Physics Cup - Problem 2

Balázs Németh
Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium nemethbalazs2000@gmail.com

First of all, we are going to determine the orbit of the spaceship. We introduce a reference frame where every movement happens in the x -direction and at $t=0$ the spaceship is at $x=0$ and moves with speed $u=0$. (Note that this is an inertial reference frame.)
By the laws of special relativity, the acceleration of the spaceship a perceived by an observer in our reference frame is given by:

$$
\begin{equation*}
a=g\left(1-\frac{u^{2}}{c^{2}}\right)^{\frac{3}{2}} \tag{1}
\end{equation*}
$$

where u is the current speed of the spaceship and c is the speed of light. Plugging in the definition of a :

$$
\frac{d u}{d t}=g\left(1-\frac{u^{2}}{c^{2}}\right)^{\frac{3}{2}}
$$

Now we solve this differential equation:

$$
\frac{d u}{\left(1-\frac{u^{2}}{c^{2}}\right)^{\frac{3}{2}}}=g d t
$$

Let's integrate both sides:

$$
\int_{0}^{u} \frac{d u^{\prime}}{\left(1-\frac{u^{\prime 2}}{c^{2}}\right)^{\frac{3}{2}}}=\int_{0}^{t} g d t^{\prime}
$$

To integrate the left-hand side, use the substitution $x=\frac{u}{c}$:

$$
\int_{0}^{x} \frac{c d x^{\prime}}{\left(1-x^{\prime 2}\right)^{\frac{3}{2}}}=g t
$$

Another substitution: let $x=\sin \alpha$:

$$
\begin{gathered}
\int_{0}^{\alpha} \frac{c \cdot \cos \left(\alpha^{\prime}\right) d \alpha^{\prime}}{\left(1-\sin \left(\alpha^{\prime}\right)^{2}\right)^{\frac{3}{2}}}=g t \\
\int_{0}^{\alpha} \frac{c \cdot \cos \left(\alpha^{\prime}\right) d \alpha^{\prime}}{\cos \left(\alpha^{\prime}\right)^{3}}=g t \\
\int_{0}^{\alpha} \frac{c d \alpha^{\prime}}{\cos \left(\alpha^{\prime}\right)^{2}}=g t \\
c \cdot(\tan (\alpha)-\tan (0))=g t
\end{gathered}
$$

So we get:

$$
c \tan \alpha=g t
$$

We know that $x=\sin \alpha$, thus:

$$
\begin{aligned}
& c \sqrt{\frac{x^{2}}{1-x^{2}}}=g t \\
& c \sqrt{\frac{u^{2}}{c^{2}}}=g t \\
& \sqrt{\frac{c^{2} u^{2}}{c^{2}-u^{2}}}=g t
\end{aligned}
$$

After rearranging, this yields:

$$
\begin{equation*}
u=\frac{c g t}{\sqrt{c^{2}+g^{2} t^{2}}} \tag{2}
\end{equation*}
$$

Plugging in the definition of u, we get another differential equation:

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{c g t}{\sqrt{c^{2}+g^{2} t^{2}}} \\
& d x=\frac{c g t \cdot d t}{\sqrt{c^{2}+g^{2} t^{2}}}
\end{aligned}
$$

Integrating both sides, with substitution $y=\sqrt{c^{2}+g^{2} t^{2}}$:

$$
\begin{gathered}
d y=\frac{2 g^{2} t d t}{2 \sqrt{c^{2}+g^{2} t^{2}}}=\frac{g^{2} t d t}{\sqrt{c^{2}+g^{2} t^{2}}} \\
x=\int_{c}^{y} \frac{c}{g} d y^{\prime}=\frac{c}{g}(y-c)=\frac{c}{g}\left(\sqrt{c^{2}+g^{2} t^{2}}-c\right)
\end{gathered}
$$

This means:

$$
\begin{equation*}
x=\frac{c}{g}\left(\sqrt{c^{2}+g^{2} t^{2}}-c\right) \tag{3}
\end{equation*}
$$

Let us launch a missile at $t=0$ with speed v. Now we are going to calculate the time t required to catch the missile in our reference frame. As at $t=0$ the spaceship is at rest, this means that in the inertial frame the speed of the missile is simply v. At time t, the spaceship catches the missile, so:

$$
\begin{gathered}
x(t)=v t \\
\frac{c}{g}\left(\sqrt{c^{2}+g^{2} t^{2}}-c\right)=v t \\
\sqrt{c^{2}+g^{2} t^{2}}=\frac{g v t}{c}+c \\
c^{2}+g^{2} t^{2}=\frac{g^{2} v^{2} t^{2}}{c^{2}}+2 g v t+c^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \left(g^{2}-\frac{g^{2} v^{2}}{c^{2}}\right) t^{2}-2 g v t=0 \\
& t \cdot\left(g^{2} t-\frac{g^{2} v^{2}}{c^{2}} t-2 g v\right)=0
\end{aligned}
$$

$t=0$ corresponds to the launch of the missile, so we need the other root:

$$
\begin{equation*}
t=\frac{2 g v}{g^{2}-\frac{g^{2} v^{2}}{c^{2}}}=\frac{2 v c^{2}}{g\left(c^{2}-v^{2}\right)} \tag{4}
\end{equation*}
$$

As a final step, we are going to calculate the proper time τ elapsed in the spaceship. For infinitesimally small changes:

$$
d \tau=d t \sqrt{1-\frac{u^{2}}{c^{2}}}
$$

Integrating both sides, using (2):

$$
\tau=\int_{0}^{t} d t \sqrt{1-\frac{g^{2} t^{2}}{c^{2}+g^{2} t^{2}}}=\int_{0}^{t} \frac{c \cdot d t}{\sqrt{c^{2}+g^{2} t^{2}}}
$$

Using the substitution $y=\frac{g t}{c}$:

$$
\tau=\int_{0}^{y} \frac{c}{g} \cdot \frac{d y^{\prime}}{\sqrt{1+y^{\prime 2}}}
$$

This is a standard integral (here $\sinh ^{-1}$ denotes the inverse hyperbolic sine):

$$
\tau=\frac{c}{g}\left(\sinh ^{-1}(y)-\sinh ^{-1}(0)\right)=\frac{c}{g} \sinh ^{-1}\left(\frac{g t}{c}\right)
$$

Note that $\sinh ^{-1}(x)=\ln \left(x+\sqrt{1+x^{2}}\right)$:

$$
\tau=\frac{c}{g} \ln \left(\frac{g t}{c}+\sqrt{1+\frac{g^{2} t^{2}}{c^{2}}}\right)
$$

Using (4):

$$
\begin{gathered}
\tau=\frac{c}{g} \ln \left(\frac{2 v c}{c^{2}-v^{2}}+\sqrt{1+\frac{4 v^{2} c^{2}}{\left(c^{2}-v^{2}\right)^{2}}}\right)=\frac{c}{g} \ln \left(\frac{2 v c}{c^{2}-v^{2}}+\sqrt{\frac{\left(c^{2}-v^{2}\right)^{2}+4 v^{2} c^{2}}{\left(c^{2}-v^{2}\right)^{2}}}\right)= \\
=\frac{c}{g} \ln \left(\frac{2 v c}{c^{2}-v^{2}}+\frac{c^{2}+v^{2}}{c^{2}-v^{2}}\right)=\frac{c}{g} \ln \left(\frac{(c+v)^{2}}{c^{2}-v^{2}}\right)=\frac{c}{g} \ln \left(\frac{c+v}{c-v}\right)
\end{gathered}
$$

So the proper time elapsed between catching the first and the second missile:

$$
\Delta \tau=\frac{c}{g}\left[\ln \left(\frac{c+2 v}{c-2 v}\right)-\ln \left(\frac{c+v}{c-v}\right)\right]=\frac{c}{g} \ln \left[\frac{(c+2 v)(c-v)}{(c-2 v)(c+v)}\right]
$$

