There are n points forming n-gon. Adjacent points (sides of n-gon) are connected with resistance $R_{s}=2 \Omega$, all other pairs (diagonals) are connected with resistance $R_{s}=1 \Omega$ Find the full resistance between two adjacent points. Using your expression, calculate answer (as a rational number in ohms) for $n=3, n=4$, and $n=5$. Feel free to use mathematics software to ease algebraic calculations, if needed (such as Wolfram Alpha).

Hints: First, the problem can be solved using a brute-force method by writing down all the Kirchoff's laws and simplifying the set of equations, or by finding a simpler equivalent circuit.

Second, in both cases you'll end up in a recurrence equation for a series of unknown quantities x_{k} in the form $x_{k+1}=a x_{k}+b x_{k-1}$, where a and b are constants. This equation is solved in the same way as linear differential equations with constant multipliers: we seek for the solution in the form $x_{k}=\lambda^{k}$. This recurrence equation is linear, so any linear combination of solutions is also a solution, and the coefficients entering a linear combination is to be found from the additional conditions (e.g. known values for x_{1} and x_{n}).

Results thus far (by the order of submission):
Marco Malandrone: 2.5937
Siddharth Tiwary: 2.3579
Akihiro Watanabe: 2.1436
Dylan Toh: 1.9487
Elene Kravishvili: 1.7715

Non-official participants (by the order of submission):
Taavet Kalda: 2.3579
Elvinas Ribinskas: 1.9487

Results thus far (total for $\operatorname{Pr} 1$ and $\operatorname{Pr} 2$):

Marco Malandrone: 4.9517
Siddharth Tiwary: 4.2872
Kaarel Hänni: 2.5937
Akihiro Watanabe: 2.1436
Dylan Toh: 1.9487
Elene Kravishvili: 1.7715
Faizal Husni: 1.7715
Diogo Netto: 1.7538

Non-official participants (by the order of submission):
Taavet Kalda: 4.2872
Elvinas Ribinskas: 1.9487

