Solution for Problem 1

Satoshi Yoshida

If some wires are added to the circuit in parallel, the resistance between A and B
becomes lower.
Rough explanation for underlined statement: The current can go through not only the original path but also the added path and more current can flow at the same voltage. More mathematical explanation for underlined statement: Let $k=1,2, \ldots$ be the number for each path in the circuit, I_{k} be the current that go through the k-th path, $J\left(I_{1}, I_{2}, \ldots\right)$ be the constraints (the sum of the current flowing into a point is $-I$ (node B), I (node A), 0 (otherwise)) and $\Omega:=\left\{\left(I_{k}\right) \mid I_{k} \in \mathbb{R}, J\left(I_{1}, I_{2}, \ldots\right)\right\}$. If we input the current I at node A and output I at node $\mathrm{B},\left(I_{k}\right)$ that minimizes the Joule heat is chosen from Ω. Therefore, if we add some paths to the circuit in parallel, Ω becomes larger and the Joule heat becomes smaller. The Joule heat is ρI^{2} so the residence between A and B becomes smaller.

Inversely, if some of the wires are removed from the circuit, the residence between A and B becomes larger.

Then, let's think about the circuits 1 (residence R) and 2 (residence r) shown below (Fig 1 and 2).
Using the underlined statement shown above, $r \leq \rho \leq R$.

Fig 1. circuit 1

Fig 2. circuit 2

1. Circuit 1

The circuit 1 can be divided to three parts, two parts shown in Fig 3 and one wire whose residence is 2018Ω. Let R_{n} be shown in Fig 3. Then,

$$
2+\frac{1}{\frac{1}{R_{n} / \Omega}+\frac{1}{2018}}+2=R_{n+1} / \Omega
$$

Fig 3. Infinite ladder circuit
(see Fig 4)
Let $R_{\infty}=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} R_{n+1}$. Then,

$$
\begin{gathered}
2+\frac{1}{\frac{1}{R_{\infty} / \Omega}+\frac{1}{2018}}+2=R_{\infty} / \Omega \\
R_{\infty}=2+2 \sqrt{2019} \Omega
\end{gathered}
$$

In circuit 1, two $R_{\infty} \mathrm{s}$ and 2018Ω are

Fig 4. Idea to calculate $\boldsymbol{R}_{\boldsymbol{n}}$ connected at A and B in parallel, so the residence between A and B is

$$
R=\frac{1}{\frac{1}{2+2 \sqrt{2019}}+\frac{1}{2+2 \sqrt{2019}}+\frac{1}{2018}} \Omega=\frac{2018}{\sqrt{2019}} \Omega=44.91 \ldots \Omega<44.92 \Omega
$$

2. Circuit 2

Think about the situation that the current I is input at node A and no current is input or
output at any node other than A (including B). And let (x, y) be the coordinate of each node. $((0,0)$ is node A and $(0,-1)$ is node B$)$. Let $V(x, y)$ be the electrical potential at (x, y) and $I(x, y)$ be the current flowing out of (x, y). Kirchhoff's second law shows that

$$
\begin{align*}
I(x, y)= & \frac{2 V(x, y)-V(x-1, y)-V(x+1, y)}{1 \Omega} \\
& +\frac{2 V(x, y)-V(x, y-1)-V(x, y+1)}{2018 \Omega} \cdots \cdots \tag{1}
\end{align*}
$$

To solve this, assume that

$$
\begin{equation*}
V(x, y)=\int_{0}^{2 \pi} d \beta F(\beta) e^{i|x| \alpha(\beta)+i y \beta} \ldots \ldots \tag{2}
\end{equation*}
$$

where $F(\beta), \alpha(\beta)$ are the functions of β.
If $x \neq 0, I(x, y)=0$. Then,

$$
\int_{0}^{2 \pi} d \beta F(\beta) e^{i|x| \alpha(\beta)+i y \beta}\left(2-2 \cos \alpha(\beta)+\frac{2-2 \cos \beta}{2018}\right)=0
$$

Therefore,

$$
\begin{gather*}
2-2 \cos \alpha(\beta)+\frac{2-2 \cos \beta}{2018}=0 \\
e^{i \alpha(\beta)}=1+\frac{1}{2018}(1-\cos \beta)-\frac{1}{2018} \sqrt{(1-\cos \beta)(4037-\cos \beta)} \tag{3}
\end{gather*}
$$

If $x=0$,

$$
\int_{0}^{2 \pi} d \beta F(\beta) e^{i y \beta}\left(2-2 e^{i \alpha(\beta)}+\frac{2-2 \cos \beta}{2018}\right)=I(0, y)
$$

Using the theorem of Fourier analysis, this is equivalent with this:

$$
F(\beta)\left(2-2 e^{i \alpha(\beta)}+\frac{2-2 \cos \beta}{2018}\right)=\frac{1}{2 \pi} \sum_{x=\infty}^{\infty} I(0, y)=\frac{I}{2 \pi}
$$

$\operatorname{By}(3), 2-2 e^{i \alpha(\beta)}+\frac{2-2 \cos \beta}{2018}=-2 i \sin \alpha(\beta)=\frac{2}{2018} \sqrt{(1-\cos \beta)(4037-\cos \beta)}$.
Then,

$$
\begin{equation*}
F(\beta)=\frac{2018 I}{4 \pi \sqrt{(1-\cos \beta)(4037-\cos \beta)}} \cdots \cdots \tag{4}
\end{equation*}
$$

If we define $F(\beta), \alpha(\beta)$ as (3) and (4), (1) is true. Therefore, the assumption (2) is
consistent with (1).
Then, the difference between the electrical potential at A and that at B is

$$
V(0,0)-V(0,-1)=I \int_{0}^{2 \pi} d \beta \frac{2018\left(1-e^{i \beta}\right)}{4 \pi \sqrt{(1-\cos \beta)(4037-\cos \beta)}}
$$

Similarly, if the current I is output at B and no current is input or output at any node other than B , the difference between the electrical potential at A and that at B is the same as shown above. Using the principle of superposition, we know that if the current I is input and output at A and B , respectively, the electrical potential at A and that at B is twice as much as shown above. Therefore, the residence between A and B of the circuit 2 is

$$
r=2 \int_{0}^{2 \pi} d \beta \frac{2018\left(1-e^{i \beta}\right)}{4 \pi \sqrt{(1-\cos \beta)(4037-\cos \beta)}} \Omega=28.59 \ldots \Omega>28.59 \Omega
$$

I used Wolfram Alpha to calculate this.

$$
\frac{R}{r}=1.57 \ldots \leq 2
$$

Then, the answer is

$$
\begin{aligned}
& r=28.59 \Omega \\
& R=44.92 \Omega
\end{aligned}
$$

