A,⊗,⊕, I) is a symmetric
monoidal category (A,⊗, I) with binary coproducts A ⊕ B such that ⊗ dis-
tributes over ⊕. That is, for all objects A,B,C of A the arrow µr = [(σ0 ⊗
1C), (σ1⊗1C)] : (A⊗C)⊕(B⊗C)→ (A⊕B)⊗C has an inverse δr : (A⊕B)⊗C →
(A⊗ C)⊕ (B ⊗ C). Diagrammatically:

Note that in any distributive monoidal category there is necessarily an inverse
δl : C ⊗ (A⊕B)→ (C ⊗A)⊕ (C ⊗B) to the arrow µl = [(1C ⊗σ0), (1C ⊗σ1)] :
(C ⊗A)⊕ (C ⊗B)→ C ⊗ (A⊕B).

The resource-theoretic understanding of symmetric monoidal categories ex-
tends to distributive monoidal categories, with A ⊕ B understood as the col-
lection consisting of the contents of A or the contents of B. Notice that this
interpretation is only really coherent in the presence of distributivity.

Another way to understand distributive monoidal categories is that they
model branching programs. In any distributive monoidal category we may define
an object Bool = I ⊕ I of booleans with elements ⊤ = σ0 : I → Bool and
⊥ = σ1 : I → Bool given by the coproduct injections. Then for any f, g : A→ B
the morphism δr[f, g] : Bool⊗A→ B models the conditional statement:

if b then f(x) else g(x)

In particular we have both of (see Lemma 6):

(⊤⊗ 1A)δ
r[f, g] = σA,A

0 [f, g] = f (⊥⊗ 1A)δ
r[f, g] = σA,A

1 [f, g] = g

which we should think of as program equivalences:

if ⊤ then f(x) else g(x) = f(x) if ⊥ then f(x) else g(x) = g(x)

18

Before moving on we record a useful fact about coproduct injections in dis-
tributive monoidal categories for later use:

Lemma 6. In distributive monoidal category:

(σA,B
0 ⊗ 1C)δ

r = σA⊗C,B⊗C
0 and (σA,B

1 ⊗ 1C)δ
r = σA⊗C,B⊗C

1

Proof. We have:

σA⊗C,B⊗C
0 µr = σA⊗C,B⊗C

0 [(σA,B
0 ⊗ 1C), (σ

A,B
1 ⊗ 1C)] = σA,B

0 ⊗ 1C

It follows immediately that:

σA⊗C,B⊗C
0 = σA⊗C,B⊗C

0 µrδr = (σA,B
0 ⊗ 1C)δ

r

Similarly, we have (σA,B
1 ⊗ 1C)δ

r = σA⊗C,B⊗C
1 .

Distributive monoidal categories are also a good place to model datatypes.
For example, if A is distributive monoidal and A is an object of A, then we may
model stacks of type A as an object SA of A equipped with an isomorphism
SA
∼= I ⊕ (A⊗ SA) with components pop : SA → I ⊕ (A⊗ SA) and [nil, push] :

I ⊕ (A ⊗ SA) → SA. Then for example the object SI of stacks of type I is a
model of the natural numbers with nil = zero and push = succ. See [37] for a
more in-depth discussion.

3.2. The Free Cornering With Choice

In this section we extend the free cornering of a monoidal category with
a notion of protocol choice. We begin by extending the monoid of exchanges
(Definition 1) with binary operations −+− and −×− representing branching
protocols:

Definition 9. Let A be a symmetric monoidal category. The monoid A◦•
⊕ of

A-valued exchanges with choice has elements generated by:

A ∈ A0

A◦ ∈ A◦•
⊕

A ∈ A0

A• ∈ A◦•
⊕ I ∈ A◦•

⊕

U ∈ A◦•
⊕ W ∈ A◦•

⊕

U ⊗W ∈ A◦•
⊕

U ∈ A◦•
⊕ W ∈ A◦•

⊕

U ×W ∈ A◦•
⊕

U ∈ A◦•
⊕ W ∈ A◦•

⊕

U +W ∈ A◦•
⊕

subject to the following equations:

I ⊗ U = U U ⊗ I = U (U ⊗W)⊗ V = U ⊗ (W ⊗ V)

We extend the interpretation of A◦• from Section 2.2 to an interpretation of
A◦•

⊕ , interpreting −+− and −×− as choices. Specifically, For any U,W ∈ A◦•
⊕

we interpret U+W ∈ A◦•
⊕ as an exchange which begins with the left participant

choosing whether the rest of the exchange will be of the form U or of the formW ,

19

after which the exchange proceeds according to this choice. Dually, we interpret
U ×W ∈ A◦•

⊕ in the same way, except that the right participant chooses instead
of the left participant.

For example, suppose A,B ∈ A0. For each of the following exchanges,
call the left participant Alice and the right participant Bob, as before. Now,
consider:

• To carry out A◦×A•, first Bob chooses which of A◦ and A• will happen. If
Bob chooses A◦ then Alice sends him an instance of A and the exchange
ends. If Bob chooses A◦ then he sends Alice an instance of A and the
exchange ends.

• To carry our (A◦ × A•) ⊗ B•, first Alice and Bob carry out A◦ × A• as
above, and then Bob gives Alice an instance of B.

• To carry out A• + I, first Alice chooses which of A• and I will happen.
If Alice chooses A• the Bob sends her an instance of A and the exchange
ends. If Alice chooses I then the exchange ends immediately.

• To carry out A◦ + (A◦ × B◦) ∈ A◦•
⊕ , first Alice chooses which of A◦

and (A◦ × B◦) will happen. If Alice chooses A◦, then she sends Bob an
instance of A and the exchange ends. If Alice chooses A◦ × B◦, then
next Bob chooses which of A◦ and B◦ will happen. If Bob chooses A◦ then
Alice sends him an instance of A and the exchange ends. If Bob chooses
B◦ then instead Alice sends an instance of B and the exchange ends.

We proceed to extend the rest of the free cornering construction with choice:

Definition 10. Let A be a distributive monoidal category. We define the free

cornering with choice of A, written ⌜
⌞A⌝⌟

⊕
, to be the free single-object double

category with horizontal edge monoid (A0,⊗, I), vertical edge monoid A◦•
⊕ , and

generating cells and equations consisting of:

• The generating cells and equations of ⌜
⌞A⌝⌟ (Definition 2).

• For each U,W ∈ A◦•
⊕ , horizontal projection cells π0 : (U×W

I
I U) and

π1 : (U×W
I
IW). Further, for each pair of cells α ∈ ⌜

⌞A⌝⌟
⊕
(V A

BU) and

β ∈ ⌜
⌞A⌝⌟

⊕
(V A

BW) a unique cell α× β ∈ ⌜
⌞A⌝⌟

⊕
(V A

BU×W) satisfying:

• Dually, for each U,W ∈ A◦•
⊕ , horizontal injection cells π

0 : (U I
I U+W)

and π

1 : (W I
I U+W). Further, for each pair of cells α ∈ ⌜

⌞A⌝⌟
⊕
(U A

BV) and

β ∈ ⌜
⌞A⌝⌟

⊕
(W A

BV) a unique cell α+ β ∈ ⌜
⌞A⌝⌟

⊕
(U+W

A
BV) satisfying:

20

• Finally, for each pair of cells α : ⌜⌞A⌝⌟
⊕
(U A

CW) and β : ⌜⌞A⌝⌟
⊕
(U B

C W) a unique

cell [α, β] : ⌜⌞A⌝⌟
⊕
(U A⊕B

C W) satisfying:

where ⌜
⌞σ0

⌝
⌟ and ⌜

⌞σ1
⌝
⌟ are given by the coproduct injections in A.

We extend our interpretation of cells of ⌜
⌞A⌝⌟ as interacting processes to cells

of ⌜
⌞A⌝⌟

⊕
. Recall that U × W is the exchange in which the right participant

chooses whether the exchange will be of the form U or W . The projection cells
π0 : (U×W

I
I U) and π1 : (U×W

I
IW) allow a cell, acting as the right participant

in the exchange U ×W , to make such choices. The corresponding cells α× β :
(V A

BU×W) allow a cell, acting as the left participant in the exchange U ×W ,
to react to such choices by specifying a response to each of the two possible
choices. Similarly, U +W is the exchange in which the left participant chooses
whether the exchange will be of the form U or W . The injections allow a cell,
acting as the left participant, to make such choices, and the corresponding cells
α + β : (U+W

A
BV) to react to such choices by specifying a response to each

possibility.

Example 1. Suppose A contains a morphism bake : dough⊗ oven→ bread⊗
oven (as in Section 2.2), and define:

react =
(
getbreadL | 1C

)
+

(
getdoughL | 1C

bake

)
:

(
bread◦+dough◦

oven

bread⊗oven
I

)
Then react describes a procedure for obtaining bread, assuming one posesses
an oven, by participating in an exchange along the left boundary in which the
counterparty chooses whether to supply bread or dough. If they choose to
supply bread (via π

0), then the bread has been obtained. If they choose to
supply dough (via π

1), then we instead bake the dough to obtain bread. So for
example:

(putbreadR | π

0) | react = 1bread⊗oven (putdoughR | π

1) | react = bake

or, diagrammatically:

Example 2. Consider H : (dough◦×oven◦
I

bread⊗oven
dough•×oven•) defined by

H =

(
π1 |

getovenL |getdoughR

σoven,dough

)
×
(
π0 | getdoughL | getovenR

)
bake

21

Then we have:

That is, if dough is supplied along the right boundary, then H chooses to obtain
an oven along the left boundary, and bakes bread. Otherwise an oven is supplied
along the right boundary, in which case H chooses to obtain dough along the
left boundary, and bakes bread anyway.

In this way, cells α+ β and α× β are understood as procedures that branch
according to choices made externally as part of the exchange along their left
an right boundary, respectively. We compare this to cells [α, β] : (U A⊕B

C W),
which we understand as procedures that branch according to their input, much

as in Section 3.1. An important feature of ⌜
⌞A⌝⌟

⊕
is that when such a procedure

branches according to its input, this may be reflected in choices made along
the left and right boundary. Explicitly, let α : (U A

CW) and β : (U ′ B
C W ′), and

consider [(π0 | α | π

0), (π1 | β | π

1)] : (U+U ′ A⊕B
C W+W ′). Then we have:

σ0

[(π0 | α | π

0), (π1 | β | π

1)]
= π0 | α | π

0

σ1

[(π0 | α | π

0), (π1 | β | π

1)]
= π1 | β | π

1

and in this way the choice a procedure makes as part of some exchange along
its left and/or right boundary may be determined by its inputs.

Example 3. Suppose our base category has both an object bread as well as an
object Sbread

∼= I ⊕ (bread⊗ Sbread) of stacks of bread as in Section 3.1). Then
consider the cell H : (bread◦×I

Sbread

Sbread
I) defined as in:

H =
pop

[(π0|getbreadL |nil),(π1|1bread⊗Sbread
)]

push

Then we have:

That is, if the input stack of bread is empty then H chooses to obtain bread

along the left boundary. If the input stack of bread is nonempty then H chooses
to do nothing along the left boundary (presumably since it already has bread
and does not need any more).

3.3. Elementary Properties

In this section we establish a number of elementary properties of the free
cornering with choice. First, we observe that where our formation rule for cells

[α, β] in ⌜
⌞A⌝⌟

⊕
overlaps with the formation rule for copairing maps in A, the two

coincide:

22

Lemma 7. For any f : A → C and g : B → C in A,
[
⌜
⌞f

⌝
⌟,

⌜
⌞g
⌝
⌟

]
= ⌜

⌞[f, g]
⌝
⌟ in

⌜
⌞A⌝⌟

⊕
.

Proof. We have:

σ0

⌜
⌞[f, g]

⌝
⌟
= ⌜

⌞f
⌝
⌟ =

σ0

[⌜⌞f
⌝
⌟,

⌜
⌞g
⌝
⌟]

σ1

⌜
⌞[f, g]

⌝
⌟
= ⌜

⌞g
⌝
⌟ =

σ1

[⌜⌞f
⌝
⌟,

⌜
⌞g

⌝
⌟]

and the claim follows.

Next, we find that cells [α, β] enjoy certain absorption properties in ⌜
⌞A⌝⌟

⊕
:

Lemma 8. In ⌜
⌞A⌝⌟

⊕
:

(i) γ | [α, β] = δl

[(γ|α),(γ|β)]

(ii) [α, β] | γ = δr

[(α|γ),(β|γ)]

(iii) [α,β]
γ = [αγ ,

β
γ]

Proof. (i) We have:

σ0

µl

γ|[α,β]

= γ | σ0

[α, β]
= γ | α =

σ0

[(γ | α), (γ | β)]

σ1

µl

γ|[α,β]

= γ | σ1

[α, β]
= γ | β =

σ1

[(γ | α), (γ | β)]

and so we have µl

γ|[α,β] = [(γ | α), (γ | β)]. Precomposing vertically with δl

on both sides proves the claim.

(ii) Similar to (i).

(iii) We have:

σ0

[α,β]
γ

=
α

γ
=

σ0

[αγ ,
β
γ]

σ1

[α,β]
γ

=
β

γ
=

σ1

[αγ ,
β
γ]

and the claim follows.

While (iii) is analogous to the naturality of the codiagonal map in a category
with finite coproducts, (i) and (ii) do not seem to admit similar analogies.

When restricted to the category of horizontal cells, the axioms concerning
cells α × β and α + β are precisely the axioms for binary products and binary
coproducts. That is, we have:

Lemma 9. We have:

23

(i) H ⌜
⌞A⌝⌟

⊕
has binary products U

π0← U ×W
π1→W .

(ii) H ⌜
⌞A⌝⌟

⊕
has binary coproducts U

π

0→ U +W

π

1←W .

The category of horizontal cellsH ⌜
⌞A⌝⌟ of the free cornering can be understood

as a category of exchanges, a perspective developed in [25, 27]. In particular,
isomorphic objects of H ⌜

⌞A⌝⌟ correspond to exchanges of A◦• that are morally

equivalent (Lemma 3 of [25]). We show that H ⌜
⌞A⌝⌟

⊕
contains two novel pairs of

such morally equivalent exchanges:

Lemma 10. In H ⌜
⌞A⌝⌟

⊕
:

(i) (A⊕B)◦ ∼= A◦ +B◦ and (A⊕B)• ∼= A• ×B•

(ii) (A×B)× C ∼= A× (B × C) and (A+B) + C ∼= A+ (B + C)

Proof. (i) Let γ =
getAL
σ0

+
getBL
σ1

: (A◦+B◦ I
A⊕B I). That is, γ is the unique cell

such that:

Next, define δ =
[
putAR |

π
0, put

B
R |
π

1

]
: (I A⊕B

I A◦⊗B◦). That is, δ is the
unique cell such that:

Then we have

by the universal property of ⊕, since we have both of:

Similarly, we have:

24

by the universal property of +, as in:

Then the following arrows of H ⌜
⌞A⌝⌟

⊕
are mutually inverse:

and the claim follows. The proof that (A⊕B)• = A• ×B• is similar.

(ii) Follows immediately from Lemma 9.

This makes intuitive sense: from the resource-theoretic perspective, an in-
stance of A⊕B is either an instance of A or an instance of B. Then it certainly
ought to be the case that Alice giving Bob an instance of A⊕B is the same as
Alice choosing whether to give Bob an instance of A or to give Bob an instance
of B. The above lemma tells us that this is indeed the case.

3.4. Crossing Cells

We extend Definition 3 to obtain crossing cells in the free cornering with
choice:

Definition 11. Let A be a distributive monoidal category. For each A ∈ ⌜
⌞A⌝⌟

⊕
H

and each U ∈ ⌜
⌞A⌝⌟

⊕
V we define a crossing cell χU,A : (U A

AU) by induction on the
structure of U . The cases for A◦, A•, I, and U ⊗W are as in Definition 3. For
U +W we define χU+W,A = (χU,A | π

0) + (χW,A | π

1). That is, χU+W,A is the
unique cell satisfying:

Similarly, for U ×W we define χU×W,A = (π0 | χU,A)× (π1 | χW,A), so χU×W,A

is the unique cell satisfying:

We show that the crossing cells remain well-behaved. First, the crossing cells
remain coherent with respect to horizontal composition in the free cornering
with choice:

25

Lemma 11. For U ∈ A◦•
⊕ and A,B ∈ A0 we have

(i) χU,A⊗B = χU,A | χU,B

(ii) χU,I = idU

Proof. We provide the inductive cases necessary to extend the proof of Lemma 1
to account for the new structure.

(i) In the inductive case for U +W we have:

π

0 | χU+W,A⊗B = χU,A⊗B | π

0 = χU,A | χU,B | π

0 = π

0 | χU+W,A | χU+W,B

Similarly, we have π

1 | χU+W,A⊗B = π

1 | χU+W,A | χU+W,B . It follows
by the universal property of −+− that χU+W,A⊗B = χU+W,A | χU+W,B .
The inductive case for U ×W is similar.

(ii) In the inductive case for U +W we have:

π

0 | χU+W,I = χU,I | π

0 = idU | π

0 = π

0 | idU+W

Similarly, we have π

1 | χU+W,I = π

1 | idU+W . It follows that χU+W,I =
idU+W , as required. The case for U ×W is similar.

Further, we find that the core technical lemma concerning crossing cells still
holds:

Lemma 12. For any cell α of ⌜
⌞A⌝⌟

⊕
we have

Proof. By structural induction on cells of ⌜
⌞A⌝⌟

⊕
. The base cases and the (induc-

tive) cases for cells α | β and α
β are as in the proof of Lemma 2. The remaining

inductive cases are as follows: For cells α+ β, we have:

and then by the universal property of + we have

26

as required. The case for cells α × β is similar. In the inductive case for cells
[α, β] we have:

by the universal property of ⊕ as in:

with the case for σ1 being similar. Precomposing vertically with δr yields:

Consequently, ⌜
⌞A⌝⌟

⊕
is a monoidal double category with the tensor product

of cells and proof as in Lemma 3. We record:

Lemma 13. If A is a distributive monoidal category then ⌜
⌞A⌝⌟

⊕
is a monoidal

double category.

Further, we find that crossing cells in the free cornering with choice are
coherent with respect to ⊕ in the following sense:

Lemma 14. In ⌜
⌞A⌝⌟

⊕
, χU,A⊕B =

[
χU,A

σ0
,
χU,B

σ1

]
. That is, χU,A⊕B is the unique

cell such that:

σ0

χU,A⊕B
=

χU,A

σ0

σ1

χU,A⊕B
=

χU,B

σ1

Proof. By structural induction on U . In case U = C◦ we have σ0

χC◦,A⊕B
=

χC◦,A

σ0

as in:

Similarly σ1

χC◦,A⊕B
=

χC◦,B

σ1
, and an analogous argument can be made for U =

C•. If U = I then we have:

σ0

χI,A⊕B
=

σ0

1A⊕B
=

1A
σ0

=
χI,A

σ0

27

Similarly σ1

χI,A⊕B
=

χI,B

σ1
. For U ⊗W we have:

σ0

χU⊗W,A⊕B
=

σ0
χU,A⊕B

χW,A⊕B

=

χU,A

χW,A

σ0
=

χU⊗W,A

σ0

Similarly, we have σ1

χU⊗W,A⊕B
=

χU⊗W,B

σ1
. For U +W we have π

0 | σ0

χU+W,A⊕B
=

π

0 | χU+W,A

σ0
as in:

An analogous argument gives π

1 | σ0

χU+W,A⊕B
= π

1 | χU+W,A

σ0
, and so σ0

χU+W,A⊕B
=

χU+W,A

σ0
by the universal property of +. Similarly, we have σ1

χU+W,A⊕B
=

χU+W,B

σ1
.

The case for U ×W is similar to the case for U +W .

3.5. A Model: Stateful Choice

In this section we return to the double category of stateful transformations
defined in Section 2.4 over a cartesian closed category C. We show that if C
has binary coproducts ⊕ which are distributive with respect to the cartesian
product ⊗ then we can define the branching protocols of the free cornering with
choice in the double category S(C). In keeping with our strictness assumptions,
the categorical product ⊗ is assumed to be strictly associative. As before, we
do not need to ask this of our binary coproducts ⊕. Of course, the distributive
laws hold only up to isomorphism.

Let pX,Y
0 : X ⊗ Y → X and pX,Y

1 : X ⊗ Y → Y be the projection maps, and
note that they are natural in X and Y . For f : A → B and g : A → C, we
write ⟨f, g⟩ : A→ B⊗C to be the unique morphism such that ⟨f, g⟩p0 = f and

⟨f, g⟩p1 = g. We note that the injections σX,Y
0 : X → X⊕Y , σX,Y

1 : Y → X⊕Y
given by the coproduct structure are also natural in X and Y . Finally, both
⊗ and ⊕ give bifunctors C sending f : A → C and g : B → D to (f ⊗ g) =
⟨p0 f, p1 g⟩ : A⊗B → C ⊗D and (f ⊕ g) = [f σ0, g σ1].

Given two strong endofunctors (F, τF) and (G, τF), we define their product
(F × G, τF×G) as follows: the endofunctor F × G is given by (F × G)(X) =
FX ⊗GX and (F ×G)(f) = F (f)⊗G(f); and the strength τF×G is given by:

(F ×G)(X)⊗A
⟨(p0⊗A),(p1⊗A)⟩−−−−−−−−−−−→ FX⊗A⊗GX⊗A

τF
X,A⊗τG

X,A−−−−−−−→ (F ×G)(X⊗A)

Similarly, the endofunctor F +G is given by (F +G)(X) = FX ⊕GX and
(F +G)(f) = F (f)⊕G(f). Its strength τF+G is given by:

(F +G)(X)⊗A
δrFX,GX,A−−−−−−→ (FX ⊗A)⊕ (GX ⊗A)

τF
X,A⊕τG

X,A−−−−−−−→ (F +G)(X ⊗A)

28

These two constructions have the same universal properties as the corre-
sponding definitions of choice protocols in Definition 10. Specifically, we have 2-
cells πF,G

0 : (F×G
1
1F) and πF,G

1 : (F×G
1
1F) with components pFX,GX

0 and pFX,GX
1

respectively. Given α : (F A
BG) and β : (F A

BH), we define (α× β) : (F A
BG×H) by:

(α× β)X = ⟨αX , βX⟩ : FX ⊗A→ (G×H)(X ⊗B)

Dually, we have 2-cells πF,G
0 : (F 1

1F+G) and πF,G
1 : (G 1

1F+G) with components

σFX,GX
0 and σFX,GX

1 respectively. Given α : (F A
BH) and β : (GA

BH), we define

(α× β) : (F+G
A
BH) by using the distributivity natural transformation:

(α+ β)X = δr[αX , βX] : (F +G)(X)⊗A→ H(X ⊗B)

Finally, we have vertical injection cells [σA,B
0] : (I A

A⊕B I) and [σA,B
1] : (I B

A⊕B I).

Given α : (F A
CG) and β : (F B

C G), we define the corresponding copairing cell

[α, β] : (F A⊕B
C H) as in:

[α, β]X = δl[αX , βX] : FX ⊗ (A⊕B)→ G(X ⊗ C)

These constructions have universal properties inherited from the distributive
cartesian structure of C, and it is straightforward to show that the projections
and injections are strong. We show that these constructions are well-defined in
the sense that they give 2-cells of S(C):

Lemma 15. If α and β are 2-cells of S(C), then α × β, α + β and [α, β] are
2-cells of S(C).

Proof. We show that the results of the operations are strong by showing that
they are a composition of strong natural transformations. First, note that the
pairing and copairing operations ⟨−,−⟩ and [−,−] when applied to strong nat-
ural transformations α, β create strong natural transformations, as in:

FX ⊗A (G×H)(X)⊗A

GX ⊗A⊗HX ⊗A

F (X ⊗A) (G×H)(X ⊗A)

⟨αX ,βX⟩⊗1A

τF
X,A

⟨αX⊗1A,βX⊗1A⟩ ⟨p0⊗1A,p1⊗1A⟩

τG
X,A⊗τH

X,A

⟨αX⊗A,βX⊗A⟩

(F +G)(X)⊗A HX ⊗A

(FX ⊗A)⊕ (GX ⊗A)

(F +G)(X ⊗A) H(X ⊗A)

[αX ,βX]⊗1A

δr

τH
X,A

[τF
X,A,τG

X,A]

[αX⊗1A,βX⊗1A]

[αX⊗A,βX⊗A]

29

Secondly, given strong endofunctors F and G, and objects A and B, both of
the natural transformations δr : (FX ⊕GX)⊗A→ (FX ⊗A)⊕ (GX ⊗A) and
δl : FX ⊗ (A ⊕ B) → (FX ⊗ A) ⊕ (FX ⊗ B) are strong since their inverses
µr and µl can be constructed using σ0, σ1 and [−,−]. We conclude that α ×
β, α + β and [α, β] are strong since they are compositions of strong natural
transformations.

As before, we have that S(C) is a proarrow equipment and also a monoidal
double category. Moreover, the double functor of Lemma 5 extends to the
setting with choice:

Lemma 16. Let C be a cartesian closed category with distributive binary co-
products. Then the double functor D : ⌜

⌞C⌝⌟ → S(C) extends to a double functor

D : ⌜⌞C⌝⌟
⊕ → S(C) as follows: for the vertical edge monoid we take D(U +W) =

DU+DW and D(U×W) = DU×DW ; and for the new cells we take D([α, β]) =
[D(α), D(β)], D(α+ β) = D(α) +D(β), and D(α× β) = D(α)×D(β).

We remark that this double functor maps the cells related to branching

communication protocols in ⌜
⌞C⌝⌟

⊕
to cells carrying similar structure in S(C),

and speculate that it will therefore preserve whatever kind of structure that

turns out to be. In this sense, we consider S(C) to give a model of ⌜
⌞C⌝⌟

⊕
.

Remark 2. We may consider the interpretation of branching protocols given
by − + − and − × − from the perspective of computational effects, extending
Remark 1. As a computational effect, F +G may be triggered by any program
which would trigger F or G. Dually, to resolve an effect F +G its environment
must be able to resolve both F and G independently. Similarly, to trigger F ×G
a program must be ready for the environment to resolve either of F or G, and
dually to resolve F ×G the environment must be able to resolve either F or G
independently. For F + G the choice comes from the interior, while for F × G
the choice comes from the environment.

This concludes our discussion of the free cornering with choice. We proceed
to add a notion of protocol iteration the free cornering.

4. Adding Iteration to the Free Cornering

In this section we extend the free cornering with choice to include a notion
of protocol iteration. In Section 4.1 we construct the free cornering with iter-
ation over a distributice monoidal category and discuss its interpretation. In
Section 4.2 we establish a number of elementary properties of the free cornering
with iteration, and in Section 4.3 we define crossing cells in the free cornering
with iteration, and show that they are well-behaved (extending Section 3.4 to
the new setting). Finally, in Section 4.4 we discuss iteration in terms of the
double category of stateful transformations.

30

4.1. The Free Cornering with Iteration

In this section we extend the free cornering with choice to include a notion
of protocol iteration. We begin by extending the monoid of exchanges with
choice (Definition 9) with unary operations (−)+ and (−)× representing iterated
protocols:

Definition 12. Let A be a symmetric monoidal category. The monoid A◦•
∗ of

A-valued exchanges with choice and iteration has elements generated by:

A ∈ A0

A◦ ∈ A◦•
∗

A ∈ A0

A• ∈ A◦•
∗ I ∈ A◦•

∗

U ∈ A◦•
∗ W ∈ A◦•

∗

U ⊗W ∈ A◦•
∗

U ∈ A◦•
∗ W ∈ A◦•

∗

U ×W ∈ A◦•
∗

U ∈ A◦•
∗ W ∈ A◦•

∗

U +W ∈ A◦•
∗

U ∈ A◦•
∗

U× ∈ A◦•
∗

U ∈ A◦•
∗

U+ ∈ A◦•
∗

subject to the following equations:

I ⊗ U = U U ⊗ I = U (U ⊗W)⊗ V = U ⊗ (W ⊗ V)

U× = I × (U ⊗ U×) U+ = I + (U ⊗ U+)

Notice in particular that A◦•
⊕ embeds into A◦•

∗ .

We extend our interpretation of elements of A◦•
⊕ to elements of A◦•

∗ . To do
so we must interpret U× and U+. We begin with U×. Our interpretation of
U× is informed by the equation U× = I × (U ⊗ U×). Recall that V ×W is
the protocol in which the right participant chooses whether to continue as V
or W . It follows that U× is the protocol in which the right participant chooses
whether to continue as I or U ⊗ U×. Thus, U× is the protocol in which the
right participant chooses whether to do nothing, or to do U and then U× again.
Put another way, U× is the iterated version of U , in which the right participant
decides when to stop iterating. Our interpretation of U+ is dual. Everything is
as above, except that the roles of the right and left participant are swapped.

For example, suppose A,B ∈ A0. For each of the following exchanges,
call the left participant Alice and the right participant Bob, as before. Now,
consider:

• To carry out (A◦)× = I×(A◦⊗(A◦)×) ∈ A◦•
∗ , first Bob chooses which of I

and A◦ ⊗ (A◦)× will happen. If Bob chooses I then the exchange ends. If
Bob chooses A◦ ⊗ (A◦)× then Alice sends Bob and instance of A and the
two of them carry out (A◦)× again from the beginning. In other words,
Bob can request any number of instances of A from Alice.

• To carry out (A◦×B•)+ ∈ A◦•
∗ , first Alice chooses which of I and (A◦×

B•)⊗(A◦×B•)+ will happen. If Alice chooses I then the exchange ends.
If Alice chooses (A◦×B•)⊗(A◦×B•)+ then Bob chooses which of A◦ and
B• will happen, with Alice sending Bob an instance of A if Bob chooses
A◦ and Bob sending Alice an instance of B if he chooses B•. Then, the
two of them carry out (A◦ ×B•)+ again from the beginning.

31

The key idea in our notion of iteration is the equation U× = I × (U ⊗ U×),
which allows us to use π0 : U× → I and π1 : U× → U⊗U× to express properties
of U× . Dually, we will be able to use π

0 : I → U+ and π

1 : U ⊗ U+ → U+

to express properties of U+. We proceed to extend the free cornering with the
notion of iteration suggested by this:

Definition 13. Let A be a distributive monoidal category. We define the free
cornering with iteration of A, written ⌜

⌞A⌝⌟
∗
, to be the free single-object double

category with horizontal edge monoid (A0,⊗, I), vertical edge monoid A◦•
∗ , and

generating cells and equations consisting of:

• The generating cells and equations of ⌜
⌞A⌝⌟

⊕
(Definition 10).

• For each trio of cells α : ⌜⌞A⌝⌟
∗
(V A

AU), f : ⌜⌞A⌝⌟
∗
(W A

BK), and g : ⌜⌞A⌝⌟
∗
(W I

I V⊗W)

a unique cell α×
f,g : ⌜⌞A⌝⌟

∗
(W A

BU×⊗K) satisfying:

• Dually, for each trio of cells α : ⌜
⌞A⌝⌟

∗
(U A

AV), f : ⌜
⌞A⌝⌟

∗
(K A

BW), and g :
⌜
⌞A⌝⌟

∗
(V⊗W

I
IW) a unique cell α+

f,g : ⌜⌞A⌝⌟
∗
(U+⊗K

A
BW) satisfying:

We extend our interpretation of cells of ⌜
⌞A⌝⌟

⊕
as interacting processes to cells

of ⌜
⌞A⌝⌟

∗
. Recall that U× = I × (U ⊗ U×) is the exchange in which the right

participant chooses whether the exchange is over (via π0), or is to continue as
U ⊗U× (via π1). The cells α

×
f,g enable our procedures to be the left participant

of such exchanges, reacting to the choices of the right participant as specified
by the equations. Of course, α+

f,g is the dual version for exchanges U+, with the
roles of the left and right participants swapped.

Remark 3. In developing an intuition about this it is helpful to consider the
following, simpler forms of these cell formation rules: Let α : (U A

AW). We define:

α× = α×
(π0|1A),π1

: (U×
A

A
W×) α+ = α+

(1A| π

0),

π

1
: (U+

A

A
W+)

Then α× and is the unique cell such that:

α× | π0 = π0 | 1A α× | π1 = π1 |
α

α×

and similarly α+ is the unique cell such that:

π

0 | α+ = 1A | π

0

π

1 | α+ =
α

α+
| π

1

32

Interpreted as an interacting process, α× reacts to the choice (made along the
right boundary) to stop iterating by doing nothing to its inputs and propagating
this choice along its left boundary. Similarly, α× reacts to the choice to continue
iterating, performing U once before performing U× again, by acting as α once
and then continuing as α×, propagating this choice along its left boundary. The
interpretation of α+ is similar. We note that both (−)+ and (−)× give functors
H ⌜

⌞A⌝⌟
∗ → H ⌜

⌞A⌝⌟
∗
.

Remark 4. Before moving on we note that cells α×
f,g, and α+

f,g admit a coin-

ductive reasoning principle. For α×
f,g, we have that if γ satisfies:

γ | π0

id
= f γ | π1

id
= g | α

γ

then γ = α×
f,g, which we say holds by coinduction. The coinductive reasoning

principle for cells α+
f,g is similar.

Example 4 (Mealy Machines). Say that a mealy machine in a monoidal cate-
gory A consists of a morphism m : A ⊗ S → S ⊗ B. Then the classical notion
of mealy machine is recoverable by considering mealy machine in the category
of finite sets, with S the set of states, A the input alphabet, and B the output
alphabet. Mealy machines are usually understood to operate on a sequence of
inputs drawn from A, producing a sequence of outputs drawn from B. The
state of the machine is fed forward to future iterations.

If m : A⊗ S → S ⊗B in A then let M : (A◦ S
SB◦) be the cell:

Then the cell M+ : ((A◦)+
S
S (B◦)+) exhibits the behaviour of the process that the

Mealy machine m is intended to define, as in:

that is, if the there is no more input then the machine produces no more output,
and if there is further input then the machine produces output accoring to m
and updates its internal state.

Example 5 (Memory Cell). Consider the cell H = (
putAR
getAR

)× : (I A
A (A◦⊗A•)×).

This cell behaves as follows:

33

Think of H as a simple sort of memory cell that stores a value of type A. When
called upon by the environment along its right boundary, the cells outputs
its contents, waits for its new contents to be supplied, and waits for further
instructions (above right). The cell can also be told to stop (above left).

Example 6. Suppose our base category A has objects bread and $, as well
as objects representing stacks of each: Sbread

∼= I ⊕ (bread ⊗ Sbread) and S$ ∼=
I ⊕ ($⊗ S$) as in Section 3.1. We construct a process that sells bread, sales :
⌜
⌞A⌝⌟

∗
(($◦⊗($•×bread))+

Sbread⊗S$
Sbread⊗S$

I) as follows: Let sale : ⌜⌞A⌝⌟
∗
($◦⊗($•×bread)

Sbread⊗S$
Sbread⊗S$

I)
be the cell below on the left, with γ0 and γ1 the cells below on the right.

Then define sales = sale+1Sbread⊗S$,□I
. We have:

We imagine the left boundary of sales as aa sort of queue of customers, waiting
to purchase bread. If there are no more customers (π

0) then sales simply
retains its stacks of bread and $. If there is at least one more customer (π1)
then sales receives $ from the first customer in line. If no bread is available
(the stack of bread is nil) then the money is returned. Otherwise the customer
receives the first piece of bread on the stack. This process is repeated until no
customers remain.

4.2. Elementary Properties

We proceed to establish some elementary properties of the free cornering with

iteration. First we note that the properties of ⌜
⌞A⌝⌟

⊕
established in Section 3.3

all hold in the free cornering with iteration, specifically Lemmas 7, 8, 9, and 10
all hold in ⌜

⌞A⌝⌟
∗
.

Moving on to elementary properties of ⌜
⌞A⌝⌟

∗
specifically, we show that U×

and U+ arise as (co)algebras of a functor on the category of horizontal cells:

Lemma 17. Consider the category H ⌜
⌞A⌝⌟

∗
of horizontal cells of the free corner-

ing with iteration. For all objects U of H ⌜
⌞A⌝⌟

∗
, we have:

(i) (U×, idU× : U× → U× = I×(U⊗U×)) is the final coalgebra of the functor

I × (U ⊗−) : H ⌜
⌞A⌝⌟

∗ → H ⌜
⌞A⌝⌟

∗

(ii) (U+, idU+ : U+ → U+ = I+(U ⊗U+)) is the initial algebra of the functor

I + (U ⊗−) : H ⌜
⌞A⌝⌟

∗ → H ⌜
⌞A⌝⌟

∗

34

Proof. (i) Suppose (W,h : W → I × (U ⊗W)) is a coalgebra for (I × (U ⊗
−). We must show that there is a unique coalgebra morphism (W,h) →
(U×, idU×) in H ⌜

⌞A⌝⌟
∗
. Define α = (idU)

×
(h|π0),(h|π1)

: (W I
I U×). We must

show that α gives a morphism of coalgebras. That is, we must show that
in H ⌜

⌞A⌝⌟
∗
we have:

W I × (U ⊗W)

U× U× = I × (U ⊗ U×)

α

h

(π0×(π1|
idU
α))=(I×(U⊗−))(α)

idU×

This is because we have:

h | (π0 × (π1 |
idU
α

)) | π0 = h | π0

and

h | (π0 × (π1 |
idU
α

)) | π1 = h | π1 |
idU
α

and so by coinduction we have that h | (π0×(π1 | idU

α)) = (1U)
×
(h|π0),(h|π1)

=

α, and so α : (W,h)→ (U×, idU×) is a morphism of coalgebras. It remains
to show that α is the unique such coalgebra morphism. To that end, sup-
pose that β : (W,h) → (U×, idU×) is a coalgebra morphism. That is,
suppose we have:

W I × (U ⊗W)

U× U× = I × (U ⊗ U×)

β

h

(π0×(π1|
idU
β))=(I×(U⊗−))(β)

idU×

Then we have:

h | (π0 × (π1 |
idU
β

)) | π0 = h | π0

and

h | (π0 × (π1 |
idU
β

)) | π1 = h | π1 |
idU
β

and so by coinduction we have that β = (1U)
×
(h|π0),(h|π1)

= α, as required.

(ii) Similar to the proof of (i).

Further, we exhibit (co)monoid structures on our iterated protocol types and
show that they enjoy a kind of naturality:

35

Lemma 18. For all objects U of H ⌜
⌞A⌝⌟

∗
:

(i) (U×,∆×
U , π0) is a comonoid in H ⌜

⌞A⌝⌟
∗
where ∆×

U = (idU)
×
idU× ,π1

. Dually,

(U+,∇+
U ,

π

0) is a monoid in H ⌜
⌞A⌝⌟

∗
where ∇+

U = (idU)
+
idU+ ,

π

1
.

(ii) For any h : (U I
I W), ∆×

U |
h×

h× = h× | ∆×
W . Dually, ∇+

U | h+ = h+

h+ | ∇+
W .

Proof. (i) We must show that (U×,∆×, π0) is coassociative and counital. For
coassociativity, we have:

and then by coinduction we have:

as required. The first counitality axiom holds immediately:

For the second counitality axiom, we have:

and so, since idU× | π1 = π1 |
idU×
idU×

, we have by coinduction that the

second unitality axiom holds, as in:

It follows that (U×,∆×
U , π0) is a comonoid. The proof that (U+,∇+

U ,

π

0)
is a monoid is similar.

(ii) Suppose h : (U I
I W). Then we have:

h× | ∆×
W |

π0

idU×
= h× = ∆×

U |
π0

h× = ∆×
U |

h×

h× |
π0

idU×

h× | ∆×
W |

π1

idW×
= h× | π1 |

idW

∆×
W

= π1 |
h

h× |
idW

∆×
W

= π1 |
h

h× | ∆×
W

∆×
U |

h×

h× |
π1

idU×
= ∆×

U |
π1 | h

h×

h× = π1 |
h

∆×
U |

h×

h×

36

and so by coinduction ∆×
U |

h×

h× = h× | ∆×
W , as promised. The proof that

∇+
U | h+ = h+

h+ | ∇+
W is similar.

We end our discussion of the elementary properties of ⌜
⌞A⌝⌟

∗
by showing that

the functors (−)× and (−)+ of Remark 3 are (co)monads:

Lemma 19. Consider the category H ⌜
⌞A⌝⌟

∗
. We have:

(i) The functor

(−)× : H ⌜
⌞A⌝⌟

∗ → H ⌜
⌞A⌝⌟

∗

is a comonad with counit ε× : (−)× → 1H ⌜
⌞A⌝⌟

∗ given by components ε×U =

π1 | idU

π0
: (U× I

I U) and comultiplication δ× : (−)× → (−)×× given by

components δ×U = (idU×)×
π0,∆

×
U

: (U× I
I U××).

(ii) The functor

(−)+ : H ⌜
⌞A⌝⌟

∗ → H ⌜
⌞A⌝⌟

∗

is a monad with unit η+ : 1H ⌜
⌞A⌝⌟

∗ → (−)+ given by components η+U =
idUπ

0
| π

1 : (U I
I U+) and comultiplication µ+ : (−)++ → (−)+ given by

components µ+
U = (idU+)+π

0,∇+
U

: (U++ I
I U+).

Proof. (i) It is straightforward to verify that (−)× is a functor. In order to
prove that it is a comonad we first show that ε× and δ× are natural.
Explicitly, we require:

U× U

W× W

h×

ε×U

h

ε×W

U× U××

W× W××

δ×U

h× h××

δ×W

for any h : U →W of H ⌜
⌞A⌝⌟. For ε× we have:

h× | ε×W = h× | π1 |
idW
π0

= π1 |
h

h× |
idU
π0

= π1 |
h

π0
= ε×U | h

as required. For δ× we have:

h× | δ×W | π0 = h× | π0 = π0 = δ×U | π0 = δ×U | h
×× | π0

h× | δ×W | π1 = h× | ∆×
W |

idW×

δ×W
= ∆×

U |
h×

h× |
idW×

δ×W
= ∆×

U |
h×

h× | δ×W

δ×U | h
×× | π1 = δ×U | π1 |

h×

h×× = ∆×
U |

idU×

δ×U
| h×

h×× = ∆×
U |

h×

δ×U | h××

37

and then by coinduction we have h× | δ×W = δ×U | h×× as required.

It remains to show that the comonad axioms are satisfied. That is, we
require:

U× U××

U×× U×××

δ×U

δ×U

δ×
U×

(δ×U)×

U× U×× U×

U×

ε×
U× (ε×U)×

δ×U idU×idU×

Notice that by coinduction δ×U | ∆
×
U× = ∆×

U |
δ×U
δ×U

although, somewhat

misleadingly, not as a consequence of Lemma 18. For coassociativity of
δ×, we have:

δ×U | δ
×
U× | π0 = δ×U | π0 = δ×U | (δ

×
U)× | π0

δ×U | δ
×
U× | π1 = δ×U | ∆

×
U× |

idU××

δ×U×

= ∆×
U |

δ×U
δ×U
| idU

××

δ×U×

= ∆×
U |

δ×U
δ×U | δ

×
U×

δ×U |(δ
×
U)× | π1 = δ×U |π1 |

δ×U
(δ×U)×

= ∆×
U |

idU×

δ×U
|

δ×U
(δ×U)×

= ∆×
U |

δ×U
δ×U |(δ

×
U)×

and so by coinduction we have δ×U | δ
×
U× = δ×U | (δ

×
U)× as required. For the

first counit law, we have:

δ×U | ε
×
U× | π0 = δ×U | π1 |

π0

π0
= ∆×

U |
π0

δ×U | π0

= π0 = idU× | π0

δ×U | ε
×
U× | π1 = δ×U | π1 |

π1

π0
= ∆×

U |
π1

δ×U | π0

= π1 |
idU

∆×
U |

idu×
π0

= π1 =

idU× | π1

and then since idU× | π1 = π1 | idU

idU×
we have δ× | ε×U× = idU× by

coindution. For the second counit law, we have:

δ×U | (ε
×
U)

× | π0 = δ×U | π0 = π0 = idU× | π0

δ×U | (ε
×
U)

× | π1 = δ×U | π1 |
ε×U

(ε×U)
× = ∆×

U |
idU×

δ×U
|

ε×U
(ε×U)

×

= ∆×
U |

π1 | idU

π0

δ×U | (ε
×
U)

× = π1 |
idU

∆×
U |

π0

δ×U |(ε×U)×

= π1 |
idU

δ×U | (ε
×
U)

×

and then since idU× | π1 = π1 | idU

idU×
we have that δ×U (ε×U)

× = idU× by

coinduction. Thus, ((−)×, δ×, ε×) is a comonad on H ⌜
⌞A⌝⌟

∗
.

38

(ii) Similar to the proof of (i).

4.3. Crossing Cells

We extend Definition 11 to obtain crossing cells in the free cornering with
iteration:

Definition 14. Let A be a distributive monoidal category. For each A ∈ ⌜
⌞A⌝⌟

∗
H

and each U ∈ ⌜
⌞A⌝⌟

∗
V We define crossing a crossing cell χU,A : (U A

AU) by induction
on the structure of U . The cases for A◦, A•, I, U ⊗W,U ×W , and U +W are
as in Definition 11. For U× we define χU×,A = (χU,A)

× and for U+ we define
χU+,A = (χU,A)

+. That is, χU×,A is the unique cell such that:

Similarly, χU+,A is the unique cell such that:

The crossing cells remain coherent with respect to horizontal composition:

Lemma 20. For U ∈ A◦•
∗ and A,B ∈ A0 we have

(i) χU,A⊗B = χU,A | χU,B

(ii) χU,I = 1U

Proof. We extend the proof of Lemma 11 with the necessary inductive cases:

(i) For U× we have:

χU×,A⊗B | π0 = π0 | 1A⊗B = π0 | 1A | 1B = χU×,A | χU×,B | π0

χU×,A⊗B | π1 = π1 |
χU,A⊗B

χU×,A⊗B
= π1 |

χU,A | χU,B

χU×,A⊗B

χU×,A | χU×,B | π1 = π1 |
χU,A

χU×,A
| χU,B

χU×,B
= π1 |

χU,A | χU,B

χU×,A | χU×,B

and so χU×,A⊗B = χU×,A | χU×,B by coinduction. A similar argument
gives χU+,A⊗B = χU+,A | χU+,B .

39

(ii) For U× we have:

χU×,I | π0 = π0 | 1I = π0 = idU× | π0

χU×,I | π1 = π1 |
χU,I

χU×,I
= π1 |

idU
χU×,I

idU× | π1 = π1 = π1 | idU⊗U× = π1 |
idU
idU×

It follows that χU×,I = idU× . The case for U+ is similar.

Next, we show that the technical lemma concerning crossing cells holds in
the free cornering with iteration:

Lemma 21. For any cell α of ⌜
⌞A⌝⌟

∗
we have

Proof. We extend the proof of Lemma 12 with the necessary inductive cases.
For cells α×

f,g we have:

which gives, using the proof technique of Remark 4:

as required. The case for cells α+
f,g is similar.

Consequently, ⌜
⌞A⌝⌟

∗
is a monoidal double category with the tensor product

of cells and proof as in Lemma 3. We record:

Lemma 22. If A is a distributive monoidal category then ⌜
⌞A⌝⌟

∗
is a monoidal

double category.

40

Further, the crossing cells remain coherent with respect to ⊕ in ⌜
⌞A⌝⌟

∗
:

Lemma 23. In ⌜
⌞A⌝⌟

∗
, χU,A⊕B =

[
χU,A

σ0
,
χU,B

σ1

]
. That is, χU,A⊕B is the unique

cell such that:

σ0

χU,A⊕B
=

χU,A

σ0

σ1

χU,A⊕B
=

χU,B

σ1

Proof. By structural induction on U . We supply the necessary inductive cases
to extend the proof of Lemma 14 to a proof of the present claim. For U× we
have:

and so by coinduction we have σ0

χU×,A⊕B
=

χU×,A

σ0
. Similarly, σ1

χU×,A⊕B
=

χU×,B

σ1
.

The case for U+ is analogous.

4.4. A Model: Iteration in Stateful Transformations

We return to the double category S(C) of stateful transformations over a
cartesian closed category with distributive binary coproducts. In order to define
F+ for a strong endofunctor F in CC

τ we require the existence of an initial algebra
for the functor (X ⊕ F (−)) : C → C for each object X of C. Then we may
define F+ to be the functor mapping X to the carrier of the corresponding
initial algebra a+F,X : X ⊕ F (F+X) → F+X. Dually, in order to define F× we
require the existence of a final coalgebra for the functor (X ⊗ F (−)) : C → C
for each object X of C. Then we may define F× to be the functor mapping X
to the carrier of the corresponding final coalgebra c×F,X : F×X → X⊗F (F×X).

We show that when they exist, both F+ and F× are strong. For F×, this can
be shown by constructing a coalgebra for (X⊗Y ⊗F (−)) with carrier F×X⊗Y ,

thereby constructing a coalgebra morphism: τF
×

X,Y : F×X ⊗ Y → F×(X ⊗ Y)
which acts as the strength. The coalgebra is defined as follows:

F×X ⊗ Y
c×⊗Y−−−−→ X ⊗ F (F×X)⊗ Y

X⊗⟨p1,τ
F ⟩−−−−−−−→ (X ⊗ Y ⊗ F (F×X ⊗ Y))

Dually, F+ is proven to be strong by defining an algebra for (X⊕F (−)) with
carrier (F+(X ⊗ Y))Y , thereby constructing an algebra morphism m : F+X →
(F+(X ⊗ Y))Y which induces the strength τF

+

X,Y = (m⊗ Y) evY : F+X ⊗ Y →
F+(X ⊗ Y). The algebra is defined as

[λ[lX,Y], λ[rX,Y]] : X ⊕ F ((F+(X ⊗ Y))Y)→ (F+(X ⊗ Y))Y

41

where

lX,Y : X ⊗ Y
σ0−→ (X ⊗ Y)⊕ F (F+(X ⊗ Y))

a+
F,X⊗Y−−−−−→ F+(X ⊗ Y)

rX,Y : F ((F+(X ⊗ Y))Y)⊗ Y
τF F (evY)−−−−−−→ F (F+(X ⊗ Y))

σ1 a+
F,X⊗Y−−−−−−−→ F+(X ⊗ Y)

It follows that F+ and F× are strong, as promised.
Now, given cells α : (GA

AH), g : (F 1
1G◦F) and f : (F A

BK) of S(C) such

that H× exists we may take α×
f,g : (F A

BH×◦K) to have components (α×
f,g)X :

FX ⊗ A → H×K(X ⊗ B) given by the unique coalgebra morphism from the
coalgebra ⟨f, (g ⊗A)α⟩ : FX ⊗A→ K(X ⊗B)⊗H(FX ⊗A) to c×H,K(X⊗B) .

The dual case is slightly more involved. Given cells α : (F A
AG), g : (G◦H 1

1H)

and f : (K A
BH) of S(C) such that F+ exists we may construct α+

f,g : (F+◦K A
BH)

as follows. First, for each object X of C let hX be defined by:

hX = F ((H(X ⊗B))A)⊗A
αG(evAX⊗B)
−−−−−−−−→ GH(X ⊗B)

gX⊗B−−−−→ H(X ⊗B)

Then λ[fX] : KX → (H(X⊗B))A and λ[hX] : F ((H(X⊗B))A)→ (H(X⊗B))A

gives us an algebra: [λ[fX], λ[hX]] : KX⊕F ((H(X⊗B))A)→ (H(X⊗B))A of
KX⊕F (−) : C→ C. Since a+F,KX is the initial algebra of KX⊕F (−) : C→ C,
we have an algebra morphism m : F+(KX) → (H(X ⊗ B))A from a+F,KX to

[λ[fX], λ[hX]]. Define (α+
f,g)X = (m⊗A)evAH(X⊗B) : F

+(KX)⊗A→ H(X⊗B).

In fact, α×
f,g and α+

f,g define strong natural transformations, although the

proof is somewhat involved. It follows that we may interpret ⌜
⌞C⌝⌟

∗
into S(C) to

the extent that F+ and F× exist.
In general, F+ and F× need not exist in S(C), although in at least one

instance it is possible to extend the double functor of Lemma 5 and Lemma 16
to the free cornering with iteration. Specifically, the containers over the category
Set of sets and functions2 are strong and satisfy the above requirements for the
existence of F+ and F×, which are also containers [1, 3]. Moreover, containers
over Set contain the functors A◦, A•, and I, and are closed under +, ×, and
composition. It follows that there is a double functor D : ⌜⌞Set

⌝
⌟
∗ → S(Set) whose

image lies in the part of S(Set) obtained by restricting the vertical edge monoid
to the part consisting of only the containers. We leave the project of precisely
characterising those C for which this double functor exists for future work.

Remark 5. We consider the interpretation of iterated protocols given by (−)+
and (−)× from the perspective of computational effects, extending Remarks 1
and 2. As a computational effect, F+ enables a program to trigger the effect F
any number of times it chooses. Dually, to resolve an effect F+ its environment
must be able to resolve F any number of times. Similarly, to trigger F× a pro-
gram must provide a method for triggering F any number of times, as required

2Admittedly the monoidal structure on Set is not typically taken to be strict, so to fit the
setting of this paper one would technically have to work with its strictification.

42

by the environment. Dually, to resolve F× the environment must commit to
resolving F a number of times of its choosing, and then resolve those effects.

5. Concluding Remarks

We have shown how to extend the free cornering of a symmetric monoidal
category to support both branching communication protocols and iterated com-
munication protocols, bringing it closer to existing systems of session types.
Specifically, we have constructed the free cornering with choice (Definition 10)
and the free cornering with iteration (Definition 13) of a distributive monoidal
category, shown that they inherit significant categorical structure from the free
cornering, and provided some evidence that they fit well into the categorical
landscape. Further, we have constructed the double category of stateful trans-
formations (Definition 6) — a model of the structure found in the free cornering,
free cornering with choice, and free cornering with iteration.

While our work constitutes a significant step, the path is long, and we envi-
sion our work here as a small part of a much larger research project surrounding
the free cornering. In this final section we elucidate this project by outlining a
number of directions for future work:

Active Iteration. There is a mismatch between our constructions of the free cor-
nering with choice and the free cornering with iteration. In the free cornering
with choice, we have a pair of dual operations −+− and −×− on cells corre-
sponding to reactive protocol choice, and a third operation [−,−] which allows
active protocol choice. In the free cornering with iteration we again have a pair
of dual operations (−)+ and (−)× corresponding to reactive protocol iteration,
but we are missing their active counterpart. That is, in the free cornering with
iteration we cannot model processes that choose whether or not to continue it-
erating a given protocol as a function of their input. Put another way, we ought
to be able to control the iteration of a communication process with a “while
loop”, but this would require a notion of “while loop” in the vertical direction.

We briefly speculate about the form that the axioms for active iteration
ought to take. For each quartet of cells α : ⌜

⌞A⌝⌟
∗
(U A

B⊕AW), f : ⌜
⌞A⌝⌟

∗
(SB

C K),

g : ⌜
⌞A⌝⌟

∗
(S I

I U⊗S), and h : ⌜
⌞A⌝⌟

∗
(W⊗K

I
I K) we seem to require a cell α∗

f,g,h :
⌜
⌞A⌝⌟

∗
(SB⊕A

C K) satisfying:

Significantly, asking for α∗
f,g,h to be the unique such cell is too strong, and

collapses the hom-sets of the resulting category of vertical cells. While this sort
of active iteration is convenient for constructing examples, it is unclear what sort
of properties we ought to ask for in order to obtain e.g., well-behaved crossing
cells. We speculate that a double-categorical analogue of the notion of uniform

43

trace operator (see e.g, [16]) will suffice, but how such an analogue should look
has not yet been fully worked out.

In the presence of cells α∗
f,g,h we may extend Example 6 as follows: let

buy : (I Sbread⊗$⊗S$
Sbread⊕(Sbread⊗$⊗S$)

bread•⊗bread•⊗$◦) be the cell below on the left, then

define buys’ = buy∗1Sbread
,□I ,

π

1
: (I Sbread⊕(Sbread⊗$⊗S$)

Sbread
(bread•⊗bread•⊗$◦)+), and let

buys : (I Sbread⊗S$
Sbread⊗S$

(bread•⊗bread•⊗$◦)+) be the cell below on the right:

Now the behaviour of buys depends on how much money it has. Specifically,
we have:

so buys buys bread until it is out of money. Now, we may also consider sales
buys

,
the process which first sells bread until instructed to switch modes, and then
buys bread until it is out of money.

Abstract Definitions. In the free cornering, the corner cells carry the structure
of a proarrow equipment. A natural question is what structure is carried by the
cells of the free cornering with choice and free cornering with iteration. While
the structure of the free cornering with choice is clearly some sort of product or
coproduct on a single-object double category, it is not clear what sort of limit
this is. We remark that it does not seem to be directly related to the double-
categorical limits studied in [14]. Similarly, it is unclear what double-categorical
structure the cells of the free cornering with iteration carry. We suspect this to
be a fruitful direction for future work.

Term Logic for Cells. Any comparison of the free cornering (with or without
choice and iteration) to existing models of concurrent computation is made
somewhat awkward by the lack of a term calculus and accompanying term
rewriting system for the free cornering. Most existing process calculi and pro-
cess algebras are first and foremost term calculi, and do not tend to have an
accompanying categorical semantics. The free cornering exists only as categor-
ical semantics. Thus, in order to better situate our work in the literature on
concurrent computation we would seem to require a term calculus for the free
cornering.

While the terms of a rewriting system often form a category, we are not
aware of any rewriting systems in which the terms form a double category. In
particular, while systems of tile logic (see e.g., [6]) form double categories, there

44

the cells of the double category in question correspond to the rewrites, while for
us the cells must correspond to the terms. There is an evident notion of Cat-
enriched double category, in which the cell-sets of the double category in question
are in fact categories — in which morphisms correspond to rewrites — and the
composition operations are given by functors. Cat-enriched categories are known
to model rewriting systems in which the terms form a category [30], and so we
expect that the rewriting systems appropriate to our setting will form Cat-
enriched double categories. This requirement should guide future developments
in in the direction of a term logic for the free cornering.

Coherence and Vertical Cells. An important property of the free cornering is
that the vertical cells are the base category:

Proposition 1 ([25]). Let A be a symmetric monoidal category. Then there is
an isomorphism of categories V ⌜

⌞A⌝⌟ ∼= A.

We think of this as a kind of coherence. We conjecture that the free cornering
with choice and free cornering with iteration are also coherent in this way:

Conjecture 1. Let A be a distributive monoidal category. Then:

(i) There is an isomorphism of categories V ⌜
⌞A⌝⌟

⊕ ∼= A.

(ii) There is an isomorphism of categories V ⌜
⌞A⌝⌟

∗ ∼= A.

While we believe it to be true, we currently lack the machinery necessary
to prove our conjecture. The most promising approach looks to be through
the sort of term calculus and rewriting system for the free cornering discussed
above, further motivating its development.

Additional Effects of Stateful Transformations. We have given a model of the
free cornering in terms of strong functors and strong natural transformations.
Besides the protocols in the image of the double functor from the free cornering
of C into S(C), other effects modelled by strong monads occur as protocols in
S(C) as well, such as monads for nondeterminism and probability. One direc-
tion for future work would be to axiomatise selected effects directly in the free
cornering. Furthermore, the representation of computational effects in the form
of a double category could help us describe both operational and denotational
semantics of effectful programs. On the operational side, double cells function
as a kind of effect handler [28], translating effects received from its interior into
effects invoked in its environment. On the denotational side, models related to
stateful nondeterministic runners [35] and other program-environment interac-
tion laws [18] seem particularly suitable for interpretation in this model.

References

[1] M. Abbott, T. Altenkirch, and N. Ghani. Containers: Constructing strictly
positive types. Theoretical Computer Science, 342(1):3–27, 2005. Applied
Semantics: Selected Topics.

45

[2] S. Abramsky. What are the Fundamental Structures of Concurrency? We
Still Don’t Know! CoRR, abs/1401.4973, 2006.

[3] D. Ahman, J. Chapman, and T. Uustalu. When is a container a comonad?
Logical Methods in Computer Science, Volume 10, Issue 3, sep 2014.

[4] G. Bellin and P.J. Scott. On the pi-calculus and linear logic. Theoretical
Computer Science, 135(1):11–65, 1994.

[5] G. Boisseau, C. Nester, and M. Roman. Cornering optics. In Applied
Category Theory, forthcoming.

[6] R. Bruni, J. Meseguer, and U. Montanari. Symmetric monoidal and carte-
sian double categories as a semantic framework for tile logic. Mathematical
Structures in Computer Science, 12(1):53–90, 2002.

[7] L. Caires and F. Pfenning. Session types as intuitionistic linear proposi-
tions. In International Conference on Concurrency Theory, pages 222–236.
Springer, 2010.

[8] J.R.B. Cockett and C. Pastro. The Logic of Message-Passing. Science of
Computer Programming, 74:498–533, 2009.

[9] J.R.B. Cockett and D. Spencer. Strong categorical datatypes i. In Inter-
national Meeting on Category Theory, volume 13, pages 141–169. Citeseer,
1991.

[10] B. Coecke, T. Fritz, and R.W. Spekkens. A Mathematical Theory of Re-
sources. Information and Computation, 250:59–86, 2016.

[11] R. Dawson and R. Paré. What is a Free Double Category Like? Journal
of Pure and Applied Algebra, 168(1):19–34, 2002.

[12] C. Ehresmann. Catégories Structurées. Annales scientifiques de l’École
Normale Supérieure, 80(4):349–426, 1963.

[13] M. Fiore, S. Paoli, and D. Pronk. Model Structures on the Category of
Small Double Categories. Algebraic and Geometric Topology, 8(4):1855–
1959, 2008.

[14] M. Grandis and R. Paré. Limits in double categories. Cahiers de topologie
et géométrie différentielle catégoriques, 40(3):162–220, 1999.

[15] M. Grandis and R. Pare. Adjoint for Double Categories. Cahiers de Topolo-
gie et Géométrie Différentielle Catégoriques, 45(3):193–240, 2004.

[16] M. Hasegawa. The uniformity principle on traced monoidal categories.
Electronic Notes in Theoretical Computer Science, 69:137–155, 2003.

[17] K. Honda. Types for dyadic interaction. In CONCUR’93: 4th Intrenational
Conference on Concurrency Theory Hildesheim, Germany, August 23–26,
1993 Proceedings 4, pages 509–523. Springer, 1993.

46

[18] S. Katsumata, E. Rivas, and T. Uustalu. Interaction laws of monads and
comonads. In Proc. of the 35th Ann. ACM/IEEE Symp. on Logic in Com-
puter Science, LICS ’20, page 604–618, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery.

[19] J. Lambek and P.J. Scott. Introduction to Higher-Order Categorical Logic.
Cambridge University Press, 1986.

[20] S. Mac Lane. Categories for the Working Mathematician. Springer, 1971.

[21] P. Maddy. What do we want a foundation to do? In Stefania Centrone,
Deborah Kant, and Deniz Sarikaya, editors, Reflections on the Foundations
of Mathematics: Univalent Foundations, Set Theory and General Thoughts,
pages 293–311. Springer Verlag, 2019.

[22] D. McDermott and T. Uustalu. What makes a strong monad? Electronic
Proceedings in Theoretical Computer Science, 360:113–133, jun 2022.

[23] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92,
July 1991.

[24] D.J. Myers. String Diagrams For Double Categories and Equipments. arXiv
e-prints, 2016.

[25] C. Nester. The Structure of Concurrent Process Histories. In Interna-
tional Conference on Coordination Languages and Models, pages 209–224.
Springer, 2021.

[26] C. Nester. Situated transition systems. In Kohei Kishida, editor, Proceed-
ings of the Fourth International Conference on Applied Category Theory,
Cambridge, United Kingdom, 12-16th July 2021, volume 372 of Electronic
Proceedings in Theoretical Computer Science, pages 103–115. Open Pub-
lishing Association, 2022.

[27] C. Nester. Concurrent Process Histories and Resource Transducers. Logical
Methods in Computer Science, Volume 19, Issue 1, January 2023.

[28] G. D. Plotkin and Pretnar M. Handling algebraic effects. Log. Methods
Comput. Sci., 9(4, article 23):1–36, 2013.

[29] G.D. Plotkin and J. Power. Adequacy for algebraic effects. In Furio Honsell
and Marino Miculan, editors, Proc. of 4th Int. Conf. on Foundations of
Software Science and Computation Structures, FoSSaCS’01, volume 2030
of Lecture Notes in Computer Science, pages 1–24, 2001.

[30] J. Power. An abstract formulation for rewrite systems. In Category Theory
and Computer Science: Manchester, UK, September 5–8, 1989 Proceedings,
pages 300–312. Springer, 2005.

[31] P. Selinger. A Survey of Graphical Languages for Monoidal Categories. In
New Structures for Physics, pages 289–355. Springer, 2010.

47

[32] M. Shulman. Framed Bicategories and Monoidal Fibrations. Theory and
Applications of Categories, 20(18):650–738, 2008.

[33] M. Shulman. Constructing Symmetric Monoidal Bicategories. arXiv e-
prints, 2010.

[34] T. Uustalu. Stateful runners of effectful computations. Electronic Notes in
Theoretical Computer Science, 319:403–421, 2015. The 31st Conference on
the Mathematical Foundations of Programming Semantics (MFPS XXXI).

[35] N. F. W. Voorneveld. Runners for interleaving algebraic effects. In Helmut
Seidl, Zhiming Liu, and Corina S. Pasareanu, editors, Theoretical Aspects
of Computing – ICTAC 2022, pages 407–424, Cham, 2022. Springer Inter-
national Publishing.

[36] P. Wadler. Propositions as Sessions. Journal of Functional Programming,
24:384–418, 2014.

[37] R.F.C. Walters. Data types in distributive categories. Bulletin of the Aus-
tralian Mathematical Society, 40(1):79–82, 1989.

[38] R. J. Wood. Abstract Pro Arrows I. Cahiers de Topologie et Géométrie
Différentielle Catégoriques, 23(3):279–290, 1982.

48

	Introduction
	The Free Cornering
	Single-Object Double Categories
	The Free Cornering
	Crossing Cells
	A Model: Stateful Transformations

	Adding Choice to the Free Cornering
	Distributive Monoidal Categories and Branching Programs
	The Free Cornering With Choice
	Elementary Properties
	Crossing Cells
	A Model: Stateful Choice

	Adding Iteration to the Free Cornering
	The Free Cornering with Iteration
	Elementary Properties
	Crossing Cells
	A Model: Iteration in Stateful Transformations

	Concluding Remarks

