Criteria	Max	Points
States that the work of the magnetic force and the force of static friction is zero	0.5	
Concludes that the speed (i.e. the magnitude of velocity) of the center of the ball is constant.	0.5	
Realizes that the force of static friction is perpendicular to the velocity. If the reasoning is physically wrong, 0 p.	0.5	
Concludes that the trajectory is circular.	0.5	
By using the condition of pure rolling derives kinematic rela- tion between the horizontal (ω), vertical (Ω) components of the angular velocity and v. (0.5 p+0.5 p)	1.0	
Proves that the net Lorentz force is QvB . (No marks for the formula without proof.)	0.5	
Writes down Newton's second law in radial direction correctly. If either the Lorentz force or the frictional force is missing 0 p.	0.5	
Writes down an expression for the horizontal component of the angular momentum L .	0.5	
Realizes that the horizontal component of L precesses with angular velocity Ω	1.0	
Writes down equation relating the rate of change of L and the net torque. If either the torque of the friction or torque of magnetic field is missing, 0 p. If it does not use vectors, 0 p.	1.0	
Derives a relationship between the angular momentum of the ball and its magnetic moment. In case of a missing factor 1.5 p, in case of dimensional error 0.5 p, in case of physically wrong result (i.e. the torque is zero) or physically wrong reasoning 0 p.	2.0	
Writes down an expression for the torque of the magnetic forces $(\vec{\tau}_B = \vec{\mu} \times \vec{B} \text{ or equivalent expression})$	0.5	
Writes down an equation for the torque of the static friction	0.5	
Solves the physically correct equations of motion and the kinematic equations and obtains expression for either Ω or the radius r of the trajectory. If vectors were not used, 0 p.	0.5	
Total	10.0	