Problem T1. Stabilizing unstable states
(11 points)

Part A. Stabilization via feedback (3.5 points)
i. (1.5 pts)
$\ddot{\varphi}=$
Proof that $\varphi(t)=A \mathrm{e}^{t / \tau}+B \mathrm{e}^{-t / \tau}$
$\tau=$
ii. (0.5 pts) Inequality for the rod length (symbolically and value in meters):
iii. (0.5 pts) Upper bound for the bird reaction time (symbolically and value in seconds):
$\tau_{r b}<$
iv. (1 pt) Minimal driving speed (symbolically and value in meters per second):
$v_{b}=$

Part B. Tightrope walker (3.5 points)

i. (1 pt)
$\alpha_{1}=$
$\alpha_{2}=$
ii. (0.5 pts$)$ State wether $\beta_{0}>0$ or $\beta_{0}<0$:

Motivation:
iii. (1 pt)
$\dot{\alpha}_{1} / \alpha_{1}=$
iv. (1 pt)

$$
T_{b}=
$$

Part C. Kapitza's pendulum (4 points)
i. (1.5 pts)

Sketch here the graph:

$\Delta \varphi=\varphi(T)-\varphi(T / 2)=$
ii. (1.5 pts) Average torque:
$\langle M\rangle=$
iii. (1 pt) Kapitza's pendulum is stable if (state the inequality):

Problem T2. Gravitational waves (10 points)
Part A. Dipole radiation (2.4 points)
i. (1.4 pts)

$$
P=
$$

$$
\lambda=
$$

ii. (1 pt) Proof that $P_{g d}=0$:

Part B. Quadrupole radiation (7.6 points)
i. (1 pt)

$$
\omega=
$$

ii. (0.8 pts)

$$
P_{q g}=
$$

iii. (0.8 pts)
$S=K h_{0}^{2}$, where $K=$
iv. (1 pt)

$$
h_{0}=
$$

v. (1 pt)

$$
R_{s}=
$$

vi. (1.5 pts)

$$
M=
$$

vii. (1.5 pts)
$L=$

Problem T3. Magnetars
(9 points)
i. (1.5 pts)

$$
B_{0}=
$$

ii. (1 pt)

$$
B(t)=
$$

iii. (1 pt)

$$
\omega_{n}=
$$

iv. (1.5 pts)

$$
B(t)=
$$

```
v. (1 pt)
\[
B_{\max }
\]
```

vi. (1 pt)

$$
B_{H}=
$$

vii. (2 pts)
$\kappa=$

