
Algebraic Effects
& their Applications to Cryptography

Niels Voorneveld

March 22, 2024

Workshop on Process Theory for Security Protocols and
Cryptography, Tallinn 2024

Towards Denotational Semantics

Features of Cryptographic Protocols:

▶ Calling operations such as encode and decode.

▶ Invoking a plethora of effects: Probability, adversarial
nondeterminism, global state, time, input-output.

Goal: Formulate a denotational semantics for cryptographic
libraries and protocols.

Outline:

▶ How do we describe algebraic effects.

▶ How do we describe handling algebraic effects.

▶ Framework for describing complex interactions.

Effectful Programs

Equality and Equivalence

Algebraic effects are about operations and equations.

It facilitates establishing equivalence between effectful programs.

Two programs are equivalent if there is no observable difference
between them.

Use cases:

▶ This implemented program has no observable difference from
the specifications.

▶ This update does not change the program in an observable
way.

Side note: Generalizing to inequations allows one to talk about
program improvements as well.

Algebras of Programs

The standard observable behaviour of a program is its output, and
equivalence is defined based on whether programs produce the
same output.

A program may however be effected by its environment, which
changes the output

A basic situation:

▶ A program calls an operation of type A → B, providing an
argument of type A.

▶ The environment answers, returning an element of type B.

▶ The program continues, dependent on the returned element.

The output of the program depends on the answers of the
environment, which may be difficult to predict.

Algebraic Operations
A program of type X calling an algebraic operation op : A → B
needs to specify an argument a : A and a continuation B → X .

a : A f : B → X

opa(f) : X

If B has only n elements, we can see f as a tuple (x1, . . . , xn) of X ,
and write opa(x1, . . . , xn).

A set of operations S is a signature, or container.

Given a signature S , and a set of outputs Y , we write TSY as the
minimal set of terms closed under operations of S and which
returns values of Y :

▶ For each y ∈ Y , return(y) ∈ TSY .

▶ For each op : A → B ∈ S , a ∈ A and f : B → TSY ,
opa(f) ∈ TSY .

Example: Coin toss

Consider a coin toss operations toss : 1 → 2 accepting no input
and returning a bit.

T{toss}Y are binary trees whose leaves are labeled by Y .

Equations:

▶ toss(x , x) = x .

▶ toss(x , y) = toss(y , x).

▶ toss(toss(x , y), toss(z ,w)) =
toss(toss(x , z), toss(y ,w)).

Example: State

A set of states M.
Operations:

▶ update : M → 1.

▶ lookup : 1 → M.

Equations:

▶ updatea(updateb(x)) = updateb(x).

▶ updatea(lookup(f)) = updatea(f (a)).

▶ lookup(i 7→ updatei (f (i))) = lookup(f).

▶ lookup(i 7→ x) = x .

Example: Encode

Set of plaintexts P, cryphertext C and keys K .

Operations:

▶ encode : K × P → C .

▶ decode : K × C → P.

Equation:
encodek,p(c 7→ decodek,c(f)) = f (p)

Environments

Co-Operations

An environment of type Y resolving an algebraic operation
op : A → B needs to specify an answer b : A and a continuation Y .

a : A e : Y

opa(e) : B × Y

Given a set of operations S , and a set of states Y , we write DSY
as the maximal set of response patterns closed under the following
operations

▶ For each e ∈ DSY , return(e) ∈ Y .

▶ For each e ∈ DSY , op : A → B ∈ S , and a ∈ A,
opa(e) ∈ B × DSY .

Co-Equations

One way to specify environment behaviour is with co-equations.

A co-equations specifies a property of behaviour an environment
should adhere to (or avoid).

It tells us whether different ways of extracting data and
manipulating the environment are equal.

Examples:

▶ Determinism: The environment will always give the same
answer to the same question.

▶ Immutability: The environment will not change its internal
state when asked certain questions.

▶ An adversarial environment will behave according to some
rules.

Coalgebraic Specification

A complementary way of specifying environment behaviour is by
defining explicit answers dependent on an internal state.

An element of DSY can be specified in the following way:

▶ A set of internal states K .

▶ For each (op : A → B) ∈ S a function K × A → K × B.

This gives a (comonad) coalgebra β : K → DSK .

Together with the following, we get an element of DSY :

▶ An initial state k0 ∈ K .

▶ An output function K → Y .

Example: Seeds

Consider again the coin toss operation toss : 1 → 2.

Consider a set of seeds S , and a function pop : S → 2× S which
draws a bit and changes the seed.

▶ S could be 2N.

▶ It could be some pseudo random number generator.

pop : S × 1 → 2× S together with an initial seed s0 ∈ S defines an
element in D{toss}S .

Example: Memory

A set of states M with operations:

▶ update : M → 1.

▶ lookup : 1 → M.

Some coequations:

▶ updatea(updateb(x)) = updatea(x).

▶ lookup(updatea(x)) = (a, updatea(x)).

▶ lookup(lookup(e)) = (a, (a, e ′)) where (a, e ′) = lookup(e)).

We define resolution using an initial state m0 ∈ M and functions:

▶ update′ : M ×M → M × 1, where update′(m, a) = (a, ∗)
▶ lookup′ : M × 1 → M ×M, where lookup′(m, ∗) = (m,m).

Example: Encode

Set of plaintexts P, cryphertext C and keys K .

Operations:

▶ encode : K × P → C .

▶ decode : K × C → P.

Co-equations:

▶ decodek,c(e
′) = (p, e), for (c , e ′) = encodek,p(e).

▶ (Determinism) encodek,p(e
′) = (c, e ′′) for

encodek,p(e)(c , e
′).

Effectful Environments

Invoking Further Effects

Given two sets of operations S and Z , and a set of states Y , we
write DZ

S Y as the maximal set of response patterns closed under
the following operations

▶ For each e ∈ DZ
S Y , return(e) ∈ Y .

▶ For each e ∈ DZ
S Y , op : A → B ∈ S , and a ∈ A,

opa(e) ∈ TZ (B × DSY).

Co-equations on S now also consider equations on Z (relatively
unexplored territory).

Coalgebraic specifications now also invoke effects from Z .

Effectful Coalgebraic Specification

Given containers S and Z :

DZ
S Y = νX .Y × Π(op:A→B)∈SA → (B × TZX)

An element e of DZ
S Y can be specified in the following way:

▶ A set of internal states K .

▶ For each (op : A → B) ∈ S a function
ope : K × A → TZ (K × B).

This gives a (comonad) coalgebra β : K → DZ
S K .

Together with the following, we get an element of DZ
S Y :

▶ An initial state k0 ∈ K .

▶ An output function K → Y .

Example: Encode Subprotocol

Set of plaintexts P, cryphertext C and keys K .

Operations of S Operations of Z
encodeS : P → C encodeZ : K × P → C
decodeS : C → P decodeZ : K × C → P

random : 1 → K

Let states be M = K⊥ = K ∪ ⊥, and define

▶ encodeS : M × P → M × C ,
encodeS(k, p) = encodeZk,p(c 7→ (k, c)),

encodeS(⊥, p) = random(k 7→ encodeZk,p(c 7→ (k , c))).

▶ decodeS : M × C → M × P, similarly.

With initial ⊥ ∈ M, this gives an element of DZ
S (M).

Interactions

Programs asking questions from a signature S :

TSY = µX .Y +Σ(op:A→B)∈SA× (B → X)

DSY = νX .Y × Π(op:A→B)∈SA → (B × X)

DZ
S Y = νX .Y × Π(op:A→B)∈SA → TZ (B × X)

Programs interact with environments:

TSX × DSY → X × Y

TSX × DZ
S Y → TZ (X × Y)

Systems and Protocols

Category of Containers

Objects are given by containers S in Set.

A morphism m : S → Z is given by:

▶ A state space Km.

▶ An initial state km ∈ Km.

▶ For each (op : A → B) ∈ S a function
opm : A× Km → TZ (B × Km).

A morphism m from S to Z specifies:

▶ A monad morphism from TS to TZ .

▶ A comonad morphism from DZ to DS .

▶ An element of DZ
S Km.

▶ A runner ρm : TSX × Km → TZ (X × Km).

Gives Symmetric monoidal with coproduct over objects.

Crypto Protocol

Randomizer Encoder − Decoder

Crypto Protocol
((

hh

uu

55

User
��

OO

Testing Security

Randomizer Encoder − Decoder

CryptoProtocol
**

jj

��

OO

Test Environment
tt

44

��

OO

Adversary
��

OO

Test Initializer
**

jj

��

OO

Communication

Encoder − Decoder Encode − Decode

Alice
��

OO

Bob
��

OO

Scheduler
))

ii

uu

55

Final thoughts

Equations

Adversarial decisions can be modeled using demonic
nondeterminism: worst case scenario is assumed.

Testing security of a particular scheme then composes into a
combination of probability and demonic nondeterminism.

Have a category which limits to polynomial time computations:

▶ Sized objects, with time monad.

▶ Probability, quotiented over negligibility.

Free Cornering

The monad-comonad interaction model always has a root:
An active component leading the interaction.

The free cornering model can be used to extend the framework,
allowing protocols with multiple active parties.

E.g. Both tester and adversary are active, but could await others’
actions.

There is a ”functor” from the category of containers over Set into
the category of horizontal morphisms in the free cornering with
choice and iteration over Set.

References

Tarmo Uustalu and N.V.: Algebraic and coalgebraic perspectives
on interaction laws, Proc. of 18th Asian Symp. on Programming
Languages and Systems, APLAS 2020, to appear in LNCS

Chad Nester, N.V.: Protocol Choice and Iteration for the Free
Cornering, Journal of Logical and Algebraic Methods in
Programming, JLAMP, Volume 137

Fin

	Effectful Programs
	Environments
	Effectful Environments
	Systems and Protocols
	Final thoughts

