Let the magnetic field be directed along the z-axis. Then, when the magnetic field is being changed $v_z = Const$. (because $t \gg \tau$). The change of the magnetic field changes the x - y-directional component. In the x - y plane, an electron with speed v_{xy} has a radius of $R = \frac{mv_{xy}}{eB}$. The force acting on the electron due to changing magnetic field can be expressed using the change of flux through the circular orbit of the electron. Then

$$F = -eE = -e\frac{\varepsilon}{2\pi R} = \frac{e}{2\pi R} \frac{d\Phi}{dt} = \frac{e}{2\pi R} \frac{\pi R^2 dB}{dt} = \frac{eR}{2} \frac{dB}{dt} = \frac{mv_{xy}}{2B} \frac{dB}{dt}$$
$$m\frac{dv_{xy}}{dt} = \frac{mv_{xy}}{2B} \frac{dB}{dt}$$
$$\frac{dv_{xy}}{v_{xy}} = \frac{1}{2} \frac{dB}{B}$$
$$d(\ln v_{xy}) = \frac{1}{2} d(\ln B)$$

Thus

$$\frac{v_{xy}^2}{B} = Const.$$

The change of velocity after changing the magnetic field from $B = B_0$ to $B = 2B_0$ is

$$\frac{v_{xy}^{\prime 2}}{2B_0} = \frac{v_{xy}^2}{B_0}$$
$$v_{xy}^{\prime} = \sqrt{2}v_{xy}$$

Similarly, the change of velocity by changing the magnetic field from $B = 2B_0$ to $B = B_0$ is $v'_{xy} = \frac{1}{\sqrt{2}}v_{xy}$. Initially, let the average speed of electrons be $v_{\text{tot}0} = v_0$. Then $v_{\text{tot}0} = (v_z, v_{xy}) = \left(\frac{1}{\sqrt{3}}v_0, \sqrt{\frac{2}{3}}v_0\right)$. After changing the magnetic field from $B = B_0$ to $B = 2B_0$, the new velocity is $v_{\text{tot}1} = (v_z, v_{xy}) = \left(\frac{1}{\sqrt{3}}v_0, \frac{2}{\sqrt{3}}v_0\right) = \sqrt{\frac{5}{3}}v_0$. After time \mathcal{T} , the z- and x - y-directional velocities have stabilized and the velocity is $v_{\text{tot}2} = (v_z, v_{xy}) = \left(\sqrt{\frac{5}{9}}v_0, \sqrt{\frac{10}{9}}v_0\right) = \sqrt{\frac{5}{3}}v_0$. Finally, after decreasing the magnetic field from $B = 2B_0$ to $B = B_0$, the total velocity becomes $v_{\text{tot}3} = (v_z, v_{xy}) = \left(\sqrt{\frac{5}{9}}v_0, \sqrt{\frac{5}{9}}v_0\right) = \sqrt{\frac{10}{9}}v_0$. Since $T \propto v_{\text{tot}}^2$, the final temperature is $T' = \frac{10}{9}T$