Problem 03 - Diogo Correia Netto

- Let's analyse what happens in the respective time intervals.
- For $0 \le t \le \tau$: very slow growth of the magnetic field.

According to the list of formulas to IPhO (Section IX, item 19), when a point charge has a circular orbit in a slowly varying magnetic field, the associated magnetic moment ($\sim v_{\perp}^2/B$) is an adiabatic invariant (and v_{\parallel} doesn't change).

- Let's suppose a magnetic field along the z axis.
- If v_0 is the *rms* the speed at t = 0 and v_1 is the *rms* speed at $t = \tau$, the conservation law for the average magnetic moment allows us to write:

$$\frac{v_{0x}^2 + v_{0y}^2}{B_0} = \frac{v_{1x}^2 + v_{1y}^2}{2B_0} \quad \Rightarrow \quad v_{1x}^2 + v_{1y}^2 = 2\left(v_{0x}^2 + v_{0y}^2\right). \tag{1}$$

• We can calculate the temperature T_1 at $t = \tau$ using the equipartition theorem:

$$\frac{kT_0}{2} = \frac{mv_{0x}^2}{2} = \frac{mv_{0y}^2}{2} = \frac{mv_{0z}^2}{2},$$
(2)

and, as

$$\frac{m\left(v_{1x}^2 + v_{1y}^2 + v_{1z}^2\right)}{2} = \frac{3kT_1}{2},\tag{3}$$

we have

$$T_1 = \frac{5}{3}T_0$$
 (4)

• Between $\tau \leq t \leq \tau + T$: As $T \gg t_{\text{collisions}}$, the collisions are very likely to happen in this interval.

Note that at $t = \tau$ the energy is not equally divided $(kT_0 \text{ for the } x \text{ and } y \text{ axes}, kT_0/2 \text{ for the } z \text{ axis})$: the collisions have the effect of equally dividing the energy along the axes.

Let v_2 be the *rms* speed at $t = \tau + T$. As the energy is equally divided:

$$\frac{mv_{2x}^2}{2} = \frac{mv_{2y}^2}{2} = \frac{mv_{2z}^2}{2} = \frac{kT_1}{2} = \frac{5}{6}kT_0 \tag{5}$$

Then:

$$v_{2x}^2 = v_{2y}^2 = v_{2z}^2 = \frac{kT_1}{m} = \frac{5}{6}\frac{kT_0}{m}.$$
(6)

• For $\tau + T \leq t \leq 2\tau + T$: very slow reduction of the magnetic field. Note that the magnetic moment is also conserved in this interval. Let v_3 be the *rms* speed at $t = 2\tau + T$, then:

$$\frac{v_{3x}^2 + v_{3y}^2}{B_0} = \frac{v_{2x}^2 + v_{2y}^2}{2B_0} \tag{7}$$

$$\Rightarrow v_{3x}^2 + v_{3y}^2 = \frac{1}{2} \left(2 \cdot \frac{5}{3} \frac{kT_0}{m} \right) = \frac{5}{3} \frac{kT_0}{m}$$
(8)

$$\Rightarrow \frac{m\left(v_{3x}^2 + v_{3y}^2\right)}{2} = \frac{5}{6} \frac{kT_0}{m} \tag{9}$$

As the velocity along z axis doesn't change we have:

$$\frac{3}{2}kT_{\text{final}} = \frac{m\left(v_{3x}^2 + v_{3y}^2 + v_{3z}^2\right)}{2} \tag{10}$$

• The final temperature is calculated using the equipartition theorem:

$$\frac{3kT_{\text{final}}}{2} = \frac{5}{3}kT_0 \quad \Rightarrow \quad T_{\text{final}} = \frac{10}{9}T_0 \tag{11}$$