The potential at point 7" on the disc can be written as a function of surface
charge distribution
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We can use s instead of |s| if we change the range of 6 to {0,7}. For constant
0, integral represents the contribution of a single wedge shaped area. But the
specific shape of this area doesn’t change the integral because the integral is
only a function of the length of the area and the surface charge density. So we
can take this area as a chord that is charged

A= /arfds (2)

This chord can be determined by its midpoints coordinates {pg, ¢o}. From the
figure we see that

po = peos (3)
And because of the cylindrical symmetry of the problem A is not a function of
¢o. We can take ¢y = 0 from now on. Then our coordinates takes the form
x = pcosf,y = psin S and equation (2) will be identical with

A= / ody (4)

Since they both are the charge on the chord. So we can write the potential as
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From this equation we see that if we want V{;,) to be constant then
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But before using this charge distribution for A we need to show that this line
charge is the result of a surface charge density which only depends on coordinate
p. So to show that we use a spherical shell which has constant surface charge
across its surface. If we smash the shell flat on the x-y plane then it is obvious
that the surface charge will be symmetric. To find A we need to find net charge
on the sphere which is between = and z+dz because from definition dg = A(,)dx
Net charge at this segment can be calculated as
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Where d(asinf) = dz. From %4 = X\ we get
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So we see that it is indeed possible to have A = Ay where surface charge is
symmetrical.

Also the potential above the disc on the z-axis can be written using strip
function as(where x = pcos )
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This can be proved by putting equation (4) into (8)
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Now we substitude
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Which gives
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These steps can be reversed to obtain equation (8). We now have all the pre-
liminary to deal with the charge q.
The charge q produces a potential
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over the disc. Which must be compansated by the induced charges by the
equation
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We can find A by the use of the identity
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where u = £
If we substitute (10) into (9) we get
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Having found the A we can find the total induced charge Q as
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We can find potential of this charge distribution on the z axis according to the
formula (8)
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For the disc to be neutral a total charge of —Q must redistribute over the
disc according to the formula (7) so that the net potential on the z axis will be
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To find the force let us calculate the derivative of first term in the (13) as

Vi(z, L) = ﬁ(L arctan% — zarctan %) (14)
Vi(z, L) = Vi(L, z) (15)
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z and L can be considered as mathemathical variables. Due to equation (15)
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Thus we can calculate the derivate of the first term as
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In the limit lim,_, ;, equation (14) takes form using L'Hopital’s rule
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Now F7 finally gives
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The derivative of the second term in equation (13) is considerably more
trivial to find.
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The net force is thus
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Where u = ¢ . To use the condition v < 1 we shall expand the function
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at u = 0 in tailor series which gives us
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Taking only the first term gives us the total force as
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