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Double pushout

Let us begin introducing the double pushout approach to graph
rewriting (cfr. Ehrig et al. 2006).
A rewriting rule is a pair of arrows l : K → L and r : K → R with
the same domain.
To rewrite a graph G according to a rule we proceed in three steps.
First: find a match m : L→ G .

L K R

G

l r

m

2 of 20



Double pushout

Let us begin introducing the double pushout approach to graph
rewriting (cfr. Ehrig et al. 2006).
A rewriting rule is a pair of arrows l : K → L and r : K → R with
the same domain.
To rewrite a graph G according to a rule we proceed in three steps.
Second: remove the image of m building a pushout square.
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Double pushout

Let us begin introducing the double pushout approach to graph
rewriting (cfr. Ehrig et al. 2006).
A rewriting rule is a pair of arrows l : K → L and r : K → R with
the same domain.
To rewrite a graph G according to a rule we proceed in three steps.
Third: fill the hole so obtained, with R taking a pushout.
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Double pushout

As an example, we can use DPO to model the process of sending a
message between two nodes of a network.

m a // b ⊇ m a // b ⊆ a // b m
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Double pushout

As an example, we can use DPO to model the process of sending a
message between two nodes of a network.

m a // b ⊇ m a // b ⊆ a // b m

⊆ ⊆ ⊆

m a ++ bkk ⊇ m a ++ bkk ⊆ a ++ bkk m

3 of 20



Double pushout

This construction involves only categorical notions, so it can be done
in any category.

Definition
A DPO-rewriting system is a pair (X,R) where X is a category and
R is a set of rewriting rules.

Adhesivity and quasiadhesivity has been introduced in Lack and
Sobociński 2005 to guarantee good properties, like the Church-
Rosser Theorem, of DPO-rewriting system.
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M,N -adhesive categories

Definition: Van Kampen square
A pushout square as the one on the left is Van Kampen if in any
cube constructed upon it, having pullbacks as back faces, the top
face is a pushout if and only if the front faces are pullbacks. If it
enjoys only the “if” it is called a stable square.
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M,N -adhesive categories

Now, take a category X, and fix a class of monosM and a class of
arrows N . Suppose also that they interact “nicely”, i.e. they enjoy
some composition and decomposition property. We will refer to such
a pair as a preadhesive structure.

Meaning ofM and N
The intended meaning of the classesM and N is the following:

M is the class to which the two legs (or at least one) of the
rules we want to use belong;
N is the class to which the allowed matches belong.
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M,N -adhesive categories

Now, take a category X, and fix a class of monosM and a class of
arrows N . Suppose also that they interact “nicely”, i.e. they enjoy
some composition and decomposition property. We will refer to such
a pair as a preadhesive structure.

Definition (Habel and Plump 2012)
X isM,N -adhesive if

1 every cospan C g−→ D m←− B with m ∈M can be completed to
a pullback (M-pullbacks);

2 every span C m←− A n−→ B with m ∈M and n ∈ N can be
completed to a pushout (M,N -pushouts);

3 M,N -pushouts are Van Kampen squares.
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(Quasi)adhesivity

Remark
If we take M to be the class of all (regular) monos and N to
be the class of all maps we get obtain the traditional notion of
(quasi)adhesivity.

It can also be shown that the class ofM,N -adhesive categories is
closed under the most common categorical constructions.
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Examples

1 every elementary topos is adhesive (Lack and Sobociński
2006);

2 hierarchical graphs: graphs in which edges can form a tree
order (see Palacz 2004; Padberg 2017);

3 the category of simple graphs is not quasiadhesive but it is
adhesive with respect to the class of regular monos and using
as N the class of all monos;

4 hyerarchical hypergraphs: hypergraphs in which edges form a
simple graph or a directed acyclic graph;

5 the category of term graphs (see Corradini and Gadducci
2005; Plump 1999) is quasiadhesive.

8 of 20



Examples

1 every elementary topos is adhesive (Lack and Sobociński
2006);

2 hierarchical graphs: graphs in which edges can form a tree
order (see Palacz 2004; Padberg 2017);

3 the category of simple graphs is not quasiadhesive but it is
adhesive with respect to the class of regular monos and using
as N the class of all monos;

4 hyerarchical hypergraphs: hypergraphs in which edges form a
simple graph or a directed acyclic graph;

5 the category of term graphs (see Corradini and Gadducci
2005; Plump 1999) is quasiadhesive.

8 of 20



Examples

1 every elementary topos is adhesive (Lack and Sobociński
2006);

2 hierarchical graphs: graphs in which edges can form a tree
order (see Palacz 2004; Padberg 2017);

3 the category of simple graphs is not quasiadhesive but it is
adhesive with respect to the class of regular monos and using
as N the class of all monos;

4 hyerarchical hypergraphs: hypergraphs in which edges form a
simple graph or a directed acyclic graph;

5 the category of term graphs (see Corradini and Gadducci
2005; Plump 1999) is quasiadhesive.

8 of 20



Examples

1 every elementary topos is adhesive (Lack and Sobociński
2006);

2 hierarchical graphs: graphs in which edges can form a tree
order (see Palacz 2004; Padberg 2017);

3 the category of simple graphs is not quasiadhesive but it is
adhesive with respect to the class of regular monos and using
as N the class of all monos;

4 hyerarchical hypergraphs: hypergraphs in which edges form a
simple graph or a directed acyclic graph;

5 the category of term graphs (see Corradini and Gadducci
2005; Plump 1999) is quasiadhesive.

8 of 20



Examples

1 every elementary topos is adhesive (Lack and Sobociński
2006);

2 hierarchical graphs: graphs in which edges can form a tree
order (see Palacz 2004; Padberg 2017);

3 the category of simple graphs is not quasiadhesive but it is
adhesive with respect to the class of regular monos and using
as N the class of all monos;

4 hyerarchical hypergraphs: hypergraphs in which edges form a
simple graph or a directed acyclic graph;

5 the category of term graphs (see Corradini and Gadducci
2005; Plump 1999) is quasiadhesive.

8 of 20



Examples

1 every elementary topos is adhesive (Lack and Sobociński
2006);

2 hierarchical graphs: graphs in which edges can form a tree
order (see Palacz 2004; Padberg 2017);

3 the category of simple graphs is not quasiadhesive but it is
adhesive with respect to the class of regular monos and using
as N the class of all monos;

4 hyerarchical hypergraphs: hypergraphs in which edges form a
simple graph or a directed acyclic graph;

5 the category of term graphs (see Corradini and Gadducci
2005; Plump 1999) is quasiadhesive.

8 of 20



(Quasi)adhesivity

(Quasi)adhesivity entails some additional properties:
1 in an adhesive category the poset of subobjects is a

distributive lattice;

2 in a quasiadhesive category, if m : M → X and n : N → X are
regular monos, then their join in the poset of subobjects exists
and it is regular too;

3 if X is (quasi)adhesive, then it admits an embedding into a
topos via a functor preserving pullbacks and pushouts along
(regular) monomorphisms.

Question
Can we generalize these two results toM,N -adhesive categories?
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The poset of subobjects: I

Definition
Let M be a class of monos and N another class of arrows, a
monomorphism u : U → X is aM,N -union if there exist m ∈ M
and n ∈M∩N such that, in the poset (Sub(X ),≤),

[u] = [m] ∨ [n]

M is closed underM,N -unions, if it contains all such monos.

Definition
Let f be an arrow inM∩N and (Qf , y1, y2) its cokernel pair. The
M,N -codiagonal of f is the unique arrow νf : Qf → Y such that

νf ◦ y1 = idY = νf ◦ y2
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The poset of subobjects: I

Theorem
Let X be a M,N -adhesive category with all pullbacks. If M ∩
N contains all split monomorphisms and N contains all M,N -
codiagonals, thenM is closed underM,N -unions.
Moreover, such unions are effective: if u : U → X is the M,N -
union of m : M → X and n : N → X , then it fits in the diagram
below, in which the outer boundary is a pullback and the inner square
a pushout.

P M

N U

X

p1

p2 q1

q2

m

n

u
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The poset of subobjects: II

The previous result has a converse. Given a preadhesive structure
(M,N ), the presence ofM,N -unions allows us to deduceM,N -
adhesivity.

Definition
A morphism m : X → Y in X is N -preadhesive if for every n : X →
Z in N , a stable pushout square of n along m exists and it is also a
pullback. m is N -adhesive if all its pullbacks are N -preadhesive.

Theorem
Let (M,N ) be a preadhesive structure on a category X with pull-
backs. Suppose that every split mono is inM∩N , every arrow in
M is N -adhesive and M is closed under M,N -unions, then X is
M,N -adhesive.
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An embedding theorem

Our next step is to construct an embedding of an M,N -adhesive
category X into a topos. The strategy is to construct a suitable
Grothendieck topology on X in such a way that the representables
functors are sheaves and such thatM,N -pushouts are preserved by
the Yoneda embedding.

Definition
Let (M,N ) be a preadhesive structure for a category
A. A jM,N -covering family for an object X is a set
{p, q} of arrows p : Z → X and q : Y → X such
that there exist m : N → Y inM and n : N → Z in
N making the square on the right a pushout.

N Z

XY

n

q

m p
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An embedding Theorem

The next step is characterize sheaves for jM,N .

Lemma
If X is M,N -adhesive, then a presheaf F : Xop → Set is a sheaf
for jM,N if and only if it sendsM,N -pushouts to pullbacks.

Theorem
Let X be aM,N -adhesive category, with pullbacks such thatM∩N
contains every split mono, and N contains all M,N -codiagonals.
Then the Yoneda embedding よX : X → SetXop factors through a
full and faithful functorよ′

X : X→ Sh(X, jM,N ) preserving pullbacks
andM,N -pushouts.
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An embedding Theorem

The representable functors sends all pushouts to pullbacks and so
are sheaves for jM,N , showing that the Yoneda embedding factors
through a full and faithful functor よ′

X : X→ Sh(X, jM,N ).

Let F be any sheaf for jM,N and consider the two squares, in
which the left one is anM,N -pushouts:

X Z

Y Q

n

m q

p

F (Q) F (Z )

F (Y ) F (X )

F (q)

F (p) F (n)

F (m)

Since F is a sheaf the square on the right is a pullback.
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An embedding Theorem

Now we can apply the Yoneda Lemma:

nat(よX(Q),F ) nat(よX(Z ),F )

nat(よX(Y ),F ) nat(よX(X ),F )

(−) ◦よX(q)

(−) ◦よX(p) (−) ◦よX(n)

(−) ◦よX(m)

F (Q) F (Z )

F (Y ) F (X ) yX

yZ

yY

yQ F (q)

F (p) F (n)

F (m)

The outer square is a pullback too. Since this holds for every sheaf
F we get that X(−,Q) is a pushout.
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Conclusions

Further work to be done.

Elaborate a concurrency theory for DPO-rewriting systems. In
particular it is not clear which kind of event structures (or
domains) formalized the causal relationships between steps of
computations when fusions are allowed.
By the results of Sobocinski 2011, we know that a pushout (or
any other colimit) is Van Kampen, if and only if the functor
X/(−) : Xop → Cat sends it to a suitable 2-limit. What about
using another functor?
By Cockett and Guo 2007, the category of partial maps on X is
a join restriction category if and only if X is adhesive. Is there
some deeper connection between (M,N−)adhesive categories
and monoidal ones?
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Thank you for your attention!
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