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• The examination lasts for 5 hours. There are 3 problems
worth in total 30 points. Please note that the point
values of the three theoretical problems are not
equal.

• You must not open the envelope with the prob-
lems before the signal of the beginning of compet-
ition.

• You are not allowed to leave your working place
without permission. If you need any assistance (broken
calculator, need to visit a restroom, etc), please raise your
hand until an organizer arrives.

• Use only the front side of the sheets of paper.

• For each problem, there are dedicated Solution Sheets
(see header for the number and pictogram). Write your
solutions onto the appropriate Solution Sheets. For each
Problem, the Solution Sheets are numbered; use the sheets
according to the enumeration. Always mark which
Problem Part and Question you are dealing with.
Copy the final answers into the appropriate boxes of the

Answer Sheets. There are also Draft papers; use these
for writing things which you don’t want to be graded.
If you have written something that you don’t want to
be graded onto the Solution Sheets (such as initial and
incorrect solutions), cross these out.

• If you need more paper for a certain problem, please raise
your hand and tell an organizer the problem number; you
are given two Solution sheets (you can do this more than
once).

• You should use as little text as possible: try to
explain your solution mainly with equations, numbers,
symbols and diagrams. Though in some places textual
explanation may be unavoidable.

• After the signal signifying the end of examination
you must stop writing immediately. Put all the pa-
pers into the envelope at your desk. You are not al-
lowed to take any sheet of paper out of the room.
If you have finished solving before the final sound signal,
please raise your hand.
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Problem T1. Zero gravity (10 points)
In all your subsequent calculations, you may use the following
physical constants and their numerical values.
The radius of Earth R⊕ = 6.4 × 106 m.
Free fall acceleration at the sea level g = 9.81 m/s2.

Part A. Zero-g flight (3 points)
Astronauts can experience weightlessness during their space-
flight. However, there is a cheaper way to experience weight-
lessness other than boarding a spaceship: there are airplanes
specifically designed to create weigthlessness on board during a
certain time period. Such an airplane is shown in the photo.

Hornet Driver, CC-BY-SA-4.0
For this Part, the following values can be also used.

The speed of sound at the flying altitude cs = 300 m/s.
The altitude (from the sea level) at which the airplane starts
zero-g-flight (the flight segment during which the objects on
board the aircraft have zero weight) is h0 = 7600 m.
The speed of the airplane when it starts zero-g-flight is
v0 = 460 km/h.
The angle between the horizontal plane and the direction of
the velocity vector at the moment when the airplane starts
zero-g-flight α0 = 47◦.

i. (0.5 pts) Below is a sketch of a zero-g flight trajectory (the
one providing the longest duration of weightlessness might be
slightly different). Mark on it the point where zero-g flight
starts, and the point where it ends.

ii. (0.5 pts) What should be the direction and magnitude of
the acceleration of the airplane to ensure that the passengeres
would feel weightlessness?
iii. (0.5 pts) What is the speed of the airplane at the highest
point of its trajectory?
iv. (0.5 pts) How long does it take for the airplane to reach
the highest point on its trajectory from the moment when it
starts zero-g-flight?
v. (0.5 pts) What is the altitude of the airplane at the highest
point of its trajectory from the sea level?
vi. (0.5 pts) The possible values of the initial speed v0 and
initial ascending angle α0 are limited by the robustness of the

airplane’s construction, and by the maximal thrust provided by
the engines; the numerical values given above can be considered
to be optimal, i.e. yielding the longest period during which the
passengers experience weightlessness. Assuming that there are
no restrictions on the final diving angle (the angle between the
horizontal plane and the direction of the velocity vector at the
moment when the airplane ends zero-g-flight) while the only
limitation on the speed is that it cannot be larger than the
speed of sound, what is the maximal total duration of a zero-g
flight segment?
Part B. Glass of water in weightlessness (3 points)



h0

Consider a partially filled glass of
water on board this aircraft. The glass
is cylindrical, of radius r = 3 cm; the
walls of the glass are negligibly thin. At
the moment when the airplane starts
zero-g flight, the water surface is flat
except for the small meniscus of negli-
gible height near the walls of the glass
(see the figure depicting axial cross-
section of the glass), and the depth of
water is h0 = 3 cm. The contact angle
of the water in the glass (the angle between the tangent to the
water surface and the surface of the glass at the point where
the water surface and glass are in direct contact, see the figure)
is β = 0◦ (the figure is illustrative).

i. (1 pt) Under the condition of weightlessness, the water sur-
face will take a new equilibrium shape. Sketch the shape of the
water surface at the axial cross-section of the glass.
ii. (1 pt) What is the minimal distance between the water
surface and the bottom of the glass at the new equilibrium
state?
iii. (1 pt) Under normal conditions, this glass can hold up to
V0 = 200 ml water. What is the maximal volume of water which
can be held in this glass in weightlessness? Sketch also the cor-
responding shape of the water surface at the axial cross-section
of the glass.
Part C. Sharpshooter on geostationary orbit (4 points)

Weightlessness can be experienced also on spaceships perform-
ing ballistic motion (motion when engines are switched off).
Let us consider an astronaut on geostationary orbit. This is a
circular orbit around Earth which lies in the equatorial plane,
and the period of motion on which is equal to T0 = 24 h.
i. (0.7 pts) What is the radius of the geostationary orbit?
ii. (1.8 pts) For research reasons, the astronaut wants to hit
his own spaceship with a bullet fired from a rifle equipped
onto the spaceship. The speed of the bullet leaving the rifle is
u0 = 1200 m/s, the bullet’s velocity lies on the orbital plane.
Under which angle with respect to the vector pointing towards
the centre of the Earth does he needs to aim the rifle if he wants
to hit the spaceship within the next 40 hours? You don’t need
to prove that there is only one suitable shooting angle.
You may use the expression for the total energy of an elliptical
orbit, Etotal = −GM⊕m

2a , where a is the semi-major axis.
iii. (1.5 pts) He also tries out another rifle the bullet speed of
which can be freely adjusted from zero to the maximal speed
um = 300 m/s. With this rifle, he aims strictly along the motion
of the spaceship. What is the bullet’s smallest possible travel
time until hitting the spaceship?
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Problem T2. Controlled fusion (11 points)
In all your subsequent calculations, you may use the following
physical constants and their numerical values.
Boltzmann constant kB = 1.381 × 10−23 J · K−1

Elementary charge e = 1.602 × 10−19 C
Electron’s mass me = 9.109 × 10−31 kg
Planck’s constant h = 6.626 × 10−34 m2 · kg · s−1

Permittivity of free space ε0 = 8.854 × 10−12 F · m−1

Nuclear fusion is a reaction where light atomic nuclei merge to
form a larger nucleus. The difference in the rest energies of the
fusing nuclei and the fusion product is released as heat. For
instance, if deuterium (consisting of one neutron and one proton,
denoted as D) and tritium (consisting of two neutrons and one
proton, denoted as T) merge, they will form an α-particle, a
neutron, and 14 MeV of energy. While humans have learned
how to ignite fusion reaction explosively in hydrogen bombs,
they are still struggling to succeed in controlled fusion, i.e. to
control fusion reaction so that the released heat could be used
for operating power plants. The most feasible reaction for a
controlled fusion is the above mentioned D-T reaction which
will be addressed by this Problem.

Part A. General considerations (0.5 points)

In what follows, we shall express the temperature in electron
volts; this is a common practice for so high temperatures. 1 eV
corresponds to such a temperature T by which the character-
istic thermal energy kBT equals to the potential energy of an
electron in electrostatic potential of V = 1 V.

For a power plant, the released fusion energy must be larger
than the total energy loss. It can be shown that for an optim-
ally designed D-T reactor (device in which the controlled fusion
takes place), the temperature of the deuterium and tritium
nuclei should be T0 = 14 keV while the product of the number
density of particles n (the number of particles per volume) and
the confinement time τ (the time during which density n re-
mains roughly constant) should not be less than 2 × 1020 s/m3;
this requirement is know as the Lawson criterion. The main
techonlogical challenge is to achieve a long enough confinement
of the hot plasma.

i. (0.5 pts) Express the fusion temperature T0 in Kelvins.

Part B. Tokamak (2.5 points)

The most popular design of fusion reactors is tokamak. In a
tokamak, charged particles move along magnetic field lines and
are confined because the field lines are confined into a finite
volume of space. Qualitatively, the magnetic field lines have
the same shape as in the case of an infinitely long straight
current passing coaxially through a circular current loop. In
the following subtasks, you’re expected to provide the sketches
in a 3d projection as shown in the figure.

i. (0.5 pts) Sketch magnetic field lines of a infinitely long
straight current.
ii. (0.5 pts) Sketch magnetic field lines of a circular current
loop.
iii. (0.75 pts) Sketch a magnetic field line of an infinitely long
straight current passing coaxially through a circular current loop
which starts from a small distance from the circular current.
iv. (0.75 pts) For the same current configuration as before,
sketch a magnetic field line starting from a small distance from
the straight current.
Part C. Cold fusion (3.5 points)

“Cold fusion” refers to a muon-catalytic fusion process by
which an electron in a hydrogen molecule (which can include
one deuterium and one tritium nucleus) is substituted by a
muon. Muon, having a 207 times larger mass than an electron,
brings the nuclei in the molecule closer to each other, thereby
increasing the probability of their fusion. The idea of such a
catalytic fusion was suggested in 1947-48 by A. Sakharov and
F.C. Frank, and lead to a short-lived research boom in 1989
after an erraneous report of a successful fusion at room tem-
peratures by M. Fleischmann and S. Pons. The problem with
muon-catalytic fusion is that the energetic cost of producing one
muon is larger than the total energy released by fusion reaction
mediated by one muon; the possible solutions are either decreas-
ing the energetic cost of a muon, or increasing the number of
fusions mediated by a single muon. In what follows, we consider
a simple approach to understand why substituting electrons
with muons will decrease the size of an atom.
i. (1 pt) Using classical mechanics and considering an electron
on a circular orbit of radius R around a point-like nucleus of
charge +2e, relate the momentum p of the electron to the orbit’s
radius R.
ii. (1 pt) At the ground state, the total energy is as small as
possible; meanwhile, the state of the electron (muon) cannot
violate the uncertainty principle. From these considerations,
find an estimate for the radius R at the ground state.
iii. (1 pt) By the subtask i, we neglected the distance between
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the two nuclei in the molecule which was permissable for es-
timating the orbital radius R. Now, however, we want also
to get an estimate for the distance between the nuclei. To
that end, consider another simple model. The two electrons
(muons) on their orbit form a ball-like cloud: let us assume
that there is a spherical ball of radius R carrying a total charge
−2e, homogeneously distributed over the entire volume of the
ball. Inside the charged ball, there are two nuclei which can
be considered as point masses and point charges (of charge
+e each), able to move frictionlessly inside the ball. Find the
equilibrium distance d between the nuclei.
iv. (0.5 pts) Based on the model suggested above, by how
many times is the distance between the deuterium and tritium
atoms reduced when orbital electrons are substituted by muons?
Part D. Inertial confinement fusion (4.5 points)

pe

fluid shell

DT-gas
n0   T0   p0

DA

Third approach to controlled fusion
is based on the idea that due to
mass and inertia, it takes some time,
although short, for any hot blob
of matter to explode and scatter.
In order to satisfy the Lawson cri-
terion one can inrease the confine-
ment time, but one can also increase
the number density n. In the iner-
tial confinement fusion devices, powerful beams are used to
create highly compressed balls of gas of densities exceeding
the density of lead by hundreds of times. In what follows, we
consider this approach by adopting a simple model: a liquid
spherical shell of total mass M and radius r is surrounding a
ball of gas of number density n0, temperature T0, and pressure
p0 = kBn0T0 (in reality, the shell is solid, but at really high

pressures, solids essentially liquify); see the figure. Each gas
molecule consists of a deuterium nucleus, tritium nucleus, and
two electrons. The thickness of the walls of the spherical liquid
shell δ is much smaller than r (δ � r).
i. (0.5 pts) Consider a small piece of shell of surface area ∆A.
Express its mass in terms of the quantities introduced above.
ii. (1 pt) External pressure pe (pe � p0) is applied to the shell.
Express the initial acceleration of a small piece of the shell in
terms of the quantities introduced until now.
iii. (1.5 pts) While the shell contracts due to external pressure,
the pressure inside grows, and at a certain moment, it becomes
larger than the external pressure. Express the minimal radius
of the shell rm and the maximal temperature inside the shell
Tm (which are achieved when the surrounding shell stops for
a moment before reversing its direction of motion) in terms of
the quantities introduced above. Keep in mind that the inside
temperature becomes so high that the gas is converted into a
completely ionized plasma made of nuclei and electrons. You
may assume that pe remains constant during the entire process
(this might not be entirely true, but under this assumption,
we shall still be able to get a correct order of magnitude for
the answer), the shell contracts while retaining its spherical
shape, and the thermal energy transferred to the shell can be
neglected.
iv. (1.5 pts) The huge external pressure pe is created by irra-
diating the shell from outside, isotropically from all sides, with
a laser of total output power P . As a result, the outer layers of
the shell are evaporated, and the evaporated atomic nulcei flow
away at the average speed of u. Estimate the pressure pe in
terms of P , r, and u; you may assume that u is much smaller
than the speed of light.
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Problem T3. Rayleigh-Taylor instability (9 points)
Lord Rayleigh showed in 1883 that a layer of dense liquid

on top of a layer of less dense liquid is unstable: even if the
interface between the two liquids is initially perfectly flat and
horizontal, small perturbations in the interface shape grow ex-
ponentially in time: at some places, heavy liquid starts to flow
down displacing light liquid beneath, and in other places, light
liquid starts flowing up — this phenomenon is nowadays known
as the Rayleigh-Taylor instability. It plays an important role in
many fields of physics. For instance, following a supernova ex-
plosion, shock waves of dense plasma decelerate due to “eating
up” the regions with less dense plasma. This means that in the
frame of reference of the decelerating shock wave, the force of
inertia is pointing in the direction of the shock wave propaga-
tion. The direction of the force of inertia defines the “down”
direction, so that the more dense plasma of the shock wave
appears to be “atop” the less dense plasma of the interstellar
space. Late (nonlinear) stages of the instability are character-
ized by fascinating filamentary structures, see the image of the
Crab nebula below. In techonology, Rayleigh-Taylor instability
can be undesirable and for instance, makes it very difficult
to accomplish the inertial confinement fusion project: when
initially an almost perfectly round sphere is being compressed,
it becomes irregularly distorted — like an empty can of Coke
when you try to compress it. In what follows, we construct
mathematically simple models to shed insight into the physics of
the Rayleigh–Taylor instability. Assume everywhere below that
there is a downwards gravity field of strength g (= 9.81 m/s2).

Part A. Instability growth rate (4 points)

i. (1 pt) Consider a circular O-tube the lower half of which
is filled with a liquid of density ρ1, and upper half — with a

liquid of density ρ2 > ρ1, see the figure. Let the radius of the
circle R be much larger than the diameter of the tube a (neglect
the wall thickness). When the interfaces at the both sides of
the O-tube are exactly at the same level (the left sketch), the
system is at equilibrium. By how much will the potential energy
of the system change when the interface in the left part of the
tube is lowered by x (as shown in the sketch on right)? Express
the answer in terms of the quantities introduced above. Here
and in what follows, assume that x � R and use the resulting
approximations.

x

R a

ii. (1 pt) Suppose now that the system will evolve by itself
starting from the position shown in the right sketch, let us
denote the speed with which the interface in the tube moves
with v = dx

dt . Express the kinetic energy of the system in terms
of v and the other quantities defined above.
iii. (1 pt) Show that the acceleration of the interface is propor-
tional to its displacement x by taking a time derivative of the
energy conservation law, and that the displacement can grow
exponentially in time so that x is proportional to eγt; find γ.
iv. (1 pt) Let us now substitute the O-tube with a spherical
shell of radius R filled with these two liquids, each of which
occupies a hemispherical region inside the shell. In order to
keep the interface between the liquids flat, a massless thin rigid
circular membrane of radius R is placed in between the liquids;
the membrane can rotate frictionlessly inside the sphere, but
cannot be bent. Find the instability growth rate γ (defined
above) if the heavier liquid occupies the upper half of the sphere.
Hint: the center of mass of a solid homogeneous hemisphere of
radius R is at the distance 3

8R from the sphere’s centre.
The moment of inertia of a solid sphere of mass is given by
I = 2

5MR2.
Small angle approximations following sinα ≈ tanα ≈ α,
cosα ≈ 1 − α2/2 can be used.
Part B. Stabilization due to surface tension (3 points)

According to the results obtained above, the Rayleigh-Taylor
instability growth rate γ is a decreasing function of the size R
of the region where the liquid starts moving. This means that
small-scale perturbations of the interface shape grow faster and
dominate at the initial stage of the instability. However, at very
small scales, surface tension may stabilize the instability.
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i. (1 pt) Assume that a big rectangular vessel is divided into
two compartments with a thin flat membrane, the top view is
shown in the figure (a) above, and a vertical cross-section with
the vessel being filled with liquids — in the figure (b). The
membrane has a long and narrow slit: its length l is much larger
than its width d (l � d). The upper compartment is filled with
a liquid of density ρ2, and the lower compartment — with a
liquid of density ρ1 < ρ2. Initially, the slit is so narrow that
the surface tension σ which characterizes the interface between
the two liquids stabilizes the Rayleigh-Taylor instability: the
interface remains completely flat and horizontal. A cross-section
in x − y-plane of this configuration is depicted in the figure
(b) above, where y-axis is vertical, and z-axis is parallel to the
longer edge of the slit. The width of the slit d is increased
slowly up to a certain value d = d0, where instabilities start
developing, but the instability growth rate γ remains extremely
small. A special design guarantees that the deformations of the
interface between the two liquids remains strictly 2-dimensional

— there is no dependence on the z-coordinate (this design can
include, for instance, thin long rods placed onto the interface
between the liquids, parallel to the slit). Sketch the new shape
of the interface in x − y-intersection when d = d0 and when
it has become noticeably deformed due to the Rayleigh-Taylor
instability.
ii. (1 pt) Consider the same setup as before, but now there are
no restrictions on how the interface can be deformed, i.e. the
deformation can include dependence on the z-coordinate. Now,
the interface becomes unstable at somewhat smaller slit width
d = d1. Sketch the shape of the interface when d = d1 and it
has become noticeably deformed due to the Rayleigh-Taylor
instability, in two intersections with planes parallel to the x− y

plane: one at the distance l/4 from one end of the slit, and the

other — at the distance l/4 from the other end of the slit.
iii. (1 pt) Express d1 in terms of ρ1, ρ2, σ, and g.
Part C. Water waves (2 points) While a heavy liquid atop
of a light one is unstable, the reverse situation of a light liquid
atop of a heavy one is stable, and surface shape perturbations
will travel along the surface as waves. A particular case of such
waves are represented by waves on the free surface of water
when the light liquid (air) has a negligibly small density. If the
water is deep (much deeper than the wavelength λ of the waves),
the speed of sinusoidal waves depends on the wavelength,

v =
√
gλ/2π.

Therefore, all wave speeds are possible, including those which
travel in “resonance” with the boat: the boat will always remain
at the same trough or at the same crest of the wave, and will
propel water resonantly, i.e. always at the same value of the
phase of the wave. If there are waves which can move in a
resonance with a moving object, the moving object will gen-
erate these waves — this phenomenon is known as Cherenkov
radiation. Generated waves carry away energy and this results
in a wave drag acting on the object. The wave drag grows
rapidly with speed (proportional to the cube of the speed) and
is the main limiting factor for the speed of boats. Determine
the speed of the boat shown in the aerophoto below (you may
take measurements from the map).

200 m 1000 m
2000 m

3000 m
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