Physics Cup Problem 1

Prathyush Poduval

January 2, 2018

We shall try to find the exact value of the resistance between the 2 points, for the general case where the 2018Ω resistor is replaced by r

Let us choose a cartesian coordinate system with point A as the origin (thus point B is $(0,-1)$ and the points adjacent to A are $(\pm 1,0)$).

Assign to the point (i, j) it's potential $V_{i j}$ and let the current being taken out of the point be $I_{i j}$. Writing kirchoff's node law at the point,

$$
\begin{aligned}
& 2 V_{i j}-V_{i-1 j}-V_{i+1 j}+\frac{V_{i j}-V_{i j \pm 1}}{r}=I_{i j} \\
& \Longrightarrow V_{i j}=\frac{r I_{i j}+r\left(V_{i+1 j}+V_{i-1 j}\right)+V_{i j \pm 1}}{2 r+1}
\end{aligned}
$$

Here, whether we choose the plus or minus in $V_{i j \pm 1}$ depends on whether $i+j$ is odd (plus) or even (minus).

Let us calculae the fourier series with the potential as coefficients (o is the root of -1)

$$
\begin{gathered}
F_{1}(x, y)=\sum_{i+j e v e n} V_{i j} e^{o(i x+j y)} \\
=\sum \frac{r I_{i j} e^{o(i x+j y)}+r\left(V_{i+1 j} e^{o(i x+j y)}+V_{i+1 j} e^{o(i x+j y)}\right)+V_{i j+1} e^{o(i x+j y)}}{2 r+1} \\
=\frac{r I+\sum_{i+j o d d} V_{i j} e^{o(i x+j y)}\left(2 r \cos (x)+e^{o y}\right)}{2 r+1}
\end{gathered}
$$

$$
=\frac{r I+F_{2}(x, y)\left(2 r \cos (x)+e^{o y}\right)}{2 r+1}
$$

Where we used the fact that $I_{0,-1}=I$ (current being removed) and F_{2} is defined by:

$$
F_{2}(x, y)=\sum_{i+j o d d} V_{i j} e^{o(i x+j y)}
$$

Using similar line of reasoning above, we get

$$
F_{2}=\frac{-I r e^{-o y}+F_{1}\left(2 r \cos (x)+e^{-o y}\right)}{2 r+1}
$$

Solving the 2 equations, we get

$$
\begin{aligned}
& F_{1}=\frac{I r}{2} \frac{1-\cos (x) e^{-o y}}{r \sin ^{2}(x)-\cos (x) \sin (x)+1} \\
& F_{2}=\frac{I r}{2} \frac{\cos (x)-e^{-o y}}{r \sin ^{2}(x)-\cos (x) \sin (x)+1}
\end{aligned}
$$

Thus we can find the resistance using $\rho=\frac{V_{00}-V_{0,-1}}{I}$, which comes out to be:

$$
\rho=\frac{r}{4 \pi^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{\cos (x) \cos (y)-1}{r \sin ^{2}(x)-\cos (x) \sin (x)+1} d x d y
$$

Using OCTAVE, we get $\rho=40.436$ when $r=2018$.

ANSWER

we can choose $\mathrm{r}=30$ and $\mathrm{R}=60$ and $r<\rho<R$.

