Physics Cup Problem 1

Injecting 1A current into node B, we have (by symmetry) the following distribution of current:

Similarly, if $1 A$ is withdrawn from node B, the current directions will be reversed.
Consider the following scenario: 1A current is injected into node B, and 1A current is withdrawn from node A. By Principle of Superposition, one has that the current flow through the 2018Ω resistor between A and B is $\mathbf{2} I_{2}$ (from B to A). The potential difference between B and A is thus $V_{A B}=(2018 \Omega)\left(2 I_{2}\right)=4036 I_{2}$ and current flow is $I_{A B}=1 A$.

$$
\text { Thus } \mathrm{R}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{AB}} / \mathrm{I}_{\mathrm{AB}}=4036 \mathrm{I}_{2} \text {. }
$$

Similarly, consider: 1A current is injected into node B, and $1 A$ current is withdrawn from node C. By Principle of Superposition, current flow through the 1Ω resistor between B and C is $2 I_{1}$ (from B to C). Thus $V_{B C}=(1 \Omega)\left(2 I_{2}\right)=2 I_{2}$ and $I_{B C}=1 A$.

Thus $\mathrm{R}_{\mathrm{BC}}=\mathrm{V}_{\mathrm{BC}} / \mathrm{I}_{\mathrm{BC}}=\mathbf{2} \mathbf{I}_{\mathbf{1}}$.

$$
2 I_{1}+I_{2}=1, \text { thus } R_{A B} / 4036+R_{B C}=1 .
$$

Where $\{$ circuit $\}$ denotes the effective resistance $R_{X Y}$ (for points X, Y marked on the circuit).
Then by simple recurrence, one has $r= \begin{cases}x & \\ r n & \\ & \end{cases}$
Thus $r=1+1+(2018 / / r)+1+1$ which simplifies to $r^{2}=4 r+8072$.
Solving the quadratic, one arrives at $r=2 \pm 2 V(2019)$. Rejecting the negative solution, one has:

$$
r=2+2 v(2019)
$$

Given any resistor circuit, the removal of any nodes or connections will certainly not decrease the effective resistance between any pair of points. By removing all nodes and resistor connections from the infinite lattice apart from the horizontal ladder rung containing points A , B and C, we may thus find upper bounds for $R_{A B}$ and $R_{B C}$:

$$
\text { Thus } \begin{aligned}
R_{A B} & \leq 2018 / / r / / r \\
& =2018 r \div(r+4036) \\
& =2018 \div v(2019) . \quad \leftarrow \text { sub. } r=2+2 v(2019)
\end{aligned}
$$

$$
\text { Thus } \begin{aligned}
R_{B C} & \leq 1 / /[(2018 / / r)+(r-1)] \\
& =\left(r^{2}+4035 r-2018\right) \div\left(r^{2}+4036 r\right) .
\end{aligned}
$$

An upper bound for $R_{B C}$ gives a lower bound for $R_{A B}$:

$$
\begin{aligned}
R_{A B}=4036\left(1-R_{B C}\right) & \geq 4036\left[1-\left(r^{2}+4035 r-2018\right) \div\left(r^{2}+4036 r\right)\right] \\
& =4036(r+2018) \div\left(r^{2}+4036 r\right) \\
& =1009 \div v(2019) . \quad \leftarrow \text { sub. } r=2+2 v(2019)
\end{aligned}
$$

Thus: $1009 \div \mathrm{V}\left(\mathbf{2 0 1 9)} \Omega \leq \rho=\mathrm{R}_{\mathrm{AB}} \leq 2018 \div \mathrm{V}(\mathbf{2 0 1 9)} \Omega\right.$ where the upper bound is exactly twice the lower bound.

