
The 2nd Gulf Physics Olympiad — Theoretical Competition
Riyadh, Saudi Arabia — Sunday, April 2nd 2017

• The examination lasts for 5 hours. There are 3 problems
worth in total 30 points. Please note that the point
values of the three theoretical problems are not
equal.

• You must not open the envelope with the prob-
lems before the signal of the beginning of compet-
ition.

• You are not allowed to leave your working place
without permission. If you need any assistance (broken
calculator, need to visit a restroom, etc), please raise your
hand until an organizer arrives.

• Use only the front side of the sheets of paper.

• For each problem, there are dedicated Solution Sheets
(see header for the number and pictogram). Write your
solutions onto the appropriate Solution Sheets. For each
Problem, the Solution Sheets are numbered; use the sheets
according to the enumeration. Always mark which
Problem Part and Question you are dealing with.
Copy the final answers into the appropriate boxes of the

Answer Sheets. There are also Draft papers; use these
for writing things which you don’t want to be graded.
If you have written something that you don’t want to
be graded onto the Solution Sheets (such as initial and
incorrect solutions), cross these out.

• If you need more paper for a certain problem, please raise
your hand and tell an organizer the problem number; you
are given two Solution sheets (you can do this more than
once).

• You should use as little text as possible: try to
explain your solution mainly with equations, numbers,
symbols and diagrams. Though in some places textual
explanation may be unavoidable.

• After the signal signifying the end of examination
you must stop writing immediately. Put all the pa-
pers into the envelope at your desk. You are not al-
lowed to take any sheet of paper out of the room.
If you have finished solving before the final sound signal,
please raise your hand.
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Problem T1. Main sequence stars (11 points)
In all your subsequent calculations you may use the following
physical constants and their numerical values.
Stefan-Boltzmann constant σ = 5.670× 10−8 W/(m2K4)
(Note that σT 4 gives the black body thermal radiation power
per unit area at temperature T .)
Boltzmann constant kB = 1.38× 10−23 m2 · kg · s−2 ·K−1.
The rest mass of a proton mp = 1.67× 10−27 kg.
Rest energy of a proton mpc

2 = 938 MeV,
where 1 MeV = 1.6× 10−13 J.
Rest energy of a helium nucleus mHec

2 = 3727 MeV.
Rest energy of an electron and positron mec

2 = 0.5 MeV.
Speed of light c = 3× 108 m/s,
Universal gas constant Rg = 8.31 J ·K−1 ·mol−1

Avogadro’s number NA = 6.02× 1023 mol−1

Part A. Lifetime of Sun (3 points)
For this Part, the following values can be also used.
The mass of Sun M� = 2× 1030 kg.
The radius of Sun R� = 7× 108 m.
Surface temperature of Sun T� = 6× 103 K.
i. (0.7 pts) The Sun emits thermal radiation as a perfectly
black body. Determine the total radiation power of the Sun (in
watts).
ii. (0.5 pts) The Sun maintains its temperature owing to
the fusion reaction, the net effect of which can be written as
4p+ →4He2+ + 2e+ + 2νe, where p+ denotes a proton, 4He2+

— a helium nucleus, e+ — a positron, and νe — an electron
neutrino of negligible rest energy. Show that the energy released
by such a fusion of four protons is W0 = 24 MeV.
iii. (0.5 pts) Antimatter cannot co-exist with matter: upon
meeting, a positron and an electron disappear by producing
two photons. How much energy per each fusion of four protons
into a helium nucleus must leave Sun (carried away by photons
and neutrinos) in order to keep it at a thermal equilibrium?
iv. (1.3 pts) Assuming that only the central part of the Sun
(the Sun’s nucleus) which makes 1

8 of the total mass of the Sun
is hot enough for fusion reaction to take place, and neglecting
the energy carried away by neutrinos, estimate the total lifetime
of the Sun. Note that there is no convection in the central parts
of the Sun, and therefore the particles inside the Sun’s nucleus
remain trapped therein. Based on your result, comment on the
current age of Sun, τ� = 5× 109 y.
Part B. Mass-luminosity relationship of stars (4.5 points)
Inside the nuclei of the so-called main sequence stars (such as
our Sun), the fusion reaction takes place in a stable regime:
if fluctuations were to increase the reaction rate slightly, the
increased thermal output would lead to an increase of the pres-

sure, to a thermal expansion of the fusion plasma, and as a
result, to a decrease of the reaction rate. The reaction rate
grows very rapidly with temperature and because of that, even
if the reaction rates in different stars of different masses may
differ considerably, the interior temperatures remain fairly sim-
ilar. In what follows, you may assume that the temperature
of the nuclei of stars is independent of the stellar mass
and equal to

Tc = 1.8× 106 K;

this approximation holds particularly well for stars larger than
Sun.

In order to make our next calculations mathematically easier,
we make the following additional approximations.
(a) The mass of the stellar core is M

8 and its radius is R0
2 , where

M is the total mass of the star and R0 — the radius of the star.
(b) The mass density ρc, pressure pc, and temperature Tc in-
side the stellar core can be approximately taken to be
constant throughout its volume.
(c) For tasks i–iv, we assume also that all
the mass 7

8M of the outer layers of the star
is concentrated into a very narrow spher-
ical layer of radius R0

2 around the core, see
figure. In reality, this is certainly not true — the layer is not
narrow. However, this approximation will have only a minor
effect on the expression for the pressure (in task iv).
i. (0.4 pts) Express the free fall acceleration immediately above
the narrow spherical layer (point Q in figure) in terms of M
and R0.
ii. (0.4 pts) Express the free fall acceleration immediately
beneath the narrow spherical layer (point P in figure).
iii. (0.4 pts) Express the gravity force acting on a small piece
of the narrow spherical layer in terms of its surface area A, M
and R0.
iv. (0.4 pts) Express the pressure pc in terms of the radius R0

and mass M of the star; (we overestimate it only by a factor
which is less than two).
v. (1 pt) Derive another expression for the pressure pc, this
time in terms of R0, M , and the core temperature Tc. Assume
that the nucleus of a star is made of a fully ionised hydrogen,
i.e. there are free protons and free electrons, both of which
can be described as an ideal gas.
vi. (0.4 pts) Based on your previous results, express the radius
R0 of a star in terms of its mass M and temperature Tc.
vii. (1.5 pts) The radiative power of a star is limited by at
which rate the produced heat can travel through the outer layers
of the star and reach the surface. The heat conductivity κ is
defined as the proportionality coefficient between the heat flux
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density (thermal power per unit area) and temperature gradient
dT
dr , where r is the distance from the centre of the star. For a
plasma, the heat conductivity is inversely proportional to its
density, κ = f(T )/ρ. Assume simplifyingly that κ is constant
throughout the bulk of a star, up to the near-surface regions
at r = R0 where the temperature T � Tc, and is equal to
κ = f(Tc)/ρc. Show that the total radiative power P of a star
is proportional to Mγ , and find the exponent γ.
Part C. Proton-proton fusion chain (3.5 points)
We say that a constant is fundamental if it cannot be expressed
in terms of other fundamental constants; for instance, the Stefan-
Boltzmann constant can be expressed in terms of kB, speed
of light c, and Planck’s constant ~. However, majority of the
fundamental constants are created artificially by physicists due
to a non-fundamental way of choosing the units. For instance,
SI system of units needs electrostatic constant ke , but for
Gauss system of units, charge units are such that ke = 1. So,
majority of the “fundamental” constants are not really that
fundamental, and depend on our (essentially arbitrary) choice
of units. However, there are also dimensionless combinations of
physical constants, which can be considered as the parameters
of our Universe, and which define the way in which matter and
fields evolve.
i. (1.5 pts) Find a dimensionless combination α−1 and calcu-
late its value using the following subset of fundamental constants
(it may happen that only few constants will enter the expression
for α−1):
c = 3× 108 m/s,
G = 6.67× 10−11 m3 · kg−1s−2,
kB = 1.38× 10−23 J ·K−1,
NA = 6.02× 1023 mol−1,
~ = h

2π = 1.05× 10−34 J · s,
e = 1.6× 10−19 C,
ke = 1

4πε0
= 8.99× 109 m ·F−1.

Note that any power of α is also dimensionless; you are asked to
find the simplest combination of constants which yields α−1 > 1.
Hint: before applying dimensional analysis, all units need to

be expressed using the base units (m, s, A, K, kg, mol).
ii. (1 pt) The first and limiting step in the fusion of four pro-
tons into a helium atom inside a star of sub-solar mass is the
fusion of two protons,

p+ + p+ →2H+ + e+ + νe.

This process is obstructed, however, by a coulomb repulsion of
two protons. You may assume that until the distance between
the centres of two protons remains larger than the proton ra-
dius rp = 0.85× 10−15 m, there is only a Coulomb force; at
distances smaller than rp, an attractive strong force steps into
play and dominates over the Coulomb force. Estimate the tem-
perature T ′ required for the fusion of two protons if there were
no quantum-mechanical effects. Compare this result with the
value of Tc ≈ 1.8× 106 K.
iii. (1 pt) What enables the fusion of stellar hydrogen is the
quantum-mechanical tunnel effect. With this task, you’ll learn
that the fusion reaction rate depends on the dimensionless para-
meter α, thus we can say that the parameter α defines the
production rate of heavier nuclei in our Universe. (It appears
that in a slightly different Universe with a slightly different
value of α, no carbon nuclei neccessary for the existance of life
would have been produced1.)

It appears that a particle can tunnel through an energy
barrier (a region in space where the potential energy Π(r) is
larger than the total energy W ) with probability

p ≈ exp{−2~−1
∫ √

2m[Π(r)−W ]dr},

where the integral is to be taken over the range at which
Π(r) > W . Express the tunnelling probability for the proton-
proton fusion reaction for head-on collision of two counter-
moving protons of speed v in terms of α, v and c. You may
assume that the proton radius rp is much smaller than the ra-
dius r? at which the proton “dives into the tunnel” [Π(r?) = W ],
and make use of the equality

∫ a
0

√
1
x −

1
adx = π

2
√
a.

1J. Barrow and F. Tipler, The Anthropic Cosmological Principle, Oxford, (1988)
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Problem T2. Water tube (8 points)
Consider a tube which is obtained

when two metallic cylinders are welded
together as shown in the figure. Up-
per cylinder has internal cross-sectional
area A = 10 cm2, and the lower one —
1.1A = 11 cm2. Two pistons are connec-
ted with a narrow (rigid but light) steel
bar of length H = 30 cm; the distance
from the lower piston to the welding
area is h = 10 cm. The space between
the pistons is filled with water of density
ρ = 1000 kg/m3 and temperature T = 20 ◦C. The mass of each
of the pistons m

2 = 50 g (neglect the mass of the rod connecting
them) free fall acceleration g ≈ 10 m/s2 and the atmospheric
pressure p0 = 1× 105 Pa. The tube stands vertically on a solid
horizontal surface; the pistons can move freely up and down,
friction force can be neglected. The distance between the bot-
tom of the lower piston and the horizontal surface is more than
20 cm.

i. (0.5 pts) Let pP denote the pressure at a point P at the
bottom of the water column, and pQ — at a point Q at the
bottom. Find pP − pQ.
ii. (1.5 pts) Consider the two pistons, steel bar, and water
column as a single compound body. Make a sketch and mark
on it all the forces acting on this compound body by arrows
(denote them by letters — ~F1, ~F2, etc.). Determine the values
of all these forces.
iii. (1.2 pts) Determine the values of pP and pQ.
iv. (0.8 pts) Determine the tension force T in the steel bar.
v. (1 pt) Now, the whole system is slowly raised to a height
L = 25 cm (this is the distance between the horizontal surface
and the bottom edge of the tube), and released. The system
falls due to gravity, hits the surface (assume the impact to be
plastic, i.e. the kinetic energy of the metallic tube is converted
into heat), remains standing vertically on the horizontal surface
for a brief period of time τ , and jumps up into air. Why does
it jump? Provide a qualitative explanation.
vi. (3 pts) Find the duration τ during which the tube remains
standing on the surface (after falling and before jumping).
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Problem T3. Accelerating shock wave (11 points)
In interstellar space, shock waves can accelerate charged
particles to very high energies. We shall use an idealized model
of a shock wave, and assume that it is a potential barrier of a
constant height −V0 which moves with a constant velocity w
along the x-axis:

V (x, y, z, t) = −V0 if x < wt;

V (x, y, z, t) = 0 if x > wt.

In the frame where the shock wave is at rest, the energy of an
electron is conserved. This means that as long as the kinetic
energy of an electron of mass m and charge −e moving towards
the shock wave is insufficient ( 1

2mu
2 < eV0, where u denotes the

speed with which the electron is approaching the shock wave),
it is reflected back from the shock wave in the same way as
an elastic ball bounces from a rigid wall. In what fol-
lows, unless otherwise mentioned, we assume that the
electron is bounced elastically by the shock wave. You
can always use the parameters e, V0, m, B, and w to express
your answers. Unless otherwise specified, the velocity of the
electron is assumed to be non-relativistic.
i. (1 pt) Let the initial speed of the electron be ~v = (vx, vy, vz),
with vx < w. Determine the velocity ~v′ (i.e. the components
v′x, v′y, v′z) of the electron after being hit by the shock wave.
ii. (1 pt) Now, there is also an homogeneous magnetic field of
induction B, parallel to the z-axis. At the beginning, electron
rests at the origin, and at t = 0 is hit by the shock wave. Sketch
qualitatively the trajectory drawn by the electron; cover the
time period from t = 0 until at least t = πm

Be .
iii. (0.5 pts) Find the curvature radius of the electron’s tra-
jectory immediately after its first collision with the shock wave.
iv. (1 pt) The electron undergoes soon, at t = t2, a second im-
pact; write down an equation for determining t2. Use numerical
calculation to obtain an expression for t2.
v. (0.5 pts) Determine the average x-directional velocity vx

of the electron (averaged over the time interval τ between two
subsequent collisions of the electron with the shock wave).
vi. (1.5 pts) As time goes on, the electron undergoes many
collisions with the shock wave. Show that during its motion,
vy + kx = const, where k is a constant; express k in terms of e,

m and B.
vii. (1 pt) From now on, let us consider the limit
t � 2πm

Be . Determine the average y-directional acceleration
ay of the electron (express it in terms of e, m and B or constant
k introduced by task vi).
viii. (1 pt) It appears that at the limit t � 2πm

Be , the time
interval τ between subsequent collisions becomes shorter and
shorter, hence we can assume that τ � 2πm

Be . This means that
during a time interval between two subsequent collisions the
velocity vector of the electron will change only by a very small
angle and hence, its acceleration vector ~a = (ax, ay) can be
assumed to be constant.

Let us use now the shock wave’s frame of reference, and
consider the electron’s phase diagram, i.e. a diagram which
describes the state of the electron as a point in the x′ − p′x-
plane, where the vertical axis p′x = m(vx − w) corresponds to
the x′-component of the momentum, and x′ =

∫
(vx − w)dt

denotes the distance from the shock wave. Depict qualitatively
the electron’s phase trajectory, i.e. the curve drawn in phase
diagram during one period (between two subsequent collisions
of the electron with the shock wave). Grades for this task are
based purely on the shape of the curve.
ix. (1.5 pts) As time goes on, the width and height of the phase
trajectory will change; however, it appears that the surface area
of the region surrounded by the phase trajectory (referred to as
the adiabatic invariant) will remain constant with a very good
precision. For an initially resting electron, the adiabatic invari-
ant appears to be approximately equal to 1.36(mw)2

Be . Determine
the total kinetic energy Wf of the electron when it falls behind
the shock wave; express it in terms of e, V0, and ε, which is
defined as ε ≡ 2eV0

mw2 ; assume that ε� 1.
x. (2 pts) This final task is independent from the previous
tasks. Consider the propagation of a shock wave as described
before, but under the absence of a magnetic field. A relativistic
electron moves parallel to the front (in the laboratory frame,
the perpendicular component of its velocity is strictly zero).
Assuming that mw2 < eV0 and w � c (with c denoting the
speed of light), what should be the relativistic energy of the
electron so that it could fall behind the shock wave? You can
use any reasonable approximations.
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