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Abstract 
 
The article contains problems given at the 20th International Physics Olympiad (1989) 

and their solutions. The 20th IPhO was the third IPhO organized in Warsaw, Poland. 
 

Logo 
 

 The emblem of the XX International Physics 
Olympiad contains a picture that is a historical record of 
the first hypernuclear event observed and interpreted in 
Warsaw by M. Danysz and J. Pniewski3

 In the event observed above the hyperon Λ, bound with nucleon, decays like a free 
particle through a week (slow) process only. This fact strongly suggested the existence of a 
new quantum number that could explain suppression of the decay, even in presence of 
nucleons. Indeed, this was one of the observations that, 30 months later, led to the concept of 
strangeness.  

. The collision 
of a high-energy particle with a heavy nucleus was 
registered in nuclear emulsion. Tracks of the secondary 
particles emitted in the event, seen in the picture (upper 
star), consist of tracks due to fast pions (“thin tracks”) 
and to much slower fragments of the target nucleus 
(“black tracks”). The “black track” connecting the upper 
star (greater) with the lower star (smaller) in the figure 
is due to a hypernuclear fragment, in this case due to a 
part of the primary nucleus containing an unstable 
hyperon Λ instead of a nucleon. Hyperfragments 

(hypernuclei) are a new kind of matter in which the nuclei contain not only protons and 
neutrons but also some other heavy particles. 

 
Introduction 

 
Theoretical problems (including solutions and marking schemes) were prepared 

especially for the 20th IPhO by Waldemar Gorzkowski. The experimental problem (including 
the solution and marking scheme) was prepared especially for this Olympiad by Andrzej 
Kotlicki. The problems were refereed independently (and many times) by at least two persons 

 
1 This article has been sent for publication in Physics Competitions in October 2003 
2 e-mail: gorzk@ifpan.edu.pl 
3 M. Danysz and J. Pniewski, Bull. Acad. Polon. Sci., 3(1) 42 (1952) and Phil. Mag., 44, 348 (1953). Later the 
same physicists, Danysz and Pniewski, discovered the first case of a nucleus with two hyperons (double 
hyperfragment). 



after any change was made in the text to avoid unexpected difficulties at the competition. This 
work was done by: 

 
First Problem: 
Andrzej Szadkowski, Andrzej Szymacha, Włodzimierz Ungier 

Second Problem: 
Andrzej Szadkowski, Andrzej Szymacha, Włodzimierz Ungier, Stanisław Woronowicz 

Third Problem: 
Andrzej Rajca, Andrzej Szymacha, Włodzimierz Ungier 

Experimental Problem: 
Krzysztof Korona, Anna Lipniacka, Jerzy Łusakowski, Bruno Sikora 
 
Several English versions of the texts of the problems were given to the English-

speaking students. As far as I know it happened for the first time (at present it is typical). The 
original English version was accepted (as a version for the students) by the leaders of the 
Australian delegation only. The other English-speaking delegations translated the English 
originals into English used in their countries. The net result was that there were at least four 
English versions. Of course, physics contained in them was exactly the same, while wording 
and spelling were somewhat different (the difference, however, were not too great).  

This article is based on the materials quoted at the end of the article and on personal 
notes of the author.  

 
THEORETICAL PROBLEMS 

 
Problem 1 
 
Consider two liquids A and B insoluble in each other. The pressures pi (i = A or B) of 

their saturated vapors obey, to a good approximation, the formula: 
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where po denotes the normal atmospheric pressure, T – the absolute temperature of the vapor, 
and iα  and iβ  (i = A or B) – certain constants depending on the liquid. (The symbol ln 
denotes the natural logarithm, i.e. logarithm with base e = 2.7182818…) 

 The values of the ratio pi/p0 for the liquids A and B at the temperature 40°C and 90°C 
are given in Tab. 1.1. 

Table 1.1 

t [°C] pi/p0 
i = A i = B 

40 0.284 0.07278 
90 1.476 0.6918 

The errors of these values are negligible. 

A. Determine the boiling temperatures of the liquids A and B under the pressure p0. 



B. The liquids A and B were poured into a vessel in which the layers shown in Fig. 1.1 
were formed. The surface of the liquid B has been covered with a thin layer of a non-volatile 
liquid C, which is insoluble in the liquids A and B and vice versa, thereby preventing any free 
evaporation from the upper surface of the liquid B, The ratio of molecular masses of the 
liquids A and B (in the gaseous phase) is: 

 
.8/ == BA µµγ  

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1.1                                                                               Fig. 1.2 

 
The masses of the liquids A and B were initially the same, each equal to m = 100g. The 

heights of the layers of the liquids in the vessel and the densities of the liquids are small 
enough to make the assumption that the pressure in any point in the vessel is practically equal 
to the normal atmospheric pressure p0. 

The system of liquids in the vessel is slowly, but continuously and uniformly, heated. It 
was established that the temperature t of the liquids changed with time τ as shown 
schematically in the Fig. 1.2. 

Determine the temperatures t1 and t2 corresponding to the horizontal parts of the 
diagram and the masses of the liquids A and B at the time τ1. The temperatures should be 
rounded to the nearest degree (in °C) and the masses of the liquids should be determined to 
one-tenth of gram. 

REMARK: Assume that the vapors of the liquids, to a good approximation, 

(1) obey the Dalton law stating that the pressure of a mixture of gases is equal to 
the sum of the partial pressures of the gases forming the mixture and 

(2) can be treated as perfect gases up to the pressures corresponding to the 
saturated vapors. 

 
Solution 
 
PART A 

The liquid boils when the pressure of its saturated vapor is equal to the external pressure. 
Thus, in order to find the boiling temperature of the liquid i (i - A or B), one should determine 
such a temperature Tbi (or tbi) for which pi/p0 = 1. 

Then 0)/ln( 0 =ppi , and we have: 
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The coefficients iα  and iβ  are not given explicitly. However, they can be calculated 
from the formula given in the text of the problem. For this purpose one should make use of 
the numerical data given in the Tab. 1.1.  

For the liquid A, we have: 
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After subtraction of these equations, we get: 
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Thus, the boiling temperature of the liquid A is equal to 

bAT = 3748.49K/10.711 ≈  349.95 K. 

In the Celsius scale the boiling temperature of the liquid A is 

=bAt (349.95 – 273.15)°C = 76.80°C ≈  77°C. 

For the liquid B, in the same way, we obtain: 

≈Bα  -5121.64 K, 
≈Bβ 13.735, 
≈bBT 372-89 K, 
≈bBt 99.74°C ≈100°C. 

PART B 

As the liquids are in thermal contact with each other, their temperatures increase in time 
in the same way. 

At the beginning of the heating, what corresponds to the left sloped part of the diagram, 
no evaporation can occur. The free evaporation from the upper surface of the liquid B cannot 
occur - it is impossible due to the layer of the non-volatile liquid C. The evaporation from the 
inside of the system is considered below. 



Let us consider a bubble formed in the liquid A or in the liquid B or on the surface that 
separates these liquids. Such a bubble can be formed due to fluctuations or for many other 
reasons, which will not be analyzed here. 

The bubble can get out of the system only when the pressure inside it equals to the 
external pressure 0p  (or when it is a little bit higher than 0p ). Otherwise, the bubble will 
collapse. 

The pressure inside the bubble formed in the volume of the liquid A or in the volume of 
the liquid B equals to the pressure of the saturated vapor of the liquid A or B, respectively. 
However, the pressure inside the bubble formed on the surface separating the liquids A and B 
is equal to the sum of the pressures of the saturated vapors of both these liquids, as then the 
bubble is in a contact with the liquids A and B at the same time. In the case considered the 
pressure inside the bubble is greater than the pressures of the saturated vapors of each of the 
liquids A and B (at the same temperature). 

Therefore, when the system is heated, the pressure 0p  is reached first in the bubbles that 
were formed on the surface separating the liquids. Thus, the temperature 1t corresponds to a 
kind of common boiling of both liquids that occurs in the region of their direct contact. The 
temperature 1t  is for sure lower than the boiling temperatures of the liquids A and B as then 
the pressures of the saturated vapors of the liquids A and B are less then 0p  (their sum equals 
to 0p  and each of them is greater than zero). 

In order to determine the value of 1t  with required accuracy, we can calculate the values 
of the sum of the saturated vapors of the liquids A and B for several values of the temperature 
t and look when one gets the value 0p . 

From the formula given in the text of the problem, we have: 
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Thus, we have to calculate the values of the following function: 
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(where 15.2730 =t °C) and to determine the temperature 1tt = , at which )(ty  equals to 1. 
When calculating the values of the function )(ty  we can divide the intervals of the 
temperatures t  by 2 (approximately) and look whether the results are greater or less than 1.  

We have: 



Table 1.2 

t  )(ty  

40°C < 1 (see Tab. 1.1) 

77°C > 1 (as 1t  is less than bAt ) 

59°C 0.749 < 1 

70°C 1.113 > 1 

66°C 0.966 < 1 

67°C 1.001 > 1 

66.5°C 0.983 < 1 

Therefore, ≈1t  67° C (with required accuracy). 

Now we calculate the pressures of the saturated vapors of the liquids A and B at the 
temperature ≈1t  67°C, i.e. the pressures of the saturated vapors of the liquids A and B in each 
bubble formed on the surface separating the liquids. From the equations (1) and (2), we get: 

≈Ap  0.734 0p , 
≈Bp  0.267 0p , 

)001.1( 00 pppp BA ≈=+ . 

These pressures depend only on the temperature and, therefore, they remain constant 
during the motion of the bubbles through the liquid B. The volume of the bubbles during this 
motion also cannot be changed without violation of the relation 0ppp BA =+ . It follows from 
the above remarks that the mass ratio of the saturated vapors of the liquids A and B in each 
bubble is the same. This conclusion remains valid as long as both liquids are in the system. 
After total evaporation of one of the liquids the temperature of the system will increase again 
(second sloped part of the diagram). Then, however, the mass of the system remains constant 
until the temperature reaches the value 2t  at which the boiling of the liquid (remained in the 
vessel) starts. Therefore, the temperature 2t  (the higher horizontal part of the diagram) 
corresponds to the boiling of the liquid remained in the vessel. 

The mass ratio BA mm /  of the saturated vapors of the liquids A and B in each bubble 
leaving the system at the temperature 1t  is equal to the ratio of the densities of these vapors 

BA ρρ / . According to the assumption 2, stating that the vapors can be treated as ideal gases, 
the last ratio equals to the ratio of the products of the pressures of the saturated vapors by the 
molecular masses: 
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0.22≈
B
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m
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We see that the liquid A evaporates 22 times faster than the liquid B. The evaporation of 
100 g of the liquid A during the “surface boiling” at the temperature 1t  is associated with the 



evaporation of 100 g / 22 ≈4.5 g of the liquid B. Thus, at the time 1τ  the vessel contains 95.5 
g of the liquid B (and no liquid A). The temperature 2t  is equal to the boiling temperature of 
the liquid B: =2t 100°C. 

 
Marking Scheme 
 

1. physical condition for boiling      1 point 
2. boiling temperature of the liquid A (numerical value)   1 point 
3. boiling temperature of the liquid B (numerical value)   1 point 
4. analysis of the phenomena at the temperature 1t     3 points 
5. numerical value of 1t         1 point 
6. numerical value of the mass ratio of the saturated vapors in the bubble 1 point 
7. masses of the liquids at the time 1τ       1 point 
8. determination of the temperature 2t       1 point 

REMARK: As the sum of the logarithms is not equal to the logarithm of the sum, the 
formula given in the text of the problem should not be applied to the mixture of the saturated 
vapors in the bubbles formed on the surface separating the liquids. However, the numerical 
data have been chosen in such a way that even such incorrect solution of the problem gives 
the correct value of the temperature 1t  (within required accuracy). The purpose of that was to 
allow the pupils to solve the part B of the problem even if they determined the temperature 1t  
in a wrong way. Of course, one cannot receive any points for an incorrect determination of the 
temperature 1t  even if its numerical value is correct. 

 
Typical mistakes in the pupils' solutions 

 
Nobody has received the maximum possible number of points for this problem, 

although several solutions came close. Only two participants tried to analyze proportion of 
pressures of the vapors during the upward movement of the bubble trough the liquid B. Part 
of the students confused Celsius degrees with Kelvins. Many participants did not take into 
account the boiling on the surface separating the liquids A and B, although this effect was the 
essence of the problem. Part of the students, who did notice this effect, assumed a priori that 
the liquid with lower boiling temperature "must" be the first to evaporate. In general, this need 
not be true: if γ were, for example, 1/8 instead 8, then liquid A rather than B would remain in 
the vessel. As regards the boiling temperatures, practically nobody had any essential 
difficulties. 

 
Problem 2 
 
 Three non-collinear points P1, P2 and P3, with known masses m1, m2 and m3, interact 

with one another through their mutual gravitational forces only; they are isolated in free space 
and do not interact with any other bodies. Let σ denote the axis going through the center-of-
mass of the three masses, and perpendicular to the triangle P1P2P3. What conditions should 
the angular velocities ω of the system (around the axis σ) and the distances: 

 
P1P2 = a12, P2P3 = a23, P1P3 = a13, 

 
fulfill to allow the shape and size of the triangle P1P2P3 unchanged during the motion of the 
system, i.e. under what conditions does the system rotate around the axis σ as a rigid body? 



 
Solution 
 
As the system is isolated, its total energy, i.e. the sum of the kinetic and potential 

energies, is conserved. The total potential energy of the points P1, P2 and P3 with the masses 
1m , 2m  and 3m  in the inertial system (i.e. when there are no inertial forces) is equal to the 

sum of the gravitational potential energies of all the pairs of points (P1,P2), (P2,P3) and (P1,P3). 
It depends only on the distances 12a , 23a  and 23a  which are constant in time. Thus, the total 
potential energy of the system is constant. As a consequence the kinetic energy of the system 
is constant too. The moment of inertia of the system with respect to the axis σ  depends only 
on the distances from the points P1, P2 and P3 to the axis σ  which, for fixed 12a , 23a  and 23a  
do not depend on time. This means that the moment of inertia I  is constant. Therefore, the 
angular velocity of the system must also be constant: 

 =ω const. (1) 
This is the first condition we had to find. The other conditions will be determined by 

using three methods described below. However, prior to performing calculations, it is 
desirable to specify a convenient coordinates system in which the calculations are expected to 
be simple. 

Let the positions of the points P1, P2 and P3 with the masses 1m , 2m  and 3m  be given by 
the vectors 1r , 2r  and 3r . For simplicity we assume that the origin of the coordinate system is 
localized at the center of mass of the points P1, P2 and P3 with the masses 1m , 2m  and 3m  and 
that all the vectors 1r , 2r  and 3r  are in the same coordinate plane, e.g. in the plane (x,y). Then 
the axis σ  is the axis z . 

In this coordinate system, according to the definition of the center of mass, we have: 

 0321 =++ 221 rrr mmm  (2) 

Now we will find the second condition by using several methods. 
FIRST METHOD 

Consider the point P1 with the mass 1m . The points P2 and P3 act on it with the forces: 
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where G denotes the gravitational constant. 

In the inertial frame the sum of these forces is the centripetal force 

1
2

11 rF ωmr −= , 

which causes the movement of the point P1 along a circle with the angular velocity ω . (The 
moment of this force with respect to the axis σ  is equal to zero.) Thus, we have: 

 .13121 rFFF =+  (5) 

In the non-inertial frame, rotating around the axis σ  with the angular velocity ω , the 
sum of the forces (3), (4) and the centrifugal force 
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should be equal to zero: 

 .0' 13121 =++ rFFF  (6) 

(The moment of this sum with respect to any axis equals to zero.) 

The conditions (5) and (6) are equivalent. They give the same vector equality: 
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From the formula (2), we get: 

 331122 rrr mmm −−=  (8) 

Using this relation, we write the formula (7) in the following form: 
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i.e. 
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The vectors 1r  and 3r  are non-col1inear. Therefore, the coefficients in the last formula 
must be equal to zero: 
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The first equality leads to: 
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and hence, 

1213 aa = . 

Let aaa == 1213 . Then the second equality gives: 

 GMa =32ω  (9) 

where 

 321 mmmM ++=  (10) 

denotes the total mass of the system. 



In the same way, for the points P2 and P3, one gets the relations: 

a) the point P2: 

1223 aa = ;     GMa =32ω  

b) the point P3: 

2313 aa = ;     GMa =32ω  

Summarizing, the system can rotate as a rigid body if all the distances between the 
masses are equal: 

 aaaa === 132312 , (11) 

the angular velocity ω  is constant and the relation (9) holds. 
SECOND METHOD 

At the beginning we find the moment of inertia I  of the system with respect to the axis 
σ . Using the relation (2), we can write: 
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 Of course, 
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The quantities jirr2 (i, j = 1, 2, 3) can be determined from the following obvious relation: 
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We get: 
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With help of this relation, after simple transformations, we obtain: 
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The moment of inertia I  of the system with respect to the axis σ , according to the definition 
of this quantity, is equal to 
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The last two formulae lead to the following expression: 
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where M (the total mass of the system) is defined by the formula (10). 

In the non-inertial frame, rotating around the axis σ  with the angular velocity ω , the 
total potential energy totV  is the sum of the gravitational potential energies 
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of all the masses and the potential energies 
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of the masses im  (i = 1, 2, 3) in the field of the centrifugal force: 
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A mechanical system is in equilibrium if its total potential energy has an extremum. In 
our case the total potential energy totV  is a sum of three terms. Each of them is proportional to: 
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The extrema of this function can be found by taking its derivative with respect to a and 
requiring this derivative to be zero. We get: 
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It leads to: 

GMa =32ω     or    ).( 321
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We see that all the terms in totV  have extrema at the same values of aaij = . (In addition, 
the values of a and ω  should obey the relation written above.) It is easy to show that it is a 
maximum. Thus, the quantity totV  has a maximum at aaij = . 

This means that our three masses can remain in fixed distances only if these distances 
are equal to each other: 

aaaa === 132312  

and if the relation 

GMa =32ω , 
where M the total mass of the system, holds. We have obtained the conditions (9) and (11) 
again. 

THIRD METHOD 

Let us consider again the point P1 with the mass 1m  and the forces 21F  and 31F  given by 
the formulae (3) and (4). It follows from the text of the problem that the total moment (with 
respect to any fixed point or with respect to the mass center) of the forces acting on the point 
P1 must be equal to zero. Thus, we have: 

0131121 =×+× rFrF  

where the symbol ×  denotes the vector product. Therefore 
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Using the formula (8), the last relation can be written as follows: 
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The vectors 1r  and 3r  are non-col1inear (and different from 0). Therefore 
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hence, 
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Similarly, one gets: 
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We have re-derived the condition (11). 

Taking into account that all the distances ija  have the same value a, from the equation 
(7) concerning the point P1, using the relation (2) we obtain: 
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This is the condition (9). The same condition is got in result of similar calculations for the 
points P2 and P3. 



The method described here does not differ essentially from the first method. In fact 
they are slight modifications of each other. However, it is interesting to notice how 
application of a proper mathematical language, e.g. the vector product, simplifies the 
calculations. 

The relation (9) can be called a “generalized Kepler’s law” as, in fact, it is very similar 
to the Kepler’s law but with respect to the many-body system. As far as I know this 
generalized Kepler’s law was presented for the first time right at the 20th IPhO. 

 
Marking scheme 
 
1. the proof that =ω const 1 point 
2. the conditions at the equilibrium (conditions for the forces  

and their moments or extremum of the total potential energy) 3 points 
3. the proof of the relation aaij =  4 points 

4. the proof of the relation GMa =32ω  2 points 
 
Remarks and typical mistakes in the pupils' solutions 
 
No type of error was observed as predominant in the pupils' solutions. Practically all the 

mistakes can be put down to the students' scant experience in calculations and general lack of 
skill. Several students misunderstood the text of the problem and attempted to prove that the 
three masses should be equal. Of course, this was impossible. Moreover, it was pointless, 
since the masses were given. Almost all the participants tried to solve the problem by 
analyzing equilibrium of forces and/or their moments. Only one student tried to solve the 
problem by looking for a minimum of the total potential energy (unfortunately, his solution 
was not fully correct). Several participants solved the problem using a convenient reference 
system: one mass in the origin and one mass on the x-axis. One of them received a special 
prize. 

 
Problem 3 
 
The problem concerns investigation of transforming the electron microscope with 

magnetic guiding of the electron beam (which is accelerated with the potential difference U = 
511 kV) into a proton microscope (in which the proton beam is accelerated with the potential 
difference –U). For this purpose, solve the following two problems: 

A. An electron after leaving a device, which accelerated it with the potential difference 
U, falls into a region with an inhomogeneous field B generated with a system of stationary 
coils L1, L2, … , Ln. The known currents in the coils are i1, i2, … , in, respectively. 

What should the currents i1’, i2’, … , in’ in the coils L1, L2, … , Ln be, in order to guide 
the proton (initially accelerated with the potential difference –U) along the same trajectory 
(and in the same direction) as that of the electron? 

HINT: The problem can be solved by finding a condition under which the equation 
describing the trajectory is the same in both cases. It may be helpful to use the relation: 

 

p
dt
d p = 

dt
d

2
1 p2 = 

dt
d

2
1 p2. 

 



B. How many times would the resolving power of the above microscope increase or 
decrease if the electron beam were replaced with the proton beam? Assume that the resolving 
power of the microscope (i.e. the smallest distance between two point objects whose circular 
images can be just separated) depends only on the wave properties of the particles. 

Assume that the velocities of the electrons and protons before their acceleration are zero, 
and that there is no interaction between own magnetic moment of either electrons or protons 
and the magnetic field. Assume also that the electromagnetic radiation emitted by the moving 
particles can be neglected. 

NOTE: Very often physicists use 1 electron-volt (1 eV), and its derivatives such as 1 
keV or 1 MeV, as a unit of energy. 1 electron-volt is the energy gained by the electron that 
passed the potential difference equal to 1 V. 

Perform the calculations assuming the following data: 

Rest energy of electron: Ee = mec2 = 511 keV 
Rest energy of proton:  Ep = mpc2 = 938 MeV 

 
Solution 
 
PART  A 

At the beginning one should notice that the kinetic energy of the electron accelerated 
with the potential difference U = 511 kV equals to its rest energy 0E . Therefore, at least in the 
case of the electron, the laws of the classical physics cannot be applied. It is necessary to use 
relativistic laws. 

The relativistic equation of motion of a particle with the charge e in the magnetic field 
B  has the following form: 

Ldt
d Fp =  

where vp γ0m= denotes the momentum of the particle (vector) and 

BvF ×= eL  

is the Lorentz force (its value is evB  and its direction is determined with the right hand rule). 
0m  denotes the (rest) mass of the particle and v  denotes the velocity of the particle. The 

quantity γ  is given by the formula: 

2

2

1

1

c
v

−

=γ  

The Lorentz force LF  is perpendicular to the velocity v  of the particle and to its momentum 
vp γ0m= . Hence, 

0=⋅=⋅ pFvF LL . 

Multiplying the equation of motion by p  and making use of the hint given in the text of the 
problem, we get: 

0
2
1 2 =p

dt
d . 



It means that the value of the particle momentum (and the value of the velocity) is constant 
during the motion: 

== γvmp 0  const;               v = const. 

The same result can be obtained without any formulae in the following way: 

The Lorentz force LF  is perpendicular to the velocity v  (and to the momentum p as 
vp γ0m= ) and, as a consequence, to the trajectory of the particle. Therefore, there is no force 

that could change the component of the momentum tangent to the trajectory. Thus, this 
component, whose value is equal to the length of p , should be constant: =p const. (The same 
refers to the component of the velocity tangent to the trajectory as vp γ0m= ). 

Let s denotes the path passed by the particle along the trajectory. From the definition of 
the velocity, we have: 

.v
dt
ds

=  

Using this formula, we can rewrite the equation of motion as follows: 

Ldt
d

ds
d

dt
ds

ds
dv Fppp === , 

vds
d LFp = . 

Dividing this equation by p and making use of the fact that p = const, we obtain: 

vppds
dv LFp

=  

and hence 

vpds
d LFt =  

where vp // vpt ==  is the versor (unit vector) tangent to the trajectory. The above equation 
is exactly the same for both electrons and protons if and only if the vector quantity: 

vp
LF  

is the same in both cases. 

Denoting corresponding quantities for protons with the same symbols as for the 
electrons, but with primes, one gets that the condition, under which both electrons and protons 
can move along the same trajectory, is equivalent to the equality: 

''
'
pvvp
LL FF

= . 

However, the Lorentz force is proportional to the value of the velocity of the particle, 
and the directions of any two vectors of the following three: t (or v), FL, B determine the 
direction of the third of them (right hand rule). Therefore, the above condition can be written 
in the following form: 

'
''

p
e

p
e BB

= . 



Hence,  

BBB
p
p

p
p

e
e ''
'

' == . 

This means that at any point the direction of the field B should be conserved, its 
orientation should be changed into the opposite one, and the value of the field should be 
multiplied by the same factor p'/p. The magnetic field B is a vector sum of the magnetic fields 
of the coils that are arbitrarily distributed in the space. Therefore, each of this fields should be 
scaled with the same factor -p'/p. However, the magnetic field of any coil is proportional to 
the current flowing in it. This means that the required scaling of the fields can only be 
achieved by the scaling of all the currents with the same factor -p'/p: 

nn i
p
pi '' −= . 

Now we shall determine the ratio p'/p. The kinetic energies of the particles in both cases 
are the same; they are equal to == UeEk 511 keV. The general relativistic relation between 
the total energy E of the particle with the rest energy E0 and its momentum p has the 
following form: 

222
0

2 cpEE +=  

where c denotes the velocity of light. 

The total energy of considered particles is equal to the sum of their rest and kinetic 
energies: 

kEEE += 0 . 

Using these formulae and knowing that in our case ek EUeE == , we determine the 
momenta of the electrons (p) and the protons (p’). We get:  

a) electrons: 

,)( 2222 cpEEE eee +=+  
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b) protons 
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It is worthwhile to notice that our protons are 'almost classical', because their kinetic 
energy )( ek EE =  is small compared to the proton rest energy pE . Thus, one can expect that 
the momentum of the proton can be determined, with a good accuracy, from the classical 
considerations. We have: 
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On the other hand, the momentum of the proton determined from the relativistic 
formulae can be written in a simpler form since Ep/Ee » 1. We get: 
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In accordance with our expectations, we have obtained the same result as above. 
PART  B 

The resolving power of the microscope (in the meaning mentioned in the text of the 
problem) is proportional to the wavelength, in our case to the length of the de Broglie wave: 

p
h

=λ  

where h denotes the Planck constant and p is the momentum of the particle. We see that λ  is 
inversely proportional to the momentum of the particle. Therefore, after replacing the electron 
beam with the proton beam the resolving power will be changed by the factor p/p' ≈1/35. It 
means that our proton microscope would allow observation of the objects about 35 times 
smaller than the electron microscope. 
 

Marking scheme 
 
1. the relativistic equation of motion     1 point 
2. independence of p and v of the time     1 point 
3. identity of eB/p in both cases     2 points 
4. scaling of the fields and the currents with the same factor  1 point 
5. determination of the momenta (relativistically)   1 point 
6. the ratio of the momenta (numerically)    1 point 
7. proportionality of the resolving power toλ     1 point 
8. inverse proportionality of λ  to p     1 point 
9. scaling of the resolving power     1 point 
 
Remarks and typical mistakes in the pupils' solutions 
 

Some of the participants tried to solve the problem by using laws of classical mechanics 
only. Of course, this approach was entirely wrong. Some students tried to find the required 
condition by equating "accelerations" of particles in both cases. They understood the 
"acceleration" of the particle as a ratio of the force acting on the particle to the "relativistic" 
mass of the particle. This approach is incorrect. First, in relativistic physics the relationship 
between force and acceleration is more complicated. It deals with not one "relativistic" mass, 



but with two "relativistic" masses: transverse and longitudinal. Secondly, identity of 
trajectories need not require equality of accelerations. 

The actual condition, i.e. the identity of eB/p in both cases, can be obtained from the 
following two requirements: 

1° in any given point of the trajectory the curvature should be the same in both cases; 
2° in the vicinity of any given point the plane containing a small arc of the trajectory 

should be oriented in space in both cases in the same way. 

Most of the students followed the approach described just above. Unfortunately, many 
forgot about the second requirement (they neglected the vector character of the quantity eB/p). 
 

 
EXPERIMENTAL PROBLEM1

 
 

The following equipment is provided: 

1. Two piezoelectric discs of thickness 10 mm with evaporated electrodes (Fig. 4.1) fixed in 
holders on the jaws of the calipers; 
 
 
 
 
 
 
    Fig. 4.1 
 
 
 
 
 
 
2. The calibrated sine wave oscillator with a photograph of the control panel, explaining the 
functions of the switches and regulators; 
3. A double channel oscilloscope with a photograph of the control panel, explaining the 
functions of the switches and regulators; 
4. Two closed plastic bags containing liquids; 
5. A beaker with glycerin (for wetting the discs surfaces to allow better mechanical coupling); 
6. Cables and a three way connector; 
7. A stand for support the bags with the liquids; 
8. Support and calipers. 

A piezoelectric material changes its linear dimensions under the influence of an electric 
field and vice-versa, the distortion of a piezoelectric material induces an electrical field. 
Therefore, it is possible to excite the mechanical vibrations in a piezoelectric material by 
applying an alternating electric field, and also to induce an alternating electric field by 
mechanical vibrations. 

 
1  The Organizing Committee planned to give another experimental problem: a problem on high Tc 
superconductivity. Unfortunately, the samples of superconductors, prepared that time by a factory, were of very 
poor quality. Moreover, they were provided after a long delay. Because of that the organizers decided to use this 
problem, which was also prepared, but considered as a second choice. 

 10 mm 

   Electrodes 



A. Knowing that the velocity of longitudinal ultrasonic waves in the material of the disc 
is about 3104 ⋅  m/s, estimate roughly the resonant frequency of the mechanical vibrations 
parallel to the disc axis. Assume that the disc holders do no restrict the vibrations. (Note that 
other types of resonant vibrations with lower or higher frequencies may occur in the discs.) 

 Using your estimation, determine experimentally the frequency for which the 
piezoelectric discs work best as a transmitter-receiver set for ultrasound in the liquid. Wetting 
surfaces of the discs before putting them against the bags improves penetration of the liquid in 
the bag by ultrasound. 

B. Determine the velocity of ultrasound for both liquids without opening the bags and 
estimate the error. 

C. Determine the ratio of the ultrasound velocities for both liquids and its error. 

Complete carefully the synopsis sheet. Your report should, apart from the synopsis 
sheet, contain the descriptions of:  

- method of resonant frequency estimation; 
- methods of measurements; 
- methods of estimating errors of the measured quantities and of final results. 

Remember to define all the used quantities and to explain the symbols. 

 

Synopsis Sheet1

A 

 

Formula for estimating the resonant frequency: 

 

Results (with units): 

Measured best transmitter frequency (with units): 

 

Error: 

B 

Definition of measured quantity: 

 

 

 

Symbol: Results: Error: 

Final formula for ultrasound velocity in liquid: 

 

           Velocity of ultrasound (with units): Error: 

Liquid A   

Liquid B   

 
Ratio of velocities: 

 
Error: 

 

Solution (draft)1

 
1 In the real Synopsis Sheet the students had more space for filling. 

 



 
 A. As the holders do not affect vibrations of the disc we may expect antinodes on the 

flat surfaces of the discs (Fig. 4.2; geometric proportions not conserved). One of the 
frequencies is expected for  

 

f
vl

22
1 == λ , 

 
where v  denotes the velocity of longitudinal ultrasonic wave (its value is given in the text of 
the problem), f  - the frequency and l  - the thickness of the disc. Thus: 

 

l
vf
2

= . 

 
Numerically 5102 ⋅=f Hz = 200 kHz. 

 

  

 

 

 

 

                                                                                                                     

 
 

 
 

Fig. 4.2 

 One should stress out that different modes of vibrations can be excited in the disc with 
height comparable to its diameter. We confine our considerations to the modes related to 
longitudinal waves moving along the axis of the disc as the sound waves in liquids are 
longitudinal. We neglect coupling between different modes and require antinodes exactly at 
the flat parts of the disc. We assume also that the piezoelectric effect does not affect velocity 
of ultrasound. For these reasons the frequency just determined should be treated as only a 
rough approximation. However, it indicates that one should look for the resonance in vicinity 
of 200 kHz. 

The experimental set-up is shown in Fig. 4.3. The oscillator (generator) is connected to 
one of the discs that works as a transmitter and to one channel of the oscilloscope. The second 
disc is connected to the second channel of the oscilloscope and works as a receiver. Both discs 
are placed against one of the bags with liquid (Fig. 4.4). The distance d  can be varied. 

 

                                                                                                                                                         
1 This draft solution is based on the camera-ready text of the more detailed solution prepared by Dr. Andrzej 
Kotlicki and published in the proceedings [3] 
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Fig. 4.3 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Fig. 4.4 

One searches for the resonance by slowly changing the frequency of the oscillator in the 
range 100 – 1000 kHz and watching the signal on the oscilloscope. In this way the students 
could find a strong resonance at frequency 220≈f  kHz. Other resonance peaks could be 
found at about 110 kHz and 670 kHz. They should have been neglected as they are 
substantially weaker. (They correspond to some other modes of vibrations.) Accuracy of these 
measurements was 10 kHz (due to the width of the resonance and the accuracy of the scale on 
the generator).  

 B. The ultrasonic waves pass through the liquid and generate an electric signal in the 
receiver. Using the same set-up (Fig. 4.3 and 4.4) we can measure dependence of the phase 
shift between the signals at Y1 and Y2 vs. distance between the piezoelectric discs d  at the 
constant frequency found in point A. This phase shift is 0/2 ϕπϕ +=∆ lvdf , where lv  denotes 
velocity of ultrasound in the liquid. 0ϕ  denotes a constant phase shift occurring when 
ultrasound passes trough the bag walls (possibly zero). The graph representing dependence 

)( ϕ∆d  should be a straight line. Its slope allows to determine lv  and its error. In general, the 

  d 

Bag with liquid 

Oscilloscope 
 

 
Oscillator 

(Generator) 

 

  d 

Y1 

Y2 



measurements of ϕ∆  are difficult for many reflections in the bag, which perturb the signal. 
One of the best ways is to measure d only for πϕ n=∆  (n - integer) as such points can be 
found rather easy.  Many technical details concerning measurements can be found in [3] (pp. 
37 and 38). 

The liquids given to the students were water and glycerin. In the standard solution the 
author of the problem received the following values: 

vwater = 310)10.050.1( ⋅±  m/s;   vglycerin = 310)10.096.1( ⋅±  m/s. 

The ratio of these values was 15.031.1 ± . 

The ultrasonic waves are partly reflected or scattered by the walls of the bag. This effect 
somewhat affects measurements of the phase shift. To minimize its role one can measure the 
phase shift (for a given distance) or distance (at the same phase shift) several times, each time 
changing the shape of the bag. As regards errors in determination of velocities it is worth to 
mention that the most important factor affecting them was the error in determination of the 
frequency. This error, however, practically does not affect the ratio of velocities. 

 
Marking Scheme 
 
Frequency estimation 

1. Formula           1 point 
2. Result (with units)          1 point 
3. Method of experimental determining the resonance frequency    1 point 
4. Result (if within 5% of standard value)       2 points 
5. Error           1 point 

Measurements of velocities 
1. Explanation of the method        2 points 
2. Proper number of measurements in each series       3 points 
3. Result for velocity in the first liquid (if within 5% of standard value)     2 points 
4. Error of the above          1 point 
5. Result for velocity in the second liquid (if within 5% of standard value) 2 points 
6. Error of the above          1 point 

Ratio of velocities 
1. Result (if within 3% of standard value)       2 points 
2. Error of the above          1 point 

 
Typical mistakes 
 
The results of this problem were very good (more than a half of competitors obtained 

more than 15 points). Nevertheless, many students encountered some difficulties in estimation 
of the frequency. Some of them assumed presence of nodes at the flat surfaces of the discs 
(this assumption is not adequate to the situation, but accidentally gives proper formula). In 
part B some students tried to find distances between nodes and antinodes for ultrasonic 
standing wave in the liquid. This approach gave false results as the pattern of standing waves 
in the bag is very complicated and changes when the shape of the bag is changed. 
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