Physics Cup Q2

Dylan Toh NUS High School

We fix S as the inertial rest frame of the spaceship when it ejects missiles (let this moment be $t=0$). In frame S, the missiles are travelling at constant speeds v and $2 v$ respectively; their motion with respect to time is thus:

$$
x_{1}(t)=v t ; x_{2}(t)=2 v t
$$

The spaceship is undergoing proper acceleration g. Let S^{\prime} be the inertial instantaneous rest frame of the spaceship at some time t; the Lorentz' transformation gives

$$
\left\{\begin{array}{l}
x^{\prime}=\gamma(x-\beta c t) \\
c t^{\prime}=\gamma(c t-\beta x)
\end{array}\right.
$$

thus

$$
\frac{d x^{\prime}}{d t}=\gamma\left(\frac{d x}{d t}-\beta c\right) ; \frac{d^{2} x^{\prime}}{d t^{2}}=\gamma \frac{d^{2} x}{d t^{2}}
$$

and time dilation $d t=\gamma d t^{\prime}$ applies; thus

$$
\frac{d^{2} x^{\prime}}{d t^{\prime 2}}=\left(\frac{d t}{d t^{\prime}}\right)^{2} \cdot \frac{d^{2} x^{\prime}}{d t^{2}}=\gamma^{3} \frac{d^{2} x}{d t^{2}}
$$

which gives the relation $\boldsymbol{a}=\boldsymbol{g} / \boldsymbol{\gamma}^{\mathbf{3}}$ in frame S. We may solve this as follows:

$$
\frac{d v}{d t}=g\left(1-\frac{v^{2}}{c^{2}}\right)^{3 / 2}
$$

Substituting $v=c \cdot \tanh \theta$:

$$
\begin{gathered}
\frac{d v}{d \theta} \cdot \frac{d \theta}{d t}=c \cdot \operatorname{sech}^{2} \theta \cdot \frac{d \theta}{d t}=g\left(1-\tanh ^{2} \theta\right)^{3 / 2}=g \cdot \operatorname{sech}^{3} \theta \\
\cosh \boldsymbol{\theta} \cdot \frac{\boldsymbol{d} \boldsymbol{\theta}}{\boldsymbol{d} \boldsymbol{t}}=\frac{\boldsymbol{g}}{\boldsymbol{c}}
\end{gathered}
$$

Initial conditions $v_{t=0}=0 \therefore \theta_{t=0}=0$:

$$
\begin{gathered}
\int_{0}^{\theta} \cosh \theta d \theta=\sinh \theta=\int_{0}^{t} \frac{g}{c} d t=\frac{g t}{c} \\
v=c \cdot \tanh \sinh ^{-1} \frac{g t}{c}=c \cdot \frac{g t / c}{\sqrt{(g t / c)^{2}+1}}=\frac{g t}{\sqrt{(g t / c)^{2}+1}} \\
x=\int_{0}^{t} v d t=\int_{0}^{t} \frac{g t}{\sqrt{(g t / c)^{2}+1}} d t=\frac{c^{2}}{g}\left[\sqrt{(g t / c)^{2}+1}-1\right]
\end{gathered}
$$

The missile catches up with the first and second missiles at $t=t_{1}$ and $t=t_{2}$ respectively (and corresponding to $\theta=\theta_{1}$ and $\theta=\theta_{2}$ respectively), which satisfy:

$$
\begin{gathered}
\frac{c^{2}}{g}\left[\sqrt{\left(g t_{1} / c\right)^{2}+1}-1\right]=v t_{1} \therefore c \cdot\left[\cosh \theta_{1}-1\right]=v \cdot \sinh \theta_{1} \\
\therefore 2 c \sinh ^{2} \frac{\theta_{1}}{2}=2 v \sinh \frac{\theta_{1}}{2} \cosh \frac{\theta_{1}}{2} \therefore \tanh \frac{\boldsymbol{\theta}_{\mathbf{1}}}{\mathbf{2}}=\frac{\boldsymbol{v}}{\boldsymbol{c}}
\end{gathered}
$$

and similarly

$$
\frac{c^{2}}{g}\left[\sqrt{\left(g t_{2} / c\right)^{2}+1}-1\right]=2 v t_{2} \therefore \boldsymbol{\operatorname { t a n h }} \frac{\boldsymbol{\theta}_{\mathbf{2}}}{\mathbf{2}}=\frac{\mathbf{2 v}}{\boldsymbol{c}}
$$

We want to find the proper time T between the two events:

$$
T=\int d t^{\prime}=\int_{t_{1}}^{t_{2}} \frac{d t}{\gamma}=\int_{t_{1}}^{t_{2}}\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2} d t=\int_{t_{1}}^{t_{2}} \operatorname{sech} \theta d t=\int_{\theta_{1}}^{\theta_{2}} \frac{c}{g} d \theta=\frac{c}{g}\left(\theta_{2}-\theta_{1}\right)
$$

The change of integration variable from t to θ makes use of $\cosh \theta \cdot \frac{d \theta}{d t}=\frac{g}{c}$ above. Thus:

$$
T=\frac{2 c}{g}\left(\tanh ^{-1} \frac{2 v}{c}-\tanh ^{-1} \frac{v}{c}\right)=\frac{c}{g} \ln \left(\frac{1+2 v / c}{1-2 v / c} \cdot \frac{1-v / c}{1+v / c}\right)=\frac{\boldsymbol{c}}{\boldsymbol{g}} \ln \frac{(\boldsymbol{c}+2 \boldsymbol{v})(\boldsymbol{c}-\boldsymbol{v})}{(\boldsymbol{c}-2 \boldsymbol{v})(\boldsymbol{c}+\boldsymbol{v})}
$$

