Problem 03 - Diogo Correia Netto

- Let's analyse what happens in the respective time intervals.
- For $0 \leq t \leq \tau$: very slow growth of the magnetic field.

According to the list of formulas to IPhO (Section $I X$, item 19), when a point charge has a circular orbit in a slowly varying magnetic field, the associated magnetic moment $\left(\sim v_{\perp}^{2} / B\right)$ is an adiabatic invariant (and $v_{\|}$ doesn't change).

- Let's suppose a magnetic field along the z axis.
- If v_{0} is the rms the speed at $t=0$ and v_{1} is the rms speed at $t=\tau$, the conservation law for the average magnetic moment allows us to write:

$$
\begin{equation*}
\frac{v_{0 x}^{2}+v_{0 y}^{2}}{B_{0}}=\frac{v_{1 x}^{2}+v_{1 y}^{2}}{2 B_{0}} \Rightarrow v_{1 x}^{2}+v_{1 y}^{2}=2\left(v_{0 x}^{2}+v_{0 y}^{2}\right) . \tag{1}
\end{equation*}
$$

- We can calculate the temperature T_{1} at $t=\tau$ using the equipartition theorem:

$$
\begin{equation*}
\frac{k T_{0}}{2}=\frac{m v_{0 x}^{2}}{2}=\frac{m v_{0 y}^{2}}{2}=\frac{m v_{0 z}^{2}}{2}, \tag{2}
\end{equation*}
$$

and, as

$$
\begin{equation*}
\frac{m\left(v_{1 x}^{2}+v_{1 y}^{2}+v_{1 z}^{2}\right)}{2}=\frac{3 k T_{1}}{2} \tag{3}
\end{equation*}
$$

we have

$$
\begin{equation*}
T_{1}=\frac{5}{3} T_{0} \tag{4}
\end{equation*}
$$

- Between $\tau \leq t \leq \tau+T$: As $T \gg t_{\text {collisions }}$, the collisions are very likely to happen in this interval.

Note that at $t=\tau$ the energy is not equally divided ($k T_{0}$ for the x and y axes, $k T_{0} / 2$ for the z axis): the collisions have the effect of equally dividing the energy along the axes.

Let v_{2} be the $r m s$ speed at $t=\tau+T$. As the energy is equally divided:

$$
\begin{equation*}
\frac{m v_{2 x}^{2}}{2}=\frac{m v_{2 y}^{2}}{2}=\frac{m v_{2 z}^{2}}{2}=\frac{k T_{1}}{2}=\frac{5}{6} k T_{0} \tag{5}
\end{equation*}
$$

Then:

$$
\begin{equation*}
v_{2 x}^{2}=v_{2 y}^{2}=v_{2 z}^{2}=\frac{k T_{1}}{m}=\frac{5}{6} \frac{k T_{0}}{m} . \tag{6}
\end{equation*}
$$

- For $\tau+T \leq t \leq 2 \tau+T$: very slow reduction of the magnetic field. Note that the magnetic moment is also conserved in this interval. Let v_{3} be the $r m s$ speed at $t=2 \tau+T$, then:

$$
\begin{gather*}
\frac{v_{3 x}^{2}+v_{3 y}^{2}}{B_{0}}=\frac{v_{2 x}^{2}+v_{2 y}^{2}}{2 B_{0}} \tag{7}\\
\Rightarrow v_{3 x}^{2}+v_{3 y}^{2}=\frac{1}{2}\left(2 \cdot \frac{5}{3} \frac{k T_{0}}{m}\right)=\frac{5}{3} \frac{k T_{0}}{m} \tag{8}\\
\Rightarrow \frac{m\left(v_{3 x}^{2}+v_{3 y}^{2}\right)}{2}=\frac{5}{6} \frac{k T_{0}}{m} \tag{9}
\end{gather*}
$$

As the velocity along z axis doesn't change we have:

$$
\begin{equation*}
\frac{3}{2} k T_{\text {fnal }}=\frac{m\left(v_{3 x}^{2}+v_{3 y}^{2}+v_{3 z}^{2}\right)}{2} \tag{10}
\end{equation*}
$$

- The final temperature is calculated using the equipartition theorem:

$$
\begin{equation*}
\frac{3 k T_{\text {final }}}{2}=\frac{5}{3} k T_{0} \quad \Rightarrow \quad T_{\text {final }}=\frac{10}{9} T_{0} \tag{11}
\end{equation*}
$$

