
Physics cup-Problem 3        Thomas Bergamaschi 

Using Boundary conditions at the interface(𝑟 = 𝑅), we have(Note proof in Appendix 2): 

𝐵𝑟
𝑖𝑛 = 𝐵𝑟

𝑜𝑢𝑡  𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 
𝐵𝑧

𝑖𝑛

𝜇
= 𝐵𝑧

𝑜𝑢𝑡   (1) 

Since 𝜇 ≫ 1, 𝐵𝑧
𝑖𝑛 ≫ 𝐵𝑧

𝑜𝑢𝑡, therefore the magnetic flux of 𝐵𝑧 inside the cylinder is much larger than the 

flux of 𝐵𝑧 outside the cylinder. 

This manner using Gauss law between the infinite planes 1-2 in the figure below: 

 

We obtain therefore(using that 𝐵𝑧
𝑖𝑛 does not depend on 𝑟, note proof in appendix 1): 

𝐵𝑧
𝑖𝑛(𝑧)𝜋𝑅2 = 2𝜋𝑟ℎ𝐵𝑟

𝑜𝑢𝑡 + 𝐵𝑧
𝑖𝑛(𝑧 + ℎ)𝜋𝑅2 ⇔ 2𝑟𝐵𝑟

𝑜𝑢𝑡 = −𝑅2
𝑑𝐵𝑧

𝑖𝑛

𝑑𝑧
 (1) 

Now, using Amperes law for the loop below we have: 

 

 

 



 

 

∫ �⃗⃗� ∙ 𝑑𝑙 = 𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 0 ⇔ 𝐻𝑧
𝑖𝑛ℎ + ∫ (𝐻𝑟

𝑜𝑢𝑡(𝑧 + ℎ) − 𝐻𝑟
𝑜𝑢𝑡(𝑧))𝑑𝑟 = 0

∞

𝑅

  (2) 

Simplifying (2), we obtain therefore(using that �⃗� = 𝜇𝜇0�⃗⃗� ): 

𝐻𝑧
𝑖𝑛 = −∫

𝑑𝐻𝑟
𝑜𝑢𝑡

𝑑𝑧
𝑑𝑟

∞

𝑅

⇔
𝐵𝑧

𝑖𝑛

𝜇
= −∫

𝑑𝐵𝑟
𝑜𝑢𝑡

𝑑𝑧
𝑑𝑟

∞

𝑅

 (3) 

Now using (1) we obtain: 

𝑑𝐵𝑟
𝑜𝑢𝑡

𝑑𝑧
= −

𝑅2

2𝑟

𝑑2𝐵𝑧
𝑖𝑛

𝑑𝑧2
   (4) 

Using (4) in (3), we have now(defining the divergent logarithmic integral as 𝜂 = ∫
𝑑𝑟

𝑟

∞

𝑅
) : 

𝐵𝑧
𝑖𝑛

𝜇
=

𝑅2

2

𝑑2𝐵𝑧
𝑖𝑛

𝑑𝑧2
   ∫

𝑑𝑟

𝑟

∞

𝑅

⇔
𝑑2𝐵𝑧

𝑖𝑛

𝑑𝑧2
=

2

𝜇𝜂𝑅2
𝐵𝑧

𝑖𝑛  (5) 

 

Therefore the solutions for this equation are(Valid only for 𝑧 > 0): 

𝐵𝑧
𝑖𝑛 = 𝐴𝑒−𝑧/𝜆, 𝑤ℎ𝑒𝑟𝑒 𝜆 = 𝑅√

𝜇𝜂

2
   (6) 



 

In (6), one can see that 𝜆 ≫ 𝑅, since 𝜇, 𝜂 ≫ 1. Now, using (6) and (1), we obtain that: 

𝐵𝑟
𝑜𝑢𝑡 =

𝐴𝑅2

2𝜆𝑟
𝑒−𝑧/𝜆 (7) 

Now, to obtain 𝐴, we again use Amperes law, for the loop below: 

 

This time, we have(using that the loop is at 𝑧 = 0): 

∫ �⃗⃗� ∙ 𝑑𝑙 = 𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝐼 ⇔ 2∫ 𝐵𝑟
𝑜𝑢𝑡𝑑𝑟 = 𝜇0𝐼

∞

𝑅

⇔ 𝐴 =
𝜇0𝐼𝜆

𝑅2𝜂
 (8) 

Remember that 𝜂 is defined as 𝜂 = ∫
𝑑𝑟

𝑟

∞

𝑅
. 

This manner we obtain our expression for 𝐵𝑧
𝑖𝑛: 

𝐵𝑧
𝑖𝑛 =

𝜇0𝐼𝜆

𝑅2𝜂
𝑒−𝑧/𝜆 (9) 

Therefore the magnetic flux through the loop is: 

𝜙 = 𝜋𝑅2𝐵𝑧
𝑖𝑛(𝑧 = 0) =

𝜇0𝐼𝜆𝜋

𝜂
  (10) 



 

Since inductance is defined as 𝐿 =  𝜙/𝐼, we obtain therefore: 

𝐿 =
𝜇0𝜆𝜋

𝜂
  (11) 

Now let us use the fact that 𝜆 ≫ 𝑅 to find a expression for 𝐿. Since 𝜂 = ∫
𝑑𝑟

𝑟

∞

𝑅
 , and 𝜆 ≫ 𝑅 , therefore 

𝜂 = ∫
𝑑𝑟

𝑟

𝛽𝜆

𝑅
= ln (

𝛽𝜆

𝑅
), where 𝛽 is a constant that we can adjust, since 𝜆 = 𝑅√

𝜇𝜂

2
 we obtain therefore 

that: 

𝜂 = ln(𝛽√
𝜇𝜂

2
) = lnβ +

1

2
ln (

𝜇𝜂

2
) ⇔ 2𝜂 = ln𝛽2 + ln (

𝜇𝜂

2
) = 𝑙𝑛𝜇 + 𝑙𝑛𝜂 + 𝑙𝑛𝛽2 − 𝑙𝑛2 (12) 

Now, since 𝑙𝑛𝜇 ≫ 𝑙𝑛2 and also that 2𝜂 ≫ 𝑙𝑛𝜂 , and that by hypothesis 𝜇 is arbitrarily large(so we can 

ignore  𝑙𝑛𝛽2) we have that (12) simplifies to: 

2𝜂 = 𝑙𝑛𝜇 (13) 

Now, with (13), the inductance  is simply, 𝐿 =
𝜇0𝜆𝜋

𝜂
= 𝜇0𝜋𝑅√

𝜇

2𝜂
= 𝜇0𝜋𝑅√

𝜇

𝑙𝑛𝜇
. 

Therefore the asked inductance is: 

𝐿 = 𝜇0𝜋𝑅√
𝜇

𝑙𝑛𝜇
 

 

Appendix 1:Proof that 𝐵𝑧
𝑖𝑛 does not depend on 𝑟. 

Consider both ampere loops below: 

 



 

In the first loop we have by amperes law: 

∫ �⃗⃗� ∙ 𝑑𝑙 = 𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 0 ⇔ 𝐻𝑧
𝑖𝑛(𝑅)ℎ + ∫ (𝐻𝑟

𝑜𝑢𝑡(𝑧 + ℎ) − 𝐻𝑟
𝑜𝑢𝑡(𝑧))𝑑𝑟 = 0

∞

𝑅

 (1) 

For the second loop, we have again by amperes law: 

∫ �⃗⃗� ∙ 𝑑𝑙 = 0 ⇔ 𝐻𝑧
𝑖𝑛(𝑟)ℎ + ∫ (𝐻𝑟

𝑖𝑛(𝑧 + ℎ) − 𝐻𝑟
𝑖𝑛(𝑧)) +

𝑅

𝑟

∫ (𝐻𝑟
𝑜𝑢𝑡(𝑧 + ℎ) − 𝐻𝑟

𝑜𝑢𝑡(𝑧))𝑑𝑟 = 0 (2)
∞

𝑅

 

Since at the interface 𝐻𝑟
𝑖𝑛 =

𝐻𝑟
𝑜𝑢𝑡

𝜇
 , and 𝜇 ≫ 1, the second term in the expression above is approximately 

0, therefore we obtain: 

𝐻𝑧
𝑖𝑛(𝑟)ℎ = −∫ (𝐻𝑟

𝑜𝑢𝑡(𝑧 + ℎ) − 𝐻𝑟
𝑜𝑢𝑡(𝑧))𝑑𝑟 (3)

∞

𝑅

 

Comparing (1) with (3), we see that 𝐻𝑧
𝑖𝑛(𝑟) = 𝐻𝑧

𝑖𝑛(𝑅), therefore 𝐻𝑧
𝑖𝑛 does not depend on 𝑟. 

 

Appendix 2: 

Boundary conditions demonstration: 



 

Let 𝐵1
⃗⃗⃗⃗  and 𝐵2

⃗⃗ ⃗⃗  be the normal components of the magnetic field in medium 1 and 2 respectively. By Gauss 

law: 

∫�⃗� ∙ 𝑑𝑆 = 0 ⇔𝐵2𝑆 − 𝐵1𝑆 = 0 ⇔ 𝐵1 = 𝐵2 

Now, let use Amperes law to find the relation between the tangential field components. Now consider 

the below figure, in which 1 has relative permeability 𝜇 and 2 relative permeability 1, and also that 𝐻1
⃗⃗ ⃗⃗   

and 𝐻2
⃗⃗ ⃗⃗   are the tangential 𝐻 field components(recall that �⃗� = 𝜇𝜇0�⃗⃗� ). 

 

If the Interface has no free currents(which is the case in the problem), we have that: 

∫ �⃗⃗� ∙ 𝑑𝑙 = 𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 0 ⇔ 𝐻2𝑙 − 𝐻1𝑙 = 0 ⇔ 𝐻1 = 𝐻2 

Since �⃗� = 𝜇𝜇0�⃗⃗� , we have that 
𝐵1

𝜇
= 𝐵2 


