
Physics Cup Diogo Correia Netto

Problem 01 - Diogo Correia Netto

� Motivation: �nd a charge distribution that produces a quadratic potential

(in such a manner as to cancel the parallel external �eld of the punctual

charge: ~Echarge

‖ ∝ ~r in the limit of r � L).

� According to the hint given for problem 1 (which is included in the end of

this document), a uniformly charged ellipsoid produces an electric potential

that is quadratic in the coordinates.

� Equation of an ellipsoid with semi axis a, a and c:

x2

a2
+
y2

a2
+
z2

c2
= 1. (1)

� Formula for the potential of a charged body:

V (x, y, z) =
1

4πε0

∫∫∫
ρ(x′, y′, z′)dx′dy′dz′√

(x− x′)2 + (y − y′)2 + (z − z′)2
. (2)

� Let's consider a uniformly charged ellipsoid with semi axis a, a and c → 0,

obtaining in this limiting case a simple disc of radius a (which will henceforth

be renamed as the radius of the disc, because r will be used as the radial

cylindrical coordinate).

In this limit (z − z′)2 � (x− x′)2, (y − y′)2, then

⇒ V (x, y) =
1

4πε0

∫∫∫
ρdx′dy′dz′√

(x− x′)2 + (y − y′)2
(3)

According to equation (1) the limits of integration for z′ are±c
√

1−
(
x′

a

)2

−
(
y′

a

)2

.

As the density ρ is assumed to be uniform:

⇒ V (x, y) ≈ ρc

2πε0

∫∫ dx′dy′
√

1− x′2 + y′2

a2√
(x− x′)2 + (y − y′)2

. (4)

� Let's make the substitution

∣∣∣∣∣ x′ = k cosφ

y′ = k sinφ

}
k ≤ a.

The element of area is now written as:
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dA = dx′dy′ = kdkdφ. (5)

√
1− x′2 + y′2

a2
=

√
1− k2

a2
, (6)

⇒ V (x, y) ≈ ρc

2πε0

∫ a

0

∫ 2π

0

kdk

√
1− k2

a2√
x2 + y2 + k2 − 2kx cosφ− 2ky sinφ

. (7)

� As we already know, the expansion of the potential is quadratic in the coor-

dinates

⇒ V (x, y) = A+B(x2 + y2), (8)

where A and B are constants.

� Let's calculate the values of A and B:

→ A : suppose x = y = 0.

V (0, 0) =
ρc

2πε0

∫ a

0

∫ 2π

0

dkdφ

√
1− k2

a2
= A+B(02 + 02)

⇒ A =
π2ρca

4πε0
. (9)

→ B : to calculate B, let's make

∣∣∣∣∣ x = a

y = 0
,

⇒ V (a, 0) =
ρc

2πε0

∫ a

0

∫ 2π

0

kdkdφ

√
1− k2

a2√
k2 − 2ka cosφ+ a2

. (10)

� As k ≤ a, the denominator can be expanded in terms of Legendre Polyno-

mials (Pj):

→ 1√
k2 − 2ka cosφ+ a2

=
1

a

∞∑
j=0

(
k

a

)j
Pj(cosφ), (11)
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V (a, 0) =
ρc

2πε0a

∫ a

0

∫ 2π

0

kdkdφ

√
1− k2

a2

∞∑
j=0

(
k

a

)j
Pj(cosφ) (12)

� Let's de�ne

αj ≡
∫ 2π

0

Pj(cosφ)dφ (13)

⇒ V (a, 0) =
ρc

2πε0a

∫ a

0

kdk

√
1− k2

a2

∞∑
j=0

(
k

a

)j
αj. (14)

� De�ning ỹ ≡ k

a
,

⇒ V (a, 0) =
ρca

2πε0

∞∑
j=0

∫ 1

0

ỹdỹ
√
1− ỹ2ỹjαj. (15)

� Let

η ≡
∞∑
j=0

∫ 1

0

dỹ
√

1− ỹ2ỹj+1αj (16)

a constant to be determined.

� V (a, 0) =
ρca

2πε0
η = A+B(a2 + 02)

⇒ ρcaη

2πε0
= A+Ba2 ⇒ Ba2 =

ρcaη

2πε0
− A,

using A given by eq. (9), we have

⇒ Ba2 =
ρca

4πε0

(
2η − π2

)

B =
ρc

4πε0a

(
2η − π2

)
(17)

� Considering that Q = ρV where V = 4
3
πa2c is the volume of the ellipsoid

⇒ Q = ρ

(
4

3
πa2c

)
(18)
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⇒ V (x, y) = A− βQ(x2 + y2)

ε0a3
, (19)

where

β =
3(π2 − 2η)

16π2

is a constant.

� It should be noted that if Q > 0 the parallel electric �eld is directed along

the +r̂ direction.

Hence, β > 0.

� Now let's calculate the electric �eld produced by the potential given in eq.

(19)

~E1 = −~∇V =
2βQ~r

ε0a3
,

where ~r =
√
x2 + y2r̂.

� The condition ~E‖ = 0 for a conductor says:

~E‖ = 0 ⇒ ~E1 + ~Echarge

‖ = 0.

But ~Echarge

‖ =
q~r

4πε0 (L2 + r2)3/2
≈ q~r

4πε0L3
.

Thus:

2βQ~r

ε0a3
+

q~r

4πε0L3
= 0 ⇒ Q = − qa3

8πβL3
. (20)

� Let's make a comparison:

V (x, y) =
ρc

2πε0

∫∫ dx′dy′

√
1−

(
x′

a

)2

−
(
y′

a

)2

√
(x− x′)2 + (y − y′)2

=
1

4πε0

∫∫
σ1dA√

(x− x′)2 + (y − y′)2
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We conclude that ellipsoidal distribution is equivalent to a super�cial charge

σ1(x
′, y′) = 2ρc

√
1−

(
x′

a

)2

−
(
y′

a

)2

(21)

Using that V =
4

3
πa2c, Q = ρV and x′2 + y′2 = k2:

σ1(k) =
3Q

2πa2

√
1− k2

a2
= − 3qa3

16π2a2βL3

√
1− k2

a2
.

In terms of the radial coordinate r:

σ1(r) = −
3qa

16π2βL3

√
1− r2

a2
. (22)

� To keep the disc neutral and equipotential, we must distribute a charge −Q
in such a manner as to not produce any parallel �eld. This is achieved by

projecting a spherical shell onto the disc (this claim will be proved in the

end of solution)

⇒ σ2(r) = −
Q

2πa
√
a2 − r2

=
qa2

16π2βL3
√
a2 − r2

, (23)

where σ2 is due to the projection of the spherical shell.

� The total charge is given by:

σtotal(r) = σ1(r) + σ2(r) = −
3qa

16π2βL3

√
1− r2

a2
+

qa2

16π2βL3
√
a2 − r2

. (24)

� Due to the azimuthal symmetry of the problem the electric force is perpen-

dicular to the plane of the disc. Then, the electric force is given by:

F =

∫
σ(r)dA · En, (25)

where

En = − qL

4πε0(L2 + r2)3/2
. (26)
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F =
qa

16π2βL3 · qL4πε0

∫ a

0

3
√
1− r2

a2
− 1√

1− r2

a2

 · 2πrdr

(L2 + r2)3/2

=
q2aL

32π2ε0βL
3

∫ a

0

3
√
1− r2

a2
− 1√

1− r2

a2

 · rdr

(L2 + r2)3/2

=
q2aL

32π2ε0βL
3

∫ a

0

3
√
1− r2

a2
− 1√

1− r2

a2

 ·
(r
a

)
d
(r
a

)(
a · 1

a

)
a

(
L2

a2
+
r2

a2

)3/2

In terms of γ = r/a and δ = L/a

F =
q2L

32π2ε0βL
3

∫ 1

0

[
3
√

1− γ2 − 1√
1− γ2

]
· γdγ

(γ2 + δ2)3/2
. (27)

According to Wolfram Alpha:

I =

∫ 1

0

[
3
√

1− γ2 − 1√
1− γ2

]
· γdγ

(γ2 + δ2)3/2

=

[
3 tan−1

(
1− γ2
γ2 + δ2

)
−
(
3δ2 + 2

δ2 + 1

)(
1− γ2
δ2 + γ2

)1/2
]1
0

⇒ I =
3δ2 + 2

δ3 + δ
− 3 tan−1

(
1

δ

)
(28)

� Expanding I for δ → +∞ (As L� a)

I ≈ 2

5δ5
− 4

7δ7
. (29)

⇒ F ≈ q2

32π2ε0βL2

(
2

5δ5
− 4

7δ7

)
Neglecting terms of O(1/δ7):
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F ≈ q2a5

80π2ε0βL7
. (30)

� To end our solution we must calculate the value of β. Let's make some

iterations to �nd η:

N αn Jn =
∫ 1

0
dy
√

1− y2yn+1 αnJn

0 2π 1/3 2π/3

2 π/2 2/15 π/15

4 9π/32 8/105 3π/140

6 100π/256 16/315 5π/252

8 1225π/8192 128/3465 35π/6336

10 3969π/32768 256/9009 63π/18304

and αn = 0 for all n odd.

Summing the terms αnJn:

η ≈ 2.462

⇒ β =
3(π2 − 2η)

16π2
≈ 0.09397

After 150 iterations in Mathematica, we obtain η = 2.4674 and β = 0.09375.

As we increase the number of steps, beta gets closer to 0.09375. Therefore,

we conclude that β ≈ 0.09375 = 3/32.

The expression for the force is

F ≈ q2a5

80π2ε0βL7
, (31)

where β ≈ 0.09375 = 3/32.

Proof of the claim about the projection of the spherical shell

We already know that the �eld inside a spherical shell is zero. Let's consider

two charges q1 and q2 as shown in �gure 1.

As the �eld in the shell is zero, the pairs of opposite charges give equal (but

opposite) �elds. Now, the projections give equal and opposite �elds if:
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Figure 1: Projection of charges in the spherical shell.

q1
4πε0x21

=
q2

4πε0x22
, (32)

which is true because

∣∣∣∣∣ x1 = r1 cosα

x2 = r2 cosα
.

Proof of the volume of an ellipsoid

Let's start with the ellipse
x2

a2
+
y2

b2
= 1.

We know that an ellipsoid of circular section of radius a and semi axis b is

obtained by rotating the curve y = f(x) around the y axis.

Thus

V =

∫ y1

y0

πx2dy, (33)

As
x2

a2
+
y2

b2
= 1⇒ x2 =

a2

b2
(
b2 − y2

)
, we have

V = π

∫ b

−b

a2

b2
(
b2 − y2

)
dy =

πa2

b2

∫ b

−b

(
b2 − y2

)
dy =

2πa2

b2

∫ b

0

(
b2 − y2

)
dy

=
2πa2

b2

[
b2 · y − y3

3

]b
0

=
2πa2

b2

[
b3 − b3

3

]
=

2πa2

b2

(
2b3

3

)

⇒ V =
4

3
πa2b (34)
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Physics Cup 2017 - Problem 1 with hints. 15th April 2017

Estimate by the order of magnitude the interaction force between a point charge q and a circular
metallic disc of radius r if the charge is at the axis of the disc, and the distance between the disc and
the charge isL ≫ r. The total charge of the disc is 0 and the thickness of the disc is negligibly small.

Hints: First,notice that the standard electrical imagemethod fails here because the image charge
would be in the same region of space where we look for the solution (if you are confused about this
statement, read more at
http://www.ipho2012.ee/physicscup/physics-solvers-mosaic/5-images-or-roulette/

Second, notice that the total charge on the disc is zero, but it must re-distribute (creating positive and
negative charge areas) so as to compensate for the electric field of the point charge and ensure that the disc
remains equipotential.

Third, if you want to find the exact answer, you’ll find it useful to know that inside an ellipsoid with homo-
geneous constant volume charge density, the electric potential is a quadratic polynomial of the coordinates.

The proof of this fact has several steps. It starts with an observation that inside an ellipsoidal shell of
constant volume charge density, electric field is zero. [Ellipsoidal shell is what you obtain if a spherical shell
is by compressed, i.e. an affine transformation is made, along certain direction(s).] If you take an arbitrary
pointP inside an ellipsoidal shell, it is fairly easy to see that the contributions of opposing pieces of the shell
(which you obtain if you cut the shell with a cone of very small tip angle α) cancel out, hence the field is
zero.

Now, let us consider two similar ellipsoids, one large, of lengthA, denoted asEl, and one very small, of
length a, denoted asEs, both centred at the origin.

The second step is using the similarity consideration: we can say that if the small charged ellipsoid
(of constant volume charge density ρ) has potential distribution φ(r⃗) for r⃗ ∈ Es then the large charged
ellipsoid must have potential distribution

(
A
a

)2
φ(r⃗ a

A
) for r⃗ ∈ El. On the other hand, if we consider for a

large charged ellipsoid a point r⃗0 so close to the origin that it falls also into the small ellipsoid (i.e. r⃗0 ∈ Es),
these charges of the large ellipsoid which remain outside Es (and form a thick ellipsoidal shell) give zero
field and no contribution to the potential inside Es (assuming that the origin defines the zero potential
level). So, the potential at such r⃗0 is contributed only by the charges insideEs, i.e.

(
A
a

)2
φ(r⃗0

a
A
) = φ(r⃗0).

Finally, as the last step of the proof, notice that the potential is clearly a smooth and continuous func-
tion of coordinates and can be expanded into Taylor series near its centre; at very small distances, themain
terms of the series dominate over the higher order terms so that for r⃗0 very close to the origin — much
closer than the size of the ellipsoid—, φ(r⃗0) is a quadratic polynomial of the coordinates. This means that
due to the property

(
A
a

)2
φ(r⃗0

a
A
) = φ(r⃗0), it is also a quadratic polynomial everywhere inside the ellipsoid

(because we can use arbitrarily small |r⃗0|with arbitrarily large A
a
).

Results thus far (by the order of submission):
Kaarel Hänni: 2.5937
MarcoMalandrone: 2.3579
Siddharth Tiwary: 1.9292

Non-official participants:
Taavet Kalda: 1.9292


