V3 Va 22. 3 2212 (2) 12 22 Demm 2-2: V= 0 (defined) Vir by E. Presently, we remove the units, for clority. * sumber the vertices, as shown above. (encircled) Let the potential of the Kth werter be. VK Then, current charge-consernation give E I i = 0, all elges (weres) VK-1 - VK + VK+1 - VK + (V, - VK)+ (V2 - VK) ie. +...+(Vx-2-Vk) + (V++2-Vp)+ + + Vn-V as a long as K = 1, n. [Current flow _= 0. from battory] $\frac{16nce}{(i)} = \frac{1}{2} \frac{V_{k-1} + V_{k+1}}{V_{k+1}} = (n-2) \frac{V_k}{V_k} + \frac{V_i + V_{2+1} + V_{k-3} + V_{k+2}}{V_{k+1}} + \cdots + \frac{V_n}{V_n}$ FIRE + VK-2 (i) $= \frac{1}{2} V_{k-2} + \frac{1}{2} V_{k} - (n-2) V_{k-1} + V_{k+1} + (V_{1+}V_{2} + \cdots + V_{k-3} + V_{k-3}) + V_{k-3} + V_{k-3}$ k= 104- K-1 * Well but back the units in the final cansure

The 2 equations (i) and (ii) hence obtained lold for K #1, n&; K-1 #1, i & K # 1, 2, n. [K < n+1 onyway] Subtracting one equation from the other we abtain a linear homogenese recurrence in Vs. $(iii)_{k=2} \cdot V_{k+1} = (2n-3) (V_{k-1} - V_k) + V_{k-2} \cdot K \neq U_{2} \cdot n \cdot$ This yields VKH'S from VKH, VK and VK-23 its easy to see that there in -3 such equation Defining Vn=0, V1= & 20 ue lane (n-2) nariables. & Symmetry .* condition works as the final equations as we shall see. be. The condition is. $(V_1 - V_2) = (V_{2n+1} - V_{2n})_1$ $(iy) - ... i = V_2 + V_{n+1} = g.$ quia when we solve the (ii) - for $V_n = V(n)$, we may but (use our equation for) Wm-Vm n= 4, 5, ..., n, il, all values we get =0 I directly from the equation of Vai). In atter words, range (2) = range (K+1). $= \left\{ \operatorname{me}_{m} \right\} \operatorname{me}_{m} \left[4, n \right] \right\}.$ VK+2)=0 our initial conditions would be (iV), Vn=0 and V,= E. - [(V)QV] Now lets get the eigenvalues of (iii). Butting Vx = 1^k c-3t Vara -Vm)=0 (1++)-1 k-2) = (2n-3) (1 k-1 - 1k) =) $\lambda^{3} + (2\eta - 3)(\lambda^{2} - \lambda) - 1 = 0$ wa.

LOKENATH Page No = (x-) (x2+ x+) + (2x-3) x. (x-1)=0 ≥(x-1) (x2 + (2n-2) x+1)=0 =) $\lambda = 1, 1 - n - \sqrt{n^2 - 2n}, 1 - n + \sqrt{n^2 - 2n}$ We define $\lambda_1 \equiv 1$, $\lambda_2 \equiv 1 - n + \sqrt{n^2 - 2n}$ and $\lambda_3 \equiv 1 - n - \sqrt{n^2 - 2n}$. Vn= A1 2n + A2 22 + A3 2 j AA11 A2 and A3 must be determined from the initial nditions Our initial Conditions the gild: $A_1 + A_2 \stackrel{n}{\gtrsim} + A_3 \stackrel{n}{\gtrsim} = 0$. $\frac{A_1 + A_2\lambda_2 + A_3\lambda_3 = \frac{2}{9}}{A_1 + A_2\lambda_2^2 + A_3\lambda_3^2 + (A_1 + A_2\lambda_2^2 + A_3\lambda_3^2) = \frac{2}{9}}$ Using a CAS, we get, (we weren use 2223=1) $A\phi = 1 + A_1 = \frac{\phi}{2}$ and $A_3 = \lambda_2^3 + \lambda_2 + \lambda_2 + \lambda_3^2$ Now for Rog = R. Roge = & , I, being the total current They I, flowing out of

 $\frac{\xi}{\sum_{i} (V_i - V_i)}{R_{ii}}$ · , R= (V1-V2) + V1-V2 + 2 (V - Vi) 1 A3 $\frac{1}{2} - \frac{1}{2} \left(n - \frac{1}{2} \right) V_1 - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$ Sterminet Anote that were put A1 = & 3. nahes Summing Z XK ZA Also, we're redefinal Az = old Az, € K=2,3...,n-1 13=170 $A_3 = Old A_3 = \frac{\lambda_2}{2} + \lambda_2 (similarly for) \\ \frac{g}{2} = \frac{2(\lambda_2 - \lambda_3)}{2(\lambda_2 - \lambda_3)} + \frac{1}{2}$ n=3 File in the CAS gives R= 4. Q. Typing n=4 gines R= 5 0.0 n=5 gines R= 32 0 55 P.S.: (1) The solutions (for A, A2, A3) may easily current be wrified by substitution (ii) 22 23= (1-2+ V2=22) $(1-n-\sqrt{n^2-2n})=1$ used a while simplifying the CAS ' results. (product of roots of (X+ 12m-2) Att) (iii) We provided no proof for linear independence of (V). from other equations we got any answer, however, so we

Some rather not-so-intuitive oscillations of potentials occur, as we move from vertex to

TAmplitudes seem to decrease on increasing the total number of vertices, n.

Potentials not near the the endpoints are very close to 0.5 ξ, and are ξ and 0 at the endpoints.It's surprising how fast the convergence to 0.5 ξ occurs with increase in n and the vertex number.

flows through any wire not connected to a battery terminal, even for moderately large n !!! Each vertex receives current, mainly from the battery, and loses it, mainly to the battery,almost as if it were a parallel connection of resistors!!!

This page was not scanned n-4) 2. 2 25 and to - end Connections 1-22 / (AB). - Ry 2 2 A for 2-3 long Ry Man, doe, indeed recemble a hyperbola. (to 2) The next fage was graph of the & error in the Ray 2 2 a affroximation uen.

