The potential at point \vec{r} on the disc can be written as a function of surface charge distribution

$$
V_{(r)}=\int \sigma_{\left(r^{\prime}\right)} \frac{d^{2} r^{\prime}}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|}
$$

From the figure we can write the integral as (where $|s|=\left|\vec{r}-\overrightarrow{r^{\prime}}\right|$)

$$
\begin{equation*}
V_{(r)}=\int_{0}^{2 \pi} \int_{0}^{s_{\max }} \sigma d|s| d \beta \tag{1}
\end{equation*}
$$

We can use s instead of $|s|$ if we change the range of θ to $\{0, \pi\}$. For constant θ, integral represents the contribution of a single wedge shaped area. But the specific shape of this area doesn't change the integral because the integral is only a function of the length of the area and the surface charge density. So we can take this area as a chord that is charged

$$
\begin{equation*}
\lambda=\int \sigma_{r^{\prime}} d s \tag{2}
\end{equation*}
$$

This chord can be determined by its midpoints coordinates $\left\{\rho_{0}, \phi_{0}\right\}$. From the figure we see that

$$
\begin{equation*}
\rho_{0}=\rho \cos \beta \tag{3}
\end{equation*}
$$

And because of the cylindrical symmetry of the problem λ is not a function of ϕ_{0}. We can take $\phi_{0}=0$ from now on. Then our coordinates takes the form $x=\rho \cos \beta, y=\rho \sin \beta$ and equation (2) will be identical with

$$
\begin{equation*}
\lambda=\int \sigma d y \tag{4}
\end{equation*}
$$

Since they both are the charge on the chord. So we can write the potential as

$$
\begin{equation*}
V_{(r)}=\int_{0}^{\pi} \lambda_{(\rho \cos \beta)} d \beta \tag{5}
\end{equation*}
$$

From this equation we see that if we want $V_{(r)}$ to be constant then

$$
\begin{aligned}
& \lambda_{(\rho \cos \beta)}=\lambda_{0} \\
& V_{(r)}=\pi \lambda_{0}
\end{aligned}
$$

But before using this charge distribution for λ we need to show that this line charge is the result of a surface charge density which only depends on coordinate ρ. So to show that we use a spherical shell which has constant surface charge across its surface. If we smash the shell flat on the $x-y$ plane then it is obvious that the surface charge will be symmetric. To find λ we need to find net charge on the sphere which is between x and $x+d x$ because from definition $d q=\lambda_{(x)} d x$ Net charge at this segment can be calculated as

$$
\begin{equation*}
d q=\left(\frac{Q}{4 \pi a^{2}}\right)(2 \pi a \cos \theta) a d \theta \tag{6}
\end{equation*}
$$

Where $d(a \sin \theta)=d x$. From $\frac{d q}{d x}=\lambda$ we get

$$
\begin{equation*}
\lambda=\frac{Q}{2 a}=\text { const } . \tag{7}
\end{equation*}
$$

So we see that it is indeed possible to have $\lambda=\lambda_{0}$ where surface charge is symmetrical.

Also the potential above the disc on the z-axis can be written using strip function as(where $x=\rho \cos \beta$)

$$
\begin{equation*}
V_{(z)}=\int_{-a}^{a} \lambda_{(x)} \frac{z d x}{z^{2}+x^{2}} \tag{8}
\end{equation*}
$$

This can be proved by putting equation (4) into (8)

$$
\begin{aligned}
V_{(z)} & =\int_{d i s k} d A \frac{z \sigma_{\left(x^{2}+y^{2}\right)}}{x^{2}+z^{2}} \\
& =\int_{0}^{a} \rho d \rho 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d \phi z \sigma_{(\rho)}}{z^{2}+\rho^{2} \cos ^{2} \phi}
\end{aligned}
$$

Now we substitude

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d \phi}{1+\left(\frac{\rho}{z}\right)^{2} \cos ^{2} \phi}=\frac{\pi}{\sqrt{1+\left(\frac{\rho}{z}\right)^{2}}}
$$

Which gives

$$
V_{(z)}=\int_{0}^{a} 2 \pi \rho d \rho \frac{\sigma_{(\rho)}}{\sqrt{x^{2}+z^{2}}}
$$

These steps can be reversed to obtain equation (8). We now have all the preliminary to deal with the charge q.

The charge q produces a potential

$$
\begin{equation*}
V_{e x t}(\rho)=\frac{q}{\sqrt{L^{2}+\rho^{2}}} \tag{9}
\end{equation*}
$$

over the disc. Which must be compansated by the induced charges by the equation

$$
V_{(\rho)}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \lambda_{(\rho \cos \beta)} d \beta
$$

We can find λ by the use of the identity

$$
\begin{equation*}
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{d \beta}{1+u^{2} \cos ^{2} \beta}=\frac{\pi}{\sqrt{1+u^{2}}} \tag{10}
\end{equation*}
$$

where $u=\frac{\rho}{L}$
If we substitute (10) into (9) we get

$$
\begin{equation*}
\lambda_{(x)}=-\frac{q}{\pi} \frac{L}{x^{2}+L^{2}} \quad ; \quad x=\rho \cos \beta \tag{11}
\end{equation*}
$$

Having found the λ we can find the total induced charge Q as

$$
\begin{equation*}
Q=\int_{-a}^{a} \lambda_{(x)} d x=-\frac{q L}{\pi} \int_{-a}^{a} \frac{d x}{x^{2}+L^{2}}=-\frac{2 q}{\pi} \arctan \frac{a}{L} \tag{12}
\end{equation*}
$$

We can find potential of this charge distribution on the z axis according to the formula (8)

$$
\begin{aligned}
V(z) & =V(z, L) \\
& =-\frac{q z L}{\pi} \int_{-a}^{a} \frac{d x}{\left(L^{2}+x^{2}\right)\left(z^{2}+x^{2}\right)} \\
& =-\frac{q z L}{\pi\left(z^{2}-L^{2}\right)} \int_{-a}^{a}\left(\frac{1}{L^{2}+x^{2}}-\frac{1}{z^{2}+x^{2}}\right) d x \\
& =-\frac{2 q}{\pi\left(z^{2}-L^{2}\right)}\left[z \arctan \frac{a}{L}-L \arctan \frac{a}{z}\right]
\end{aligned}
$$

For the disc to be neutral a total charge of $-Q$ must redistribute over the disc according to the formula (7) so that the net potential on the z axis will be

$$
\begin{gather*}
V(z, L)=\frac{2 q}{\pi\left(z^{2}-L^{2}\right)}\left(L \arctan \frac{a}{z}-z \arctan \frac{a}{L}\right)+\frac{2 q}{a \pi} \arctan \frac{a}{L} \arctan \frac{a}{z} \tag{13}\\
F=-\left.q \frac{\partial V_{(z, L)}}{\partial z}\right|_{z=L}
\end{gather*}
$$

To find the force let us calculate the derivative of first term in the (13) as

$$
\begin{align*}
V_{1}(z, L) & =\frac{2 q}{\pi\left(z^{2}-L^{2}\right)}\left(L \arctan \frac{a}{z}-z \arctan \frac{a}{L}\right) \tag{14}\\
V_{1}(z, L) & =V_{1}(L, z) \tag{15}\\
d V_{1}(z, L) & =\frac{\partial V_{1}(z, L)}{\partial z} d z+\frac{\partial V_{1}(z, L)}{\partial L} d L \tag{16}
\end{align*}
$$

z and L can be considered as mathemathical variables. Due to equation (15)

$$
\begin{aligned}
& d V_{1}(z, L)=\frac{\partial V_{1}(z, L)}{\partial z}(d z+d L) \\
& d V_{1}(L, L)=\left.\frac{\partial V_{1}(z, L)}{\partial z}\right|_{z=L} 2 d L
\end{aligned}
$$

Thus we can calculate the derivate of the first term as

$$
\begin{aligned}
F_{1} & =-\left.q \frac{\partial V_{1}(z, L)}{\partial z}\right|_{z=L} \\
& =-\frac{q}{2} \frac{d V_{1}(L, L)}{d L}
\end{aligned}
$$

In the limit $\lim _{z \rightarrow L}$ equation (14) takes form using L'Hôpital's rule

$$
\begin{aligned}
& V_{1}(L, L)=\lim _{z \rightarrow L} \frac{2 q}{\pi\left(z^{2}-L^{2}\right)}\left(L \arctan \frac{a}{z}-z \arctan \frac{a}{L}\right) \\
& V_{1}(L, L)=-\frac{2 q}{\pi} \frac{\frac{a L}{a^{2}+L^{2}}+\arctan \frac{a}{L}}{2 L}=-\frac{q}{\pi}\left(\frac{a}{a^{2}+L^{2}}+\frac{\arctan \frac{a}{L}}{L}\right)
\end{aligned}
$$

Now F_{1} finally gives

$$
\begin{aligned}
F_{1} & =\frac{q^{2}}{2 \pi}\left(\frac{a}{a^{2}+L^{2}}+\frac{\arctan \frac{a}{L}}{L}\right)^{\prime} \\
& =-\frac{q^{2}}{2 \pi L^{2}}\left(\arctan \frac{a}{L}+\frac{a\left(3+\frac{a^{2}}{L^{2}}\right)}{L\left(1+\frac{a^{2}}{L^{2}}\right)^{2}}\right)
\end{aligned}
$$

The derivative of the second term in equation (13) is considerably more trivial to find.

$$
\begin{aligned}
F_{2} & =-\left.q \frac{\partial \frac{2 q}{a \pi} \arctan \frac{a}{L} \arctan \frac{a}{z}}{\partial z}\right|_{z=L} \\
& =\frac{2 q^{2}}{\pi} \frac{\arctan \frac{a}{L}}{a^{2}+L^{2}}
\end{aligned}
$$

The net force is thus

$$
\begin{equation*}
F=F_{1}+F_{2}=\frac{q^{2}}{2 \pi L^{2}}\left(\frac{\arctan u\left(3-u^{2}\right)}{1+u^{2}}-\frac{u\left(3+u^{2}\right)}{\left(1+u^{2}\right)^{2}}\right) \tag{18}
\end{equation*}
$$

Where $u=\frac{a}{L}$. To use the condition $u \ll 1$ we shall expand the function

$$
f_{(u)}=\frac{\arctan u\left(3-u^{2}\right)}{1+u^{2}}-\frac{u\left(3+u^{2}\right)}{\left(1+u^{2}\right)^{2}}
$$

at $u=0$ in tailor series which gives us

$$
f_{(u)}=-\frac{16}{15} u^{5}+\frac{256}{105} u^{7}-\frac{416}{105} u^{9}+\frac{19328}{3465} u^{11}+\ldots
$$

Taking only the first term gives us the total force as

$$
\begin{equation*}
F=-\frac{8 q^{2} a^{5}}{15 \pi L^{7}} \tag{19}
\end{equation*}
$$

In SI units

$$
\begin{equation*}
F=-\frac{2 q^{2} a^{5}}{15 \pi^{2} \epsilon_{0} L^{7}} \tag{20}
\end{equation*}
$$

References;

\ddagger American Journal of Physics 61, (1993);R. Friedberg

