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The potential at point ~r on the disc can be written as a function of surface
charge distribution

V(r) =

∫
σ(r′)

d2r′

|~r − ~r′|

From the figure we can write the integral as (where |s| = |~r − ~r′|)

V(r) =

∫ 2π

0

∫ smax

0

σd|s|dβ (1)

We can use s instead of |s| if we change the range of θ to {0, π}. For constant
θ, integral represents the contribution of a single wedge shaped area. But the
specific shape of this area doesn’t change the integral because the integral is
only a function of the length of the area and the surface charge density. So we
can take this area as a chord that is charged

λ =

∫
σr′ds (2)

This chord can be determined by its midpoints coordinates {ρ0, φ0}. From the
figure we see that

ρ0 = ρcosβ (3)

And because of the cylindrical symmetry of the problem λ is not a function of
φ0. We can take φ0 = 0 from now on. Then our coordinates takes the form
x = ρ cosβ, y = ρ sinβ and equation (2) will be identical with

λ =

∫
σdy (4)

Since they both are the charge on the chord. So we can write the potential as

V(r) =

∫ π

0

λ(ρcosβ)dβ (5)

From this equation we see that if we want V(r) to be constant then

λ(ρcosβ) = λ0

V(r) = πλ0
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But before using this charge distribution for λ we need to show that this line
charge is the result of a surface charge density which only depends on coordinate
ρ. So to show that we use a spherical shell which has constant surface charge
across its surface. If we smash the shell flat on the x-y plane then it is obvious
that the surface charge will be symmetric. To find λ we need to find net charge
on the sphere which is between x and x+dx because from definition dq = λ(x)dx
Net charge at this segment can be calculated as

dq = (
Q

4πa2
)(2πacosθ)adθ (6)

Where d(asinθ) = dx. From dq
dx = λ we get

λ =
Q

2a
= const. (7)

So we see that it is indeed possible to have λ = λ0 where surface charge is
symmetrical.

Also the potential above the disc on the z-axis can be written using strip
function as(where x = ρ cosβ)

V(z) =

∫ a

−a
λ(x)

zdx

z2 + x2
(8)

This can be proved by putting equation (4) into (8)

V(z) =

∫
disk

dA
zσ(x2+y2)

x2 + z2

=

∫ a

0

ρdρ 2

∫ π
2

−π2

dφzσ(ρ)

z2 + ρ2 cos2 φ

Now we substitude ∫ π
2

−π2

dφ

1 + (ρz )2cos2φ
=

π√
1 + (ρz )2

Which gives

V(z) =

∫ a

0

2πρdρ
σ(ρ)√
x2 + z2

These steps can be reversed to obtain equation (8). We now have all the pre-
liminary to deal with the charge q.

The charge q produces a potential

Vext(ρ) =
q√

L2 + ρ2
(9)
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over the disc. Which must be compansated by the induced charges by the
equation

V(ρ) =

∫ π
2

−π2
λ(ρ cos β)dβ

We can find λ by the use of the identity∫ π
2

−π2

dβ

1 + u2cos2β
=

π√
1 + u2

(10)

where u = ρ
L

If we substitute (10) into (9) we get

λ(x) = − q
π

L

x2 + L2
; x = ρ cosβ (11)

Having found the λ we can find the total induced charge Q as

Q =

∫ a

−a
λ(x)dx = −qL

π

∫ a

−a

dx

x2 + L2
= −2q

π
arctan

a

L
(12)

We can find potential of this charge distribution on the z axis according to the
formula (8)

V (z) = V (z, L)

= −qzL
π

∫ a

−a

dx

(L2 + x2)(z2 + x2)

= − qzL

π(z2 − L2)

∫ a

−a
(

1

L2 + x2
− 1

z2 + x2
)dx

= − 2q

π(z2 − L2)
[z arctan

a

L
− L arctan

a

z
]

For the disc to be neutral a total charge of −Q must redistribute over the
disc according to the formula (7) so that the net potential on the z axis will be

V (z, L) =
2q

π(z2 − L2)
(L arctan

a

z
− z arctan

a

L
) +

2q

aπ
arctan

a

L
arctan

a

z
(13)

F = −q
∂V(z,L)

∂z

∣∣∣
z=L

To find the force let us calculate the derivative of first term in the (13) as

V1(z, L) =
2q

π(z2 − L2)
(L arctan

a

z
− z arctan

a

L
) (14)

V1(z, L) = V1(L, z) (15)

(16)

dV1(z, L) =
∂V1(z, L)

∂z
dz +

∂V1(z, L)

∂L
dL (17)
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z and L can be considered as mathemathical variables. Due to equation (15)

dV1(z, L) =
∂V1(z, L)

∂z
(dz + dL)

dV1(L,L) =
∂V1(z, L)

∂z

∣∣∣
z=L

2dL

Thus we can calculate the derivate of the first term as

F1 = −q ∂V1(z, L)

∂z

∣∣∣
z=L

= −q
2

dV1(L,L)

dL

In the limit limz→L equation (14) takes form using L’Hôpital’s rule

V1(L,L) = lim
z→L

2q

π(z2 − L2)
(L arctan

a

z
− z arctan

a

L
)

V1(L,L) = −2q

π

aL
a2+L2 + arctan a

L

2L
= − q

π

(
a

a2 + L2
+

arctan a
L

L

)
Now F1 finally gives

F1 =
q2

2π

(
a

a2 + L2
+

arctan a
L

L

)′
= − q2

2πL2

(
arctan

a

L
+

a(3 + a2

L2 )

L(1 + a2

L2 )2

)

The derivative of the second term in equation (13) is considerably more
trivial to find.

F2 = −q
∂ 2q
aπ arctan a

L arctan a
z

∂z

∣∣∣
z=L

=
2q2

π

arctan a
L

a2 + L2

The net force is thus

F = F1 + F2 =
q2

2πL2

(
arctanu(3− u2)

1 + u2
− u(3 + u2)

(1 + u2)2

)
(18)

Where u = a
L . To use the condition u� 1 we shall expand the function

f(u) =
arctanu(3− u2)

1 + u2
− u(3 + u2)

(1 + u2)2

at u = 0 in tailor series which gives us

f(u) = −16

15
u5 +

256

105
u7 − 416

105
u9 +

19328

3465
u11 + ....
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Taking only the first term gives us the total force as

F = − 8q2a5

15πL7
(19)

In SI units

F = − 2q2a5

15π2ε0L7
(20)
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