
1 Light-emitting diode
Task 1. The easiest way to obtain V (T )-graph is to use the
diode function of the multimeter for measuring diode voltage
V . The board is heated by driving through the resistor R1 a
current which is adjusted using the potentiometer.
V (V) RT (kΩ) T (K) V (V) RT (kΩ) T (K)
1.560 9.25 300.0 1.560 9.25 300.0
1.555 8.18 302.8 1.555 8.08 303.1
1.550 7.2 305.8 1.550 7.13 306.0
1.545 6.33 308.9 1.545 6.33 308.9
1.540 5.6 311.9 1.540 5.56 312.0
1.535 5.02 314.6 1.535 4.94 315.0
1.530 4.44 317.7 1.530 4.4 317.9
1.525 3.97 320.6 1.525 3.93 320.9
1.520 3.55 323.6 1.520 3.52 323.8
1.515 3.18 326.6 1.515 3.13 327.0
1.510 2.8 330.1 1.510 2.82 329.9
1.505 2.55 332.7 1.505 2.55 332.7
1.500 2.32 335.4 1.500 2.27 336.0
1.495 2.09 338.4 1.495 2.07 338.7
1.490 1.88 341.5 1.490 1.888 341.4
1.485 1.72 344.1 1.485 1.7 344.5
1.480 1.56 347.1 1.480 1.546 347.4
1.475 1.42 350.0 1.475 1.407 350.3
1.470 1.29 353.0 1.470 1.285 353.1
1.465 1.19 355.5 1.465 1.175 355.9
1.460 1.085 358.5 1.460 1.083 358.5
1.455 0.992 361.4 1.455 0.987 361.5
1.450 0.911 364.1 1.450 0.909 364.2

Once we estimate the magnitude of the terms in the expres-
sion for Id, we’ll find that VT ≈ 25mV for T ≈ 300K; all the
voltages are much larger than that, so the unity can be neg-
lected. Then, with constant Id, we have V−VG0

nVT
= const (the

constant appears to be negative), hence V = VG0 − BnVT =
BnkT/q, where B is a constant. So, we need to plot V versus
T , and VG0 is found as the intersection point of the linear
regression line with the vertical axis.

From the linear regression we obtain vG0 ≈ 2.085V.
Next we can make a series of measurements with small

currents so that the diode will have essentially the room tem-
perature. Then we can take logarithm from the expression of
Id (while neglecting the unity) to obtain

V − VG0

VT
= n lnA− n ln Id.

Thus, if we plot ln Id versus V −VG0, n and A can be obtained
as the linear regression parameters.

Alternatively, we can make a series of measurements with
a fixed voltage applied to the diode, and measure current
for different temperatures. Based on the same expression as
given above, we need to plot V−VG0

VT
= (V−VG0)q

kT versus ln Id .
Such data are given in the table below.

I (mA) RT (kΩ) T (K) ln(I/1A) (V−VG0)q
kT

33.3 9.76 298.8 -10.310 -22.25
44.8 5.51 312.3 -10.013 -21.29
96.6 7.12 306.1 -9.245 -21.72
150.0 4.72 316.1 -8.805 -21.03
194.1 3.6 323.2 -8.547 -20.57
297.0 2.53 332.9 -8.122 -19.97
417.0 1.84 342.1 -7.782 -19.43
551.0 1.36 351.3 -7.504 -18.92
840.0 1.002 361.0 -7.082 -18.41
860.0 0.95 362.8 -7.059 -18.33

If we plot these data we’ll see that most of the data points
lie on a straight line, but first two and the very last one will
deviate. Data points corresponding to very small currents de-
viate because of large relative uncertainties, last data point
deviates because the parasitic resistance can no longer be neg-
lected. So we discard these from our analysis.

With this graph, the tangent of the slope of the regression
line gives us directly n ≈ 1.55. The intercept −7.39 gives us
−n lnA, so that A ≈ e7.39/1.55A ≈ 119A.

By very large currents, a certain change in current ∆Id will
give rise to just a tiny change in the voltage drop ∆V at the
diode junction, if we can keep the temperature constant by
compensating with the resistor. [according to the exponential
dependence of Id = Id(V )], which is much smaller than the
change in the voltage drop on the parasitic resistor Rs∆Id.
So, we can determine Rs from the experimentally measured
dependance of the diode current Id on the total voltage V ′ =
V + IdRs at the limit of large currents.

RT (kΩ) Id (A) V ′ (V)
0.986 0.85 2.41
1.435 0.7 2.3
1.360 0.75 2.33
6.55 0.189 1.916
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The regression line slope gives directly Rs ≈ 0.75Ω.
Other option is to measure the voltage, temperature and

current (at high current values) and substract the diode
voltage calculated from the model to get the voltage drop
on series resistance.

In both cases, it is important that the voltage is measured
directly from the LED wires, to ignore the any additional
voltage drops on high current carrying part of circuit.

Task 2. The idea is to compare the thermal expansion of
air inside the bottle when the heat is being released by the
diode, and when this is done by the resistor. In the latter
case, all the consumed electrical power is released as heat; in
the former case, part of the heat escapes the bottle as light
radiation energy. The pressure inside a bottle is a function of
its temperature, and the temperature which will establish in-
side the bottle is defined by the balance between the thermal
dissipation power, and the rate by which heat is escaping the
bottle. The latter is a function of the temperature inside
the bottle, and hence, the temperature inside the bottle is a
function of the heat dissipation power. Therefore, the pres-
sure inside the bottle is also a function of the heat dissipation
power.

First we need to build a manometer which allows us to
measure pressure difference — either between the pressure
inside the bottle and the atmospheric pressure, or between
the pressure inside the two bottles. To that end, we fill a tube
with water and folding it into a U-tube; pressure difference
can be determined via the water column height difference
between two halves of the tube.

One possible approach to this problem is to compare heat
dissipation on the diode with a heat dissipation on the resistor:
one may adjust (using the potentiometer) the heating power
of the resistor to reach such a state that the pressures inside
the bottles are equal. If this state is reached when the elec-
trical consumption power of the diode is PD and the power of
the resistor is PR then we can conlcude that thermal dissipa-
tion power of the diode is also PR, and hence, PD−PR escapes
the bottle as the light radiation so that η = 1− PR/PD.

Thermal equilibrium inside the bottles is reached relatively
slowly, one must wait aproximately for 5-10 minutes. There-
fore, finding the state when the heat dissipation powers on
the diode and on the resistor are equal may be a relatively
slow process. An alternative approach is to assume that the
heat exchange rate with the surrounding to be linear in tem-
perature (this assumption is well-founded as the diode never
becomes very hot). Then we can make two series of measure-
ments for the pressure inside the bottle as a function of elec-
trical consumption power: first, when the current is driven
through the diode, and second, when it is driven through
the resistor, ∆p = ∆p(P ). Fitting the data to a linear law,
∆p = kP , we obtain the values of the proportionality coeffi-
cient k both for the diode (kD) and for the resistor (kR); then,
η = 1− kR/kD. Note that since the pressure is proportional
to the column height difference, we can express the pressure
in terms of the height of water column: the proportionality
factor cancels out from the ratio.

Measurement data are given in the table below; I, V , P ,
and d refer to the measured current, voltage, power, and water
column height difference, respectively; index “L” refers to the
measurements with a diode, and “R” — to the measurements
with a resistor.

ID VD PD dD IR UR PR dR
101.5 1.85 0.1878 8 101.9 0.585 0.0596 5
198.2 1.95 0.3865 15 190.1 1.09 0.2072 16
300 2.04 0.6120 23 300 1.76 0.5280 41
390 2.11 0.8229 33 390 2.35 0.9165 71
480 2.18 1.0464 45 470 2.73 1.2831 103

Based on these slopes kD = 1 − 41.0mm/W/79.8mm/W ≈
0.48

Note that it is also possible to measure the efficiency us-
ing the temperature sensor: it works in the same way as
the method using air expansion described above. We com-
pare temperature of the circuit board as function of electrical
power supplied to the diode [TD(P )], and also the temperat-
ure when power is supplied to the resistor [TR(P )]. Assuming
that dominating part of the heat is dissipated into surround-
ings via the circuit board and only a negligible part of it
leaves as a heat radiation at the diode and resistor, respect-
ively (this is an assumption which is valid with a really good
accuracy), we can find η = 1− TD(P )/TR(P ), or even better,
η = 1−κD(P )/κR(P ), where κD and κR denote the slopes of
the respective graphs. The result is the same as shown above,
η ≈ 0.46 ± 0.04. It is also possible to calculate the internal
efficiency of the junction by subtracting the power dissipation
on the parasitic resistance; the result is ηinternal ≈ 0.53.

Task 3. According to our model, the photocurrent does not
depend on the voltage, but because the diode current does,
the total current through the diode depends on the voltage.
For the maximum harvestable electrical power Pmax we must
find a voltage where P = V Ip − V Id is the greatest.

We can do it in multiple ways. One way is to measure the
Ip ≈ 0.020mA by shorting the diode with a am-meter, and
then finding the maximum analytically or numerically from
our model. Using the diode parameters from above we get
Pmax ≈ 0.026mW. Other way is to change the voltage on
the diode with potentiometer, measure the current and the
voltage and find the maximum by scanning the range where
current and voltage are positive, see the circuit below.

The data of measurements are given in the table below; the
graph shows both the experimental data points and theoret-
ical dependence Id(V ) − Ip, where Ip = −15 µV, determined
using the measurement at V = 0V. As we can see, the two
curves are fairly close; there is a small mismatch which can
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partly explained by a leakage current due to a certain large
effective resistance being connected in parallel to the diode’s
junction.

V (V) I = Id − Ip (A) P = V I (µW)
0 -15 0

0.18 -14.8 2.664
0.4 -14.7 5.88
0.6 -14.6 8.76
0.8 -14.5 11.6
0.99 -14.5 14.355
1.2 -14.2 17.04
1.3 -12.8 16.64
1.35 -11.3 15.255
1.4 -6 8.4
1.43 -0.5 0.715
1.46 8.6 -12.556

The graph includes also the curve for the electrical power
produced by the diode, P = V I. The maximum Pmax ≈
17µW can be determined as the maximum of this curve. The
efficiency is found as

ηp =
Pmax

Pi
=

Pmax

ηI1V (I1)
S

α4πd2

,

where S
α4πd2 is fraction of the light reaching the active area

of the LED; V1 and I1 denote the voltage and current of the
other diode, respectively. Numerically we obtain ηp ≈ 0.04.
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